Численное моделирование высокоскоростного взаимодействия ударников с преградами конечной толщины: рикошет, внедрение, пробитие
Теоретико-экспериментальное исследование высокоскоростного взаимодействия компактных и удлиненных ударников с преградами конечной толщины. Рассмотрение случаев рикошета, проникания и пробития при различных скоростях и углах соударения с препятствием.
Рубрика | Физика и энергетика |
Вид | статья |
Язык | русский |
Дата добавления | 29.10.2018 |
Размер файла | 114,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Численное моделирование высокоскоростного взаимодействия ударников с преградами конечной толщины: рикошет, внедрение, пробитие
А.В. Герасимов
В данной работе проводится теоретико-экспериментальное исследование высокоскоростного взаимодействия компактных и удлиненных ударников с преградами конечной толщины. Рассматриваются случаи рикошета, проникания и пробития преград при различных скоростях и углах соударения.
Ключевые слова: удар, вероятность, разрушение, фрагментация, 3D постановка, упругопластическое тело.
A.V. Gerasimov
Numerical Simulation of High-Velocity Interaction of Projectiles with a Barrier of Finite Thickness: Ricochet, Penetration, Perforation
This paper deals with theoretical and experimental study of the interaction of high-speed compact and elongated projectiles with targets of finite thickness. The cases of a ricochet, penetration and perforation barriers at various speeds and angles of impact are considered.
Keywords: shock, probability, fracture, fragmentation, 3D model, elastic-plastic body.
ударник преграда рикошет пробитие
Создание надежных защитных устройств различных объектов требует знания особенностей процессов протекающих при ударном нагружении устройств различной конфигурации, конструктивных особенностей и использующих различные материалы. При этом не менее существенны скорость соударения и углы подхода ударников к преграде. В данной работе рассматриваются случаи рикошета, проникания и пробития преград при различных скоростях и углах соударения.
При малых и умеренных углах подхода (~ 45°…60°) ударника от нормали к поверхности преграды влияние наклонного соударения проявляется в увеличении “толщины“ преграды в направлении вектора скорости. Однако, в зависимости от свойств материалов соударяющихся тел, геометрии ударника, скорости соударения и ориентации ударника в момент контакта с преградой, существует критический угол, при котором и выше которого ударник рикошетирует. При низких скоростях соударения ударник и преграда практически не деформируются - имеет место упругий рикошет. При повышении скорости удара рикошет сопровождается пластическими деформациями - наблюдается пластический рикошет [1, с. 1403]. Возможно также несквозное проникание под углом без рикошета и сквозное проникание без рикошета. Таким образом, при ударе под углом сквозное проникание без рикошета и упругий рикошет дают верхнюю и нижнюю границы области условий встречи ударника с преградой, где рикошет переходит в пробивание преграды.
Задачи решаются в 3-D постановке с учетом естественной гетерогенности структуры реальных материалов, влияющей на распределение физико-механических характеристик по объему элементов конструкций и являющейся одним из факторов, определяющих характер разрушения последних. Учет данного фактора в уравнениях механики деформируемого твердого тела возможен при применении вероятностных законов распределения физико-механических характеристик по объему рассматриваемой конструкции.
Для описания процессов деформирования и разрушения твердых тел используется модель идеально упругопластического тела [2, с.506,3, с. 17]. В качестве критерия разрушения - достижение эквивалентной пластической деформацией своего предельного значения [2. с. 654]. Влияние начальных неоднородностей материала учитывается вероятностным распределением критерия разрушения по ячейкам расчетной области с помощью модифицированного генератора случайных чисел, выдающего случайную величину, подчиняющуюся выбранному закону распределения [4, с. 154].
Для численных расчетов предлагается методика, базирующаяся на совместном использовании метода Уилкинса [3, с. 33] для расчета внутренних точек тела и метода Джонсона [5, с. 1865] для расчета контактных взаимодействий.
На рис. 1 приведены результаты численного моделирования рикошетирования стального ударника-шарика диаметром 0.8 см при взаимодействии с титановой преградой толщиной 0,95 см и диаметром 8 см. Скорость ударника =3600 м/с, угол соударения от нормали к преграде составлял 75°. В численном исследовании получены следующие значения параметров кратера: большая ось кратера равнялась 30, 5 мм, меньшая ось кратера-15 мм, глубина кратера - 8,2 мм. Экспериментальные данные: большая ось кратера-28 мм, меньшая ось кратера-16 мм, глубина кратера - 7 мм.
Рассматривалось также соударение кластера из шести сферических элементов с преградой под различными углами к поверхности последней. Размеры пластин 55 см, толщина - 0,35 см, материал- алюминий. Шарик - сталь, диаметр равняется 0, 56 см. Центры группа шариков располагается по кругу с диаметром равным 1, 5 см, соударение всех шариков с преградой происходит одновременно.
При увеличение угла соударения до 80° от нормали к поверхности пластины происходит рикошет ударников и деформированию преграды без существенных повреждений и пробития последней (рис.2).
На рис. 3 приведены результаты расчетов удара стержня из вольфрамового сплава диаметром 0.4 см и длиной 4 см с алюминиевой преградой толщиной 1,5 см и диаметром 3, 2 см со скоростью =500 м/с по нормали к преграде.
Здесь видно, что процесс деформирования и разрушения при нормальном ударе существенно трехмерный, несмотря на начальный осесимметричный характер нагружения преграды и ударника. При заданной скорости стержень деформируется незначительно, а в преграде выбивается небольшая пробка, которая видна на рис. 3, б, и формируется осколочное поле вокруг вылетающего из преграды стержня (рис. 3, а).
Соударение под углом 20° от нормали показано на рис. 4. Здесь и далее размеры элементов системы и материалы контактирующих тел те же самые, кроме диаметра преграды, который в дальнейших расчетах равняется 5,8 см. В данном случае форма стержня незначительно отличается от исходной и потери устойчивости не наблюдается.Увеличение угла соударения: 30°,40°,45°,50° приводит к все большему искажению исходной осесимметричной формы стержня и непробитию преграды. В последнем случае стержень даже выходит через лицевую поверхность пластины. Результаты расчетов соударения стержня под углом 50 градусов к преграде приведены на рис. 5, где показаны общий вид и плоский разрез.
При взаимодействии стержня с плоским торцом с преградой под различными углами к поверхности [6, с. 22 ] потери устойчивости и отклонения формы неразрушенной части стержня от осевой симметрии не наблюдалось. В проведенных расчетах показано, что коническая головная часть при углах соударения больше определенного значения приводит к резко выраженному неравномерному обтеканию внедряющегося тела материалом преграды, возникновению асимметричного силового поля и, как следствие, к искривлению стержня и изменению траектории его движения в материале пластины, вплоть до выхода стержня из преграды через лицевую поверхность. Дальнейшее увеличение угла отклонения стержня от нормали до значения 75 градусов приводит к его рикошетированию (рис. 6).
Рикошетирование стержня с плоским торцом иллюстрирует рис. 7. Взаимодействие его с преградой характеризуется разрушением поверхностных слоев, как преграды, так и стержня с формированием облака осколков, движущихся по направлению рикошетирования.
Полученные результаты показывают широкие возможности предложенных вероятностного подхода и численной методики адекватно моделировать не только процессы деформирования и разрушения элементов конструкций при интенсивных динамических нагружениях, но и такие процессы динамического взаимодействия, как рикошетирования ударников. Это подтверждается хорошим совпадением качественных и количественных характеристик представленных в работе численных результатов решения задачи о рикошетировании с экспериментальными данными.
Библиографический список
1. Segletis S.B. A Model for Rod Ricochet / S.B. Segletis //Int. J. Impact Eng. 2006. V.32. № 9.
2.Баум Ф.А., Орленко Л.П., Станюкович К.П., Чебышев В.П., Шехтер Б.И..Физика взрыва / М.: Наука, 1975.
3. Wilkins M.L. Computer Simulation of Dynamic Phenomena/Berlin-Heidelberg-N.Y.: Springer, 1999.
4.Теоретические и экспериментальные исследования высокоскоростного взаимодействия тел / Под ред. А.В. Герасимова. Томск: Изд-во Том. ун-та, 2007.
5. Johnson G.R., Colby D.D., Vavrick D.J. Tree-Dimensional Computer Code for Dynamic Response of Solids to Intense Impulsive Loads// Int. J. Numer. Methods Engng. 1979. V. 14, № 12.
6. Герасимов А.В., Пашков С.В., Михайлов В.Н. Соударение длинных стержней по нормали и под углом с многослойными и разнесенными преградами//Сб. статей 9-й Всерос. научн. конф. “Краевые задачи и математическое моделирование “. Новокузнецк, 2008. Т.1.
Приложение
Рис. 1. Численное моделирование рикошетирования стального шарика при взаимодействии с титановой преградой (t=13,23 мкс; =3600 м/с; 75°): а - вид сверху; в, г - сечение вдоль и поперек каверны; б - эксперимент (фотография стального шарика в исходном состоянии и следа в титановой пластине, оставшегося после их взаимодействия).
а б
Рис.2. Групповой удар компактными элементами по тонкой преграде под углом 80o от нормали со скоростью 1500 м/с: а-t=10 мкс; б- t=25 мкс.
а б
Рис. 3. Нормальное соударение стержня с алюминиевой преградой (t=136, 7 мкс):а - общий вид; б - плоское сечение.
а б
Рис. 4. Соударение стержня с алюминиевой преградой под углом 20° от нормали (t=27 мкс): а - общий вид; б - плоское сечение.
а б
Рис. 5. Соударение стержня с алюминиевой преградой под углом 50 градусов от нормали (t=100 мкс): а - общий вид; б - плоское сечение.
а б
Рис. 6. Соударение стержня из вольфрамового сплава с конической головной частью с алюминиевой преградой под углом 75 градусов от нормали (t=33 мкс): а - общий вид; б - плоское сечение.
а б
Рис. 7. Соударение стержня из вольфрамового сплава с плоским торцом с алюминиевой преградой под углом 75 градусов от нормали (t=52 мкс): а - общий вид; б - плоское сечение.
Размещено на Allbest.ru
...Подобные документы
Перспективы методов контроля оптической толщины покрытий различного функционального назначения. Контроль толщины оптических покрытий на основе тугоплавких оксидов формируемых методом электронно-лучевого синтеза. Расчёт интерференционных покрытий.
дипломная работа [2,7 M], добавлен 18.03.2015Рассмотрение правил получения серии однослойных образцов металлов и их сплавов, напылённых на подложки с варьируемой толщиной слоя. Изучение влияние толщины напылённого слоя на соотношение характеристических полос испускания в рентгеновских спектрах.
дипломная работа [1,2 M], добавлен 20.07.2015Удар абсолютно упругих и неупругих тел. Закон сохранения импульса и сохранения момента импульса. Физический смысл соударения упругих и неупругих тел. Практическое применение физического явления соударения тел. Механический метод разрушения пород.
контрольная работа [240,4 K], добавлен 16.09.2013Цель и задачи расчета прочности неукрепленного одиночного отверстия, расчетные зависимости при расчете прочности. Расчет толщины стенки цилиндрических барабанов, компенсирующей площади от укрепления накладкой, номинальной толщины стенки обечаек барабана.
курсовая работа [2,3 M], добавлен 20.06.2010Численное исследование энергоэффективной работы конденсаторной установки мини-ТЭС при различных условиях теплообмена с окружающей средой. Рассмотрение общей зависимости работы электростанций от использования различных органических рабочих веществ.
доклад [243,0 K], добавлен 09.06.2015Энергетическое разрешение полупроводникового детектора. Механизмы взаимодействия альфа-частиц с веществом. Моделирование прохождения элементарных частиц через вещество с использованием методов Монте–Карло. Потери энергии на фотоядерные взаимодействия.
курсовая работа [502,5 K], добавлен 07.12.2015Физическое моделирование теплового смерча типа торнадо в лабораторных условиях, исследование формирования и взаимодействия смерчей между собой. Осуществление моделирования тепловых смерчей в лабораторных условиях с помощью экспериментальных установок.
реферат [2,0 M], добавлен 05.08.2010Численное решение уравнений движения планет и их спутников по орбите. Влияние возмущений на характер орбиты. Возмущения в пространстве скоростей. Радиальные, тангенциальные возмущения. Законы движения Кеплера и Ньютона. Влияние "солнечного ветра".
курсовая работа [486,0 K], добавлен 22.07.2011Электрический пробой газов и диэлектриков. Вольт-секундные характеристики изоляции. Разработка импульсного генератора высоких напряжений. Моделирование и построение математической модели, позволяющей проводить расчет электрического разряда в жидкости.
дипломная работа [3,4 M], добавлен 26.11.2011Интерференция волн и колебания. Изучение принципа работы адаптивного интерферометра на попутных пучках. Исследование взаимодействия сигнального светового пучка, с использованием горизонтальной поляризации. Измерения фазовой интерференционной картины.
курсовая работа [505,8 K], добавлен 08.03.2016Понятие квантового размерного эффекта (КРЭ). Выбор висмута, его обоснование. Требуемые улучшения в исследовании КРЭ. Расширенная зонная структура висмута вдоль различных кристаллографических направлений. График зависимости сопротивления от толщины плёнки.
дипломная работа [2,5 M], добавлен 26.08.2017В реальных жидкостях присутствует не один, а множество пузырьков и свойства жидкостей зависят от особенностей взаимодействия между пузырьками. Взаимодействия двух радиально пульсирующих пузырьков газа в жидкости ранние выведенной математической модели.
курсовая работа [608,7 K], добавлен 05.03.2008Анализ скорости звука в металлах методом их соударения, измерения времен соприкосновения и распространения волны. Измерения при соударении стержней одинаковых по размерам и материалу, из одинакового материала и одинакового сечения, но разной длины.
лабораторная работа [203,1 K], добавлен 06.08.2013Рассмотрение экспериментальных зависимостей температуры горячего потока от входных параметров. Расчет показателей расхода хладагента и горячего потока и их входной температуры. Определение толщины отложений на внутренней поверхности теплообменника.
лабораторная работа [52,4 K], добавлен 13.06.2019Использование событийного моделирование в описании поведения большого количества модельных частиц. Классификация потенциалов взаимодействия, быстродействие алгоритмов. Решение задач фильтрации, конденсации, фазовых переходов, поведения мультиагентов.
учебное пособие [883,9 K], добавлен 13.02.2011Фундаментальные взаимодействия в природе, их сравнительная характеристика: гравитационное, электромагнитное. Электростатика как раздел учения об электричестве, в котором изучаются взаимодействия и свойства систем зарядов. Формулировка закона Кулона.
презентация [1,1 M], добавлен 22.08.2015Изучение понятия и процессов, происходящих с электромагнитными волнами - электромагнитными колебаниями, распространяющимися в пространстве с конечной скоростью, зависящей от свойств среды. Ученые, которые занимались их изучением - Дж. Максвелл, Г. Герц.
презентация [1,8 M], добавлен 16.12.2011Характеристики полупроводниковых двумерных структур. Прямоугольная потенциальная яма конечной глубины. Параболическая и треугольная квантовые ямы. Квантовые проволоки и точки. Влияние напряжений на валентную зону. Экситонные эффекты в квантовых ямах.
контрольная работа [4,6 M], добавлен 24.08.2015Исследование тепловых явлений, влияющих на установление температурного режима в квартире. Обзор способов теплообмена: теплопроводности, конвекции и излучения. Анализ влияния толщины стекла на скорость теплообмена. Источники тепла в современных квартирах.
презентация [2,9 M], добавлен 13.02.2013Работа цикла Ренкина и конечной степени сухости в условиях, когда пар дросселируется после пароперегревателя до заданного давления. Поверхность нагрева рекуперативного газо-воздушного теплообменника. Часовой расход натурального и условного топлив.
контрольная работа [1,7 M], добавлен 12.12.2013