Расчет теплообменного аппарата кожухотрубчатого типа
Методика определения ориентировочного коэффициента теплопередачи без учета загрязнений стенки. Расчет массового и объемного расхода хладагента. Порядок подбора диаметров штуцеров для ввода и вывода потоков, исходя из допустимых скоростей их движения.
Рубрика | Физика и энергетика |
Вид | статья |
Язык | русский |
Дата добавления | 02.11.2018 |
Размер файла | 115,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru
Размещено на http://www.allbest.ru
Расчет средней разницы температур между теплоносителями
Рис. 1
Для этого определим среднюю разность температур при прямотоке теплоносителей:
Для этого определим среднюю разность температур при противотоке теплоносителей:
Так как внутри двух ходового кожухотрубчатого теплообменника нет четко определенного тока теплоносителей, то найдем среднюю температуру между противотоком и прямотоком, которая и будет использоваться в дальнейших расчетах:
Расчет средней температуры каждого теплоносителя
Теплофизические свойства теплоносителей при их средних температурах
Таблица 1
Горячий теплоноситель (1) |
Хладагент (2) |
|||||||
октан |
вода |
|||||||
с1, кг/м3 |
С1, Дж/кгК |
м1, Па с |
л1, Вт/(м К) |
с2, кг/м3 |
С2, Дж/кгК |
м2, Па с |
л2, Вт/(м К) |
|
657 |
2056 |
0,000306 |
0,1095 |
996 |
4180 |
0,000804 |
0,618 |
Рассчитаем массовый и объемный расходы теплоносителя:
Рассчитаем тепловую нагрузку аппарата:
Так как в заданном нам процессе не происходит изменение агрегатного состояние ни вещества теплоносителя, ни вещества хладагента, то тепловая нагрузка находится по формуле
Рассчитаем массовый и объемный расход хладагента:
Исходя из теплового баланса и ранее найденной тепловой нагрузки на аппарат, получим:
Рассчитаем среднюю скорость хладагента:
Рассчитаем критерий Рейнольдса и режим движения каждого потока:
- развитое турбулентное движение
- развитое турбулентное движение
Рассчитаем ориентировочные коэффициенты теплоотдачи для каждого потока.
Коэффициент теплоотдачи находится по формуле
.
Для расчета необходимо подобрать критериальное уравнение расчета критерия Нуссельта.
Так как горячий поток движется турбулентно в прямых трубах, то критериальное уравнение для расчета критерия Нуссельта будет выглядеть так:
,
где для охлаждающихся жидкостей при допустимой погрешности, - коэффициент зависящий от геометрии аппарата и режима движения потока берется их таблицы 2, - критерий Прандтля.
Таблица 2
Значение Re |
Отношение L/d |
|||||
10 |
20 |
30 |
40 |
50 и более |
||
10000 |
1,23 |
1,13 |
1,07 |
1,03 |
1 |
|
20000 |
1,18 |
1,1 |
1,05 |
1,02 |
1 |
|
50000 |
1,13 |
1,08 |
1,04 |
1,02 |
1 |
|
100000 |
1,1 |
1,06 |
1,03 |
1,02 |
1 |
|
1000000 |
1,05 |
1,03 |
1,02 |
1,01 |
1 |
Коэффициент Прандтля находится по формуле:
Подставляя вышеполученное, находим критерий Нуссельта и ориентировочный коэффициент теплоотдачи:
Так как холодный поток поперечно обтекает пучок гладких труб при их шахматном расположении, при турбулентном режиме движения жидкости, то критериальное уравнение для нахождения критерия Нуссельта имеет вид:
,
где - критерий Прандтля, для нагревающихся жидкостей при допустимой погрешности, - коэффициент учитывающий влияние угла атаки ц находится по таблице 3.
Таблица 3
ц |
90 |
80 |
70 |
60 |
50 |
40 |
30 |
20 |
10 |
|
1 |
1 |
0,98 |
0,94 |
0,88 |
0,78 |
0,67 |
0,52 |
0,42 |
Коэффициент Прандтля находится по формуле:
Подставляя вышеполученное, находим критерий Нуссельта и ориентировочный коэффициент теплоотдачи:
Рассчитаем ориентировочный коэффициент теплопередачи без учета загрязнений стенки:
,
где - коэффициент теплопроводности стенки теплообменника
Рассчитаем ориентировочный коэффициент теплопередачи с учета загрязнений стенки
Найдем термическое сопротивление стенки и загрязнений:
Ориентировочный коэффициент теплопередачи с учетом загрязнения стенки:
Рассчитаем температуру стенки со стороны каждого потока и перерасчет значений коэффициентов теплопередачи, теплоотдачи, удельной теплопроводимости.
Рис. 2
Определим ориентировочно значения и , исходя из того что
,
где сумма:
Найдем:
Проверка суммы
:
Исходя из этого, получим
Введем поправку к коэффициенту теплоотдачи, определив .
Критерий Прандтля для октана при
,
где - найдены с помощью метода кусочно-линейной интерполяции и сведены в таблицу 4.
Таблица 4
Св-ва потока (1) при t'ст1 |
|||
Сст1, Дж/кгК |
мст1, Пас |
лст1, Вт/мК |
|
2105,35684 |
0,00036 |
0,14824 |
Критерий Прандтля для воды при
,
где - найдены с помощью метода кусочно-линейной интерполяции и сведены в таблицу 5.
Таблица 5
Свойства потока (2) при t'ст2 |
|||
Сст2, Дж/кгК |
мст2, Пас |
лст2, Вт/мК |
|
4180 |
0,0007 |
0,6328 |
Коэффициенты теплоотдачи:
- для октана
- для воды
Исправленные значения К, q, tст1, tст2
Дальнейшее уточнение б1, б2 и других величин не требуется, так как расхождение между б1, и б2, и других не превышает 5%.
Рассчитаем необходимую площадь поверхности теплообмена:
С запасом в 10%
Подберем диаметры штуцеров для ввода и вывода потоков, исходя из допустимых скоростей их движения:
теплопередача хладагент штуцер
Выбираем из стандартного ряда диаметр входного и выходного штуцера для горячего потока
Выбираем из стандартного ряда диаметр входного и выходного штуцера для холодного потока , так как расчетное значение больше чем стандартное изделие, то необходимо увеличить количество штуцеров для холодного потока.
Рассчитаем гидравлическое сопротивление трубного и межтрубного пространств.
Гидравлическое сопротивление в трубном и межтрубном пространстве складывается потерь на трение и местных сопротивлений.
,
где - формула Блазиуса, для турбулентного движения в гладких трубах, - сумма коэффициентов учитывающих разные местные сопротивления, в частности для трубного пространства характерны местные сопротивления вида: «вход в трубу», «выход из трубы», где таких местных сопротивлений n штук (n - количество трубок). Исходя из этого .
Тогда гидравлическое сопротивление:
Гидравлическое сопротивление в межтрубном пространстве:
,
где - сумма коэффициентов учитывающих разные местные сопротивления, в частности для трубного пространства характерны местные сопротивления вида: «вход в трубу», «выход из трубы», «внезапное расширение», «внезапное сужение», «поворот потока».
Исходя из этого . Тогда гидравлическое сопротивление:
Необходимый процесс охлаждения провести в заданном нам аппарате невозможно, так как площадь поверхности теплообмена у заданного аппарата много меньше необходимой ().
Чтобы проводить заданный процесс необходимо либо изменить конструкцию аппарата (увеличить количество ходов, «оребрить» трубки), что несомненно приведет к большим денежным затратам и сложностью обслуживания самого аппарата, либо последовательно выстроить 4 таких аппарата, что в существенной мере сократит расходы на обслуживание, но монтаж такой системы и ее «большие площади» приведут к росту постоянных затрат.
Литература
1. Павлов К.Ф., Романков П.Г., Носков А.А. Примеры и задачи по курсу процессов и аппаратов химической технологии: Учебное пособие для вузов. - 12-е изд., стереотипное. Перепеч. с изд. 1987 г. - М.: ООО ТИД «Альянс», 2005. - 575 с.
2. Измайлов В.Д., Филлипов В.В. Справочное пособие для расчетов по процессам и аппаратам химической технологии. Самара, СамГТУ, 2006, 43 с.
3. Касаткин А.Г. Основные процессы и аппараты химической технологии: Учебник для вузов. - 11-е изд., стереотипное доработанное. Перепеч. с изд. 1973 г. - М.: ООО ТИД «Альянс», 2005 - 753 с.
Размещено на Allbest.ru
...Подобные документы
Расчет средней температуры воды, среднелогарифмического температурного напора из уравнения теплового баланса. Определение площади проходного и внутреннего сечения трубок для воды. Расчет коэффициента теплопередачи кожухотрубного теплообменного аппарата.
курсовая работа [123,7 K], добавлен 21.12.2011Расчет тепловой нагрузки аппарата, температуры парового потока, движущей силы теплопередачи. Зона конденсации паров. Определение термических сопротивлений стенки, поверхности теплопередачи. Расчет гидравлического сопротивления трубного пространства.
контрольная работа [76,7 K], добавлен 16.03.2012Теплофизические свойства теплоносителей. Предварительное определение водного эквивалента поверхности нагрева и размеров аппарата. Конструктивные характеристики теплообменного аппарата. Определение средней разности температур и коэффициента теплопередачи.
курсовая работа [413,5 K], добавлен 19.10.2015Расчет параметров потоков продуктов сгорания и пароводяной среды, геометрических характеристик поверхностей нагрева, тепловой изоляции экономайзера. Проверка значений газодинамических сопротивлений. Определение изменения температуры по высоте стенки.
курсовая работа [124,3 K], добавлен 25.12.2013Потери теплоты в теплотрассах. Конвективная теплоотдача при поперечном обтекании цилиндра при течении жидкости в трубе. Коэффициент теплопередачи многослойной цилиндрической стенки. Расчет коэффициента теплопередачи. Определение толщины теплоизоляции.
курсовая работа [133,6 K], добавлен 06.11.2014Общая характеристика теплообменных аппаратов и их применение в нефтедобывающей, газовой, нефтеперерабатывающей и химической промышленности. Конструктивный, проверочный и гидравлический расчет теплообменного аппарата, построение температурной диаграммы.
курсовая работа [663,7 K], добавлен 10.10.2011Определение характера течения горячего и холодного теплоносителей в каналах теплообменника. Выбор вида критериального уравнения для потоков. Составление уравнения теплового баланса. Нахождение поверхности нагрева рекуперативного теплообменного аппарата.
практическая работа [514,4 K], добавлен 15.03.2013Конструкция и принцип работы подогревателя сетевой воды. Теплопередача при конденсации и движении жидкости по трубам. Оценка прочности крышки теплообменника. Тепловой, гидравлический и прочностной расчет параметров рекуперативного теплообменного аппарата.
курсовая работа [186,8 K], добавлен 02.10.2015Классификация теплообменных аппаратов (ТОА), требования к ним. Выбор схемы движения теплоносителей при расчете устройства, определение их теплофизических свойств. Коэффициент теплоотдачи в ТОА, уточнение температуры стенки и конструктивный расчет.
курсовая работа [1,2 M], добавлен 17.11.2013Задачи ориентировочного расчета паровой турбины. Определение числа ступеней, их диаметров и распределения тепловых перепадов по ступеням. Вычисление газодинамических характеристик турбины, выбор профиля сопловой лопатки, определение расхода пара.
курсовая работа [840,0 K], добавлен 11.11.2013Процесс теплопередачи: общие положения, основное уравнение, принципы передачи тепла и излучения. Типы теплообменников: трубчатые, змеевиковые, пластинчатые, оребренные, спиральные, блочные и шнековые, принципы и порядок, а также обоснование их выбора.
курсовая работа [621,3 K], добавлен 26.05.2014Вычисление коэффициента равномерности освещенности в помещении точечным методом. Определение размещения групповых щитков, схемы и трассы сети. Выбор типа и сечения проводников по методу моментов, исходя из минимума расхода проводникового материала.
курсовая работа [510,1 K], добавлен 21.02.2013Описание конструкции кожухотрубчатого теплообменного аппарата. Гидравлический расчет патрубка. Выбор соединения трубок с трубными решётками. Определение толщины обечайки и цилиндрической части. Дополнительные условия проверки прочности трубной доски.
реферат [1,6 M], добавлен 04.07.2013Устройство абонентских водоводяных подогревательных установок. Cекционные подогреватели в системах теплоснабжения. Расчет внутреннего диаметра патрубка. Проверка штуцеров на прочность. Расчет толщины стенки цилиндрической обечайки, укрепление отверстий.
реферат [1,2 M], добавлен 20.11.2012Расчет тепловой нагрузки и теплового баланса аппарата. Определение температурного напора. Приближенная оценка коэффициентов теплоотдачи, теплопередачи и поверхности нагрева. Выбор кожухотрубчатого и пластинчатого теплообменника из стандартного ряда.
курсовая работа [668,6 K], добавлен 28.04.2015Применение и классификация теплообменных аппаратов. Принцип работы кожухотрубного теплообменного аппарата. Необходимость проведения гидравлического, конструктивного и проверочного тепловых расчетов. Построение температурной диаграммы теплоносителей.
курсовая работа [364,5 K], добавлен 23.11.2012Порядок определения термического коэффициента полезного действия циклов, исследуемой установки брутто. Вычисление удельного расхода тепла, коэффициента практического использования. Относительное увеличение КПД от применения промперегрева и регенерации.
контрольная работа [1021,7 K], добавлен 12.09.2010Термодинамические процессы с идеальными углеводородными смесями. Параметры газовой смеси, одинаковой для всех термодинамических процессов. Исходные данные для конструктивного теплового расчета теплообменного аппарата, выбор его типа, формы и размера.
реферат [655,7 K], добавлен 24.11.2012Расчет кожухотрубных и пластинчатых теплообменников. Графо-аналитический метод определения коэффициента теплопередачи и поверхности нагрева. Гидравлический расчет кожухотрубных теплообменников, трубопроводов воды, выбор насосов и конденсатоотводчика.
курсовая работа [1,3 M], добавлен 30.11.2015Методы расчёта коэффициентов теплоотдачи и теплопередачи. Вычисление расчётного значения коэффициента теплопередачи. Определение опытного значения коэффициента теплопередачи и сопоставление его значения с расчётным. Физические свойства теплоносителя.
лабораторная работа [53,3 K], добавлен 23.09.2011