Пространство и метрология сигналов

Пространство и множества сигналов. Координатный базис пространства. Мощность и энергия сигналов. Понятия мощности сигналов. Ортонормированный базис пространства. Функции корреляции сигналов. Математическое описание и характеристика шумов и помех.

Рубрика Физика и энергетика
Вид статья
Язык русский
Дата добавления 15.11.2018
Размер файла 134,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Пространство и метрология сигналов

1. Пространство сигналов. Множества сигналов. Линейное пространство сигналов. Норма сигналов. Метрика сигналов. Скалярное произведение сигналов. Корреляция сигналов. Координатный базис пространства.

2. Мощность и энергия сигналов. Понятия мощности и энергии сигналов.

3. Пространства функций. Нормирование метрических параметров. Ортогональные сигналы. Ортонормированный базис пространства. Разложение сигнала в ряд. Ортонормированные системы функций. Разложение энергии сигнала.

4. Функции корреляции сигналов. Корреляционные функции сигналов. Взаимная корреляционная функция.

5. Математическое описание шумов и помех. Шумы и помехи. Природа помех. Характеристики помех.

В данной теме метрология сигналов рассматривается, в основном, на уровне понятий и базовых определений, предваряя их более подробное изучение в дальнейших темах курса. Это объясняется тем, что при детальном изучении каких-либо характеристик или свойств сигналов их рассмотрение не может выполняться в отрыве от других метрологических характеристик сигналов и требует определенной ориентировки в общей метрологии сигналов, хотя бы на уровне понятий.

2.1. Пространство сигналов [1,3,16,29].

Важнейшее свойство аналоговых и дискретных сигналов заключается в том, что их линейные комбинации также являются аналоговыми или дискретными сигналами. Линейные комбинации цифровых сигналов, в силу их ограничения по разрядности, в принципе относятся к разряду нелинейных операций, однако последним фактором можно пренебречь, если ошибки, которые вносятся в результаты наблюдений при квантовании отсчетов, достаточно малы по сравнению с шумами зарегистрированной информации. При дискретизации и квантовании данных непосредственно на входах в ЭВМ это условие выполняется практически всегда, поскольку ошибки определяются разрядностью ЭВМ и программными системами обработки данных, которые обычно не ниже 6-12 десятичных разрядов.

Множества сигналов. Сигналы обычно рассматриваются в составе определенных множеств L, объединенных каким-либо свойством Р, характерным для всех и каждого из сигналов данного множества. Условное отображение множества: L = {s; P} - множество всех s, для которых справедливо свойство Р. Определив свойство Р, мы тем самым можем ограничивать сигналы, действующие в каких-либо системах, определенными типами, условиями, границами по параметрам и т.п.

Пример 1. Множество гармонических сигналов.

L = {s; s(t)} = A·cos (?t+?), - < t < }.

Множество содержит гармонические сигналы с произвольными значениями амплитуд, частот и фаз.

Пример 2. Множество периодических сигналов.

L(Т) = {s; s(t) = s(t+kT), - < t < , k I}.

Пример 3. Множество сигналов, ограниченных по амплитуде и длительности.

L(K,T) = {s; |s(t)| ? K, s(t)=0 при |t| > T}.

Множества сигналов могут образовываться из других, ранее определенных множеств, логическими операциями объединения (индекс - ) и пересечения (индекс - ):

L = S1 S2 = {s; s S1 или s S2},

L = S1 S2 = {s; s S1 и s S2}.

Возможно разбиение множества сигналов на непересекающиеся подмножества, более удобные для обработки, при этом для множества S, разбитого на совокупность подмножеств {S1, S2, S3, …, SN}, должны выполняться условия:

сигнал пространство шум помеха

S = S1 S2 S3 … SN,

Sn Sm = для n ? m.

Запись S1 S означает, что множество S1 входит в состав множества S, т.е. является подмножеством в составе S.

Преобразование элементов vi множества V в элементы gi множества G называется отображением (трансформацией, преобразованием) V в G. Символьные записи преобразования: g = T[v] или v > g, при этом элементы v называют прообразом множества g, а элементы g - образом множества v.

Если преобразование выполняется над числами одного множества R (например, x = T[y]), то такое преобразование порождает функциональную зависимость x = f(y).

Если преобразование выполняется над функциями одного и того же множества L (например, f(t) = T[g(t)], f(t) L и g(t) L), то алгоритм преобразования T[..] называют оператором преобразования f(t) в g(t).

Преобразование g = T[f(t)] функций f(t) множества F называют функционалом, если результатом преобразования являются числовые значения g множества G. Примерами функционалов являются интегралы функций в определенных пределах.

Преобразование может выполняться функциональными операторами с переводом функций одной переменной, например t, в функции по другой переменной, например ?, Типичным примером функционального оператора является преобразование Фурье. В комплексной форме:

S(?) = s(t) exp(-j?t) dt.

Пространство сигналов. Для анализа и обработки информации, которая может быть заключена в сигналах, требуется выделять из множества сигналов сигналы с определенными параметрами, сравнивать сигналы друг с другом, оценивать изменение сигналов при их прохождении через системы обработки данных, и т.п. Это может выполняться только при "помещении" множества сигналов в определенные метрические пространства с заранее оговоренными свойствами и единицами измерений. Так, "квартирное пространство" любого города включает, как минимум, три структурных единицы: названия улиц, номера домов, номера квартир, что и определяет пространство "квартирных сигналов". Но это пространство не является метрическим, так как оно не имеет нулевой точки и единиц измерений, по нему нельзя определить расстояние между двумя "квартирными сигналами". Положение на поверхности Земли любого объекта однозначно определяется по "координатному сигналу" в заранее сформированных метрических координатных пространствах с нулевыми точками и принятыми единицами измерений. Для практического использования сформированы также различные пространства картографических проекций с определенными структурными ограничениями, жестко установленная метрология которых позволяет трансформировать информацию из одного пространства в другое, более удобное для отображения или обработки определенными программами.

Главным условием превращения множество сигналов L{s1(t), s2(t), …}, которые имеют какие-то общие свойства, в функциональное пространство сигналов является выполнение условия однозначной реализации. Если пространство значений независимой переменной t задано выражением R:=(-,+), то пространство сигналов LP[R] определяет множество сигналов в этом пространстве, для которых условие однозначной реализации записывается в следующей форме:

|s(t)|p dt < .

Для анализа сигналов наиболее часто используется гильбертово пространство, сигналы в котором должны удовлетворять условию интегрирования с квадратом:

|s(t)|2 dt < .

Периодические сигналы обычно рассматриваются в пространстве L2 [0, 2?? одного периода:

|s(t)|2 dt < .

Метрические пространства должны иметь определенную систему координат, что позволяет рассматривать любые произвольные сигналы х и у, принадлежащие пространству, в виде векторов, соединяющих начало координат с определенными точками этого пространства и определять расстояние ?(x,y) между этими точками (метрика). Так как расстояние между точками должно быть числовым, а сигналы х и у представляют собой функции, то ?(x,y) представляет собой функционал, для которого в метрическом пространстве должны быть справедливы следующие аксиомы:

· ?(x,y) ? 0; ?(x,y) = 0 при х = у,

· ?(x,y) = ?(y,x),

· ?(x,z) ? ?(x,y) + ?(y,z) - неравенство треугольника.

Каждый элемент векторного пространства может отображаться проекциями на координатные оси, а для обработки и преобразований сигналов могут использоваться операции векторной алгебры. Достаточно простые алгебраические взаимосвязи между сигналами характерны для линейных пространств.

Линейное пространство сигналов. Метрическое пространство является линейным, если в нём определены операции сложения векторов и умножения вектора на скаляр, в результате которых образуется новый вектор в том же пространстве. Множество сигналов L образует линейное пространство сигналов, если для него справедливы следующие аксиомы

Множество содержит такой нулевой элемент , что для всех сигналов u(t) L выполняется равенство u(t) + = u(t).

Для любых сигналов u(t) L и v(t) L существует их сумма s(t) = u(t)+v(t), которая также содержится в L. При этом операция суммирования должна быть

- коммутативна: u(t)+v(t) = v(t)+u(t),

- ассоциативна: u(t)+(v(t)+x(t)) = (u(t)+v(t))+x(t),

- однородна: u(t) + (-u(t)) = .

Существует множество скалярных элементов ?, на которые может выполняться умножение любого сигнала s(t) L, при этом результат умножения является новым сигналом y(t) = s(t) в том же пространстве, у(t) L. Операция умножения должна быть

- ассоциативна: ?(?·s(t)) = ??·s(t),

- дистрибутивна: ?(u(t)+s(t)) = ?u(t)+?s(t), (?+?)s(t) = ?s(t)+?s(t),

- пропорциональна: 1·s(t) = s(t), 0·s(t) = 0.

Пример. Множество сигналов L состоит из импульсных сигналов произвольной формы с амплитудой не более 10 вольт. Образуют ли эти сигналы линейное пространство?

Нет, не образуют, так как не выполняется, по крайней мере, вторая аксиома линейного пространства (сумма двух сигналов с амплитудой более 5 вольт превышает 10 вольт). Требуются дополнительные структурные ограничения по параметрам сигналов.

Сигналы могут описываться как вещественными, так и комплексными функциями, и линейные пространства также могут быть вещественными или комплексными. Скалярные множества обычно отождествляются с множествами действительных или комплексных чисел, но на них также могут накладываться определенные ограничения. Так, например, в теории связи широко применяется бинарное скалярное множество {0, 1}.

Множество L, для которого выполняются приведенные выше аксиомы, при анализе сигналов и систем может рассматриваться как специальным образом сконструированное многомерное (в пределе - бесконечномерное) геометрическое пространство. Рассмотрим это на конкретном примере.

Имеем произвольный сигнал s(t), заданный на интервале [a, b]. Дискретизируем сигнал с равномерным шагом дискретизации и переведем в цифровую форму (представим сигнал N последовательными выборками):

s = (s1, s2, … , sN).

В таком отображении величина s может рассматриваться в виде N-мерного вектора в N-мерном пространстве, в котором значения sn представляют собой проекции s-вектора на координатные оси данного пространства. Двумерный вектор в двумерном пространстве - это точка с координатами s1 и s2 на рис. 2.1.1. Соответственно, в трехмерном пространстве сигнал s представлен точкой в трехмерном пространстве. Представить себе N-мерное пространство при N>3 можно только абстрактно, но с математических позиций такое пространство вполне реально и N-мерный сигнал s отображается вполне определенной точкой в этом пространстве с координатами sn по осям пространства. При уменьшении интервала дискретизации сигнала до бесконечно малой величины значение N стремится к бесконечности, и пространство сигналов превращается в бесконечномерное пространство аналоговых сигналов. Следовательно, и аналоговые сигналы могут рассматриваться как предельный случай бесконечномерных векторов.

Рис. 2.1.1. Пространства сигналов и функций.

С учетом вышеизложенного, для математического анализа систем и сигналов в линейном пространстве может использоваться математика векторов.

В линейном пространстве L{un; n=0,1,2,…,N} всегда можно выделить множество векторов {xn; n=0,1,2,…,N}, для которых выполняется равенство нулю их линейной комбинации

?n xn = 0 (2.1.1)

только при условии равенства нулю всех значений ?k. Такое множество векторов называется линейно независимым. Ни один вектор линейно независимого множества не может быть выражен в виде какой-либо линейной комбинации других векторов этого пространства. Такое множество векторов называется базисом N-мерного пространства L{un; N}. Линейная комбинация таких линейно независимых векторов образует векторное пространство где каждый вектор U может быть выражен единственной линейной комбинацией векторов xn:

U =?

Размещено на http://www.allbest.ru/

n xn

Совокупность чисел {n} называется спектром вектора U в этом базисе. Спектр вектора в общем случае может быть комплексным.

Линейные пространства сигналов имеют, как правило, не единственный базис. Выбор базиса определяется простотой и удобством его использования при обработке сигналов.

Пример. Имеем множество сигналов в виде числовых последовательностей, каждая из которых состоит из N чисел (N-мерные вектор-строки). Для сигналов задано скалярное пространство чисел R = {?, 0 ? ? ? 10}. При этом пространство сигналов N-мерно и может быть определено линейной комбинацией:

L = {y; y =?n xn, 0 ? ? ? 10, xn - базис пространства}.

x0 = {1,0,0,0,…,0},

x1= {0,1,0,0,…,0},

x2= {0,0,1,0,…,0},

………………….

xN= {0,0,0,0,…,1},

Любой сигнал в этом пространстве определен точкой с N - координатами в базисе xn.

Основными метрическими параметрами линейного пространства являются норма, метрика и скалярное произведение сигналов.

Норма сигналов в линейном пространстве является аналогом длины векторов, и обозначается индексом ||s(t)|| - норма (norm). В математике существуют различные формы норм. При анализе сигналов обычно используются квадратичные нормы

||s(t)|| =. (2.1.2)

Для дискретных сигналов:

||s(n)|| =. (2.1.2')

Для комплексных сигналов

||s(t)|| =, (2.1.2'')

где s*(t) - величины, комплексно сопряженные с s(t).

Линейное пространство сигналов L является нормированным, если каждому сигналу пространства s(t) однозначно сопоставлена его числовая норма ||s(t)||, и выполняются следующие аксиомы:

Норма неотрицательна (||s(t)|| ? 0) и равна нулю тогда и только тогда, когда сигнал равен нулю (||s(t)|| = , при s(t) = ).

Для любого числа b должно быть справедливо равенство ||bs(t)|| = |b| ||s(t)||.

Если v(t) и u(t) - сигналы из пространства L, то должно выполняться неравенство треугольника ||v(t)+u(t)|| ||v(t)|| + ||u(t)||.

Пример норм для двумерных цифровых сигналов приведен на рис. 2.1.2.

Метрика сигналов. Линейное пространство сигналов L является метрическим, если каждой паре сигналов s(t) L и v(t) L однозначно сопоставляется неотрицательное число (s,v) - метрика (metric) или расстояние между векторами. Пример метрики для двух векторов в двумерном пространстве приведен на рис. 2.1.2.

Для метрик сигналов в метрическом пространстве любой размерности должны выполняться аксиомы:

(s,v) = (v,s) - рефлексивность метрики.

(s,s) = 0 для любых s(t) L.

(s,v) (s,a) + (a,v) для любых a L.

Метрика определяется нормой разности двух сигналов (см. рис. 2.1.2)

(s,v) = || s(t) - v(t) ||. (2.1.3)

В свою очередь норму можно отождествлять с расстоянием от выбранного элемента пространства до нулевого ||s(t)|| = (s(t),).

По метрике сигналов можно судить, например, о том, насколько точно один сигнал может быть аппроксимирован другим сигналом, или насколько изменяется выходной сигнал относительно входного при прохождении через какое-либо устройство.

Пример. Сигнал на интервале (0,Т) представляет собой половину периода синусоиды амплитудой A: s(t) = Asin(t/T), 0 t T. Требуется аппроксимировать сигнал прямоугольным импульсом п(t) (см. рис. 2.1.3).

Если принять амплитуду импульса п(t) равной В, то квадрат расстояния между сигналами: 2(s,п) =(A sin(t/T)-В)2 dt = A2T/2 - 4ABT/ + B2T.

Для решения задачи требуется найти минимум выражения 2(s,п). Дифференцируем полученное выражение по В, приравниваем нулю и, решая относительно В, находим значение экстремума: В = 2A/ 0.64А. Это искомое значение минимума функции 2(s,п) (вторая производная функции по В положительна). При этом минимальное значение метрики: min 0.31A. Вычислим нормы сигналов при А = 1:

Еs = А2 sin2 (t/T) dt = A2 T/2 = 10. Норма: ||s(t)|| == 0.707 A 3.16.

Еп = B2 dt = B2 T 8.1. Норма: ||п(t)|| = = B 2.85.

Метрика (2.1.3) не единственно возможная. Пространство сигналов может иметь несколько метрик. Так, для дискретных сигналов, заданных на интервале Т, могут задаваться метрики по модулю разности и по максимуму модуля разности:

?1(s,v) =|s

Размещено на http://www.allbest.ru/

n - vn|, ?1(s,v) = maxn |sn - vn|.

Метрика в пространстве N-разрядных двоичных сигналов х и у для любой парой таких сигналов вполне будет определяться числом несовпадающих символов, которое называют расстоянием по Хеммингу для двоичных слов:

?(x,y) =[

Размещено на http://www.allbest.ru/

sn ? vn],

где знак означает сложение по модулю 2 (1+0 = 0+1 = 1, 0+0 = 1+1 = 0 без переноса в старший разряд).

Скалярное произведение произвольных сигналов u(t) и v(t) отражает степень их связи (сходства) по форме и положению в пространстве сигналов, и обозначается как u(t), v(t).

u(t), v(t) = ||u(t)||||v(t)|| cos , (2.1.4)

Физическую сущность скалярного произведения векторов в двумерном пространстве можно наглядно видеть на рис. 2.1.4. Это произведение "длины" (нормы) одного вектора на проекцию второго вектора по "направлению" первого вектора.

Рис. 2.1.4. Скалярное произведение сигналов в двумерном пространстве.

При кажущейся абстрактности скалярного произведения сигналов оно может приобретать вполне конкретный физический смысл для физических процессов, которые отображаются этими сигналами. Так, например, если v = F - сила, приложенная к телу, а u = s - перемещение тела под действием этой силы, то скалярное произведение W = F·s определяет выполненную работу, при условии совпадения силы с направлением перемещения. В противном случае, при наличии угла ? между векторами силы и перемещения, работа будет определяться проекцией силы в направлении перемещения, т.е. W = s·F·cos ?.

Вычисление скалярного произведения обычно производится непосредственно по сигнальным функциям. Поясним это на примере двумерных сигналов с использованием рисунка 2.1.2. Для квадрата метрики сигналов s и v имеем:

||s-v||2 = ||s||2 + ||v||2 - 2 ||s|| ||v|| cos ????||s||2 + ||v||2 - 2s, v.

2s,v = ||s||2 + ||v||2 - ||s-v||2 = (s12+s22)+(v12+v22)-{(s1-v1)2+(s2-v2)2} = 2(s1v1+s2v2).

s,v = s1v1+s2v2.

Обобщая полученное выражение на аналоговые сигналы:

s(t), v(t) = s(t)v(t) dt. (2.1.5)

Соответственно, для дискретных сигналов в N-мерном пространстве:

sn, vn =sn vn. (2.1.5')

Линейное пространство аналоговых сигналов с таким скалярным произведением называется гильбертовым пространством Н (второе распространенное обозначение - L2). Линейное пространство дискретных и цифровых сигналов - пространством Евклида (обозначение пространства - R2). Норма и метрика пространств Гильберта и Эвклида определяются выражениями (2.1.2) и (2.1.3). Метрика пространств называется среднеквадратичной метрикой и определяет среднеквадратичное отклонение одного сигнала от другого. В этих пространствах справедливо фундаментальное неравенство Коши-Буняковского

|s,v| ||s||||v||, (2.1.6)

т.к. модуль косинуса в (2.1.4) может быть только равным или меньше 1

Для комплексного гильбертова пространства скалярное произведение вычисляется по формуле

s(t), v(t) =s(t)v*(t) dt. (2.1.7)

При определении функций в пространстве L2[a,b] вычисление скалярного произведения производится соответственно с пределами интегрирования от а до b.

Из выражения (2.1.4) следует косинус угла между сигналами:

cos = s(t),v(t) /(||s||||v||). (2.1.8)

Пример. Имеется два смещенных во времени прямоугольных импульса с одинаковой амплитудой и длительностью: s1(t) = 2 при 0 t 5, s1(t) = 0 при других t; и s2(t) = 2 при 4 t 9, s2(t) = 0 при других t.

Квадраты норм сигналов: ||s1||2 = s12(t)dt = 20. ||s2||2 = s22(t)dt = 20

Скалярное произведение: s1,s2 = s1(t) s2(t) dt = 8.

Отсюда имеем: cos = (s1,s2)/ (||s1||||s2||) = 8/20 = 0.4 и 1.16 радиан 66о

При полном совмещении сигналов: s1,s2 =s1(t) s2(t) dt = 20, cos = 1, ? = 0.

При отсутствии перекрытия сигналов; s1,s2 = 0, cos = 0, ? = 90о.

Физическое понятие "угла" между многомерными сигналами довольно абстрактно. Однако при рассмотрении выражения (2.1.8) совместно с выражением для квадрата метрики сигналов

??(s,v) =[s(t)-v(t)]2 dt = ||s||2 + ||v||2 - 2||s||||v|| cos .

можно отметить следующие закономерности. При ????? (cos ? = 1) сигналы "совпадают по направлению" и расстояние между ними минимально. При ? = ?/2 (cos ? = 0) сигналы "перпендикулярны друг другу" (иначе говоря - ортогональны), и проекции сигналов друг на друга равны 0. При ? = ? (cos ? = -1) сигналы "противоположны по направлению" и расстояние между сигналами максимально. Фактор расстояния между сигналами играет существенную роль при их селекции в многоканальных системах.

Корреляция сигналов.

Заметим, что значение косинуса в (2.1.8) изменяется от 1 до -1, и не зависит от нормы сигналов ("длины" векторов). Максимальное значение cos ? = 1 соответствует полной тождественности относительной динамики сигналов, минимальное значение cos ? = -1 наблюдается при полной противоположности значений относительной динамики сигналов. По существу, коэффициент r = cos ??является интегральным коэффициентом степени сходства формы сигналов по пространству их задания. С учетом этого он и получил название коэффициента корреляции сигналов. На рис. 2.1.5 можно наглядно видеть значения коэффициента корреляции двух сигналов в зависимости от их формы и сдвига по независимой переменной.

Однако количественные значения коэффициентов корреляции существенно зависят от выбора нулевой точки сигнального пространства. Рассмотрим это детально на конкретном примере.

На рис. 2.1.6 приведено изменение средней месячной температуры воздуха в трех городах земного шара в течение одного календарного года. Характер корреляции между изменениями температур в городах достаточно хорошо виден на графиках. Вычислим (см. пример ниже) значения коэффициентов корреляции для шкалы температур по Цельсию.

Пример. Среднемесячная температура воздуха в городах по Цельсию:

Екатеринбург: Ek = {-12,-10,-4,5,11,19,23,21,15,5,-3,-8}. Дели: Dk = {15,18,22,28,33,35,33,32,30,28,21,17}.

Буэнос-Айрес: Bk = {26,24,21,18,14,11,10,10,12,15,20,23}. Нумерация месяцев: k = 1, 2, 3, …, 12.

Норма сигналов: ||E|| = = 45.39, ||D|| = = 93.05, ||B|| = = 61.9.

Скалярные произведения: E, D = = 2542, E, B = 268, B, D = 4876.

Коэффициенты корреляции: Екатеринбург - Дели: rED = E, D / (||E|| ||D||) = 0.602.

Екатеринбург - Буэнос-Айрес: rEB = 0.095, Дели - Буэнос-Айрес: rDB = 0.847,

Как следует из вычислений, полученные коэффициенты корреляции маловыразительны. Практически не регистрируется разнонаправленная корреляция Екатеринбург - Буэнос-Айрес, и не различаются одно- (Екатеринбург - Дели) и разнонаправленные (Дели - Буэнос-Айрес) типы корреляции.

Повторим вычисления в шкале Фаренгейта (0оF = -17,8oC, 100oF = +37,8oC), и в абсолютной шкале температур Кельвина. Дополнительно вычислим значения коэффициентов корреляции в шкале Цельсия и Фаренгейта для центрированных сигналов. Центрированный сигнал вычисляется путем определения среднего значения сигнала по интервалу его задания и вычитания этого среднего значения из исходных значений сигнала, т.е. среднее значение центрированного сигнала равно нулю. Сводные результаты вычислений приведены в таблице.

Таблица 2.1.1. Коэффициенты корреляции сигналов

Пары городов

Нецентрированные сигналы

Центрированные сигналы

Цельсий

Фаренгейт

Кельвин

Цельсий

Фаренгейт

Екатеринбург - Дели

Екатеринбург - Буэнос-Айрес

Дели - Буэнос-Айрес

0.602

0.095

0.847

0.943

0.803

0.953

1

0.998

0.999

0.954

-0.988

-0.960

0.954

-0.988

-0.960

Как видно из таблицы, значения коэффициента корреляции нецентрированных сигналов существенно зависят от положения сигналов относительно нулевой точки пространства. При одностороннем смещении сигналов относительно нуля (шкала Фаренгейта) значение коэффициента корреляции может быть только положительным, и тем ближе к 1, чем дальше от сигналов нулевая точка (шкала Кельвина), т.к. при больших значениях сигналов-векторов значение скалярного произведения сигналов стремится к значению произведения норм сигналов.

Для получения значений коэффициентов корреляции, независимых от нуля сигнального пространства и от масштаба единиц измерений, необходимо вычислять коэффициент по центрированным сигналам, при этом в оценках коэффициента, как это видно из результатов, приведенных в таблице, появляется знаковый параметр совпадения или несовпадения по "направлению" корреляции и исчезает зависимость от масштаба представления сигналов. Это позволяет вычислять коэффициенты корреляции различных сигналов вне зависимости от физической природы сигналов и их величины.

Координатный базис пространства. Для измерения и отображения одномерных величин достаточно одного нормированного параметра - стандарта величины или единицы ее измерения (для измерения длины - сантиметр, для измерения тока - ампер, и т.п.).

В пространстве сигналов роль такого метрологического стандарта выполняет координатный базис пространства - подмножество векторов {е1, е2, е3, …} со свойствами ортогональных координатных осей с определенной единицей измерений, по которым можно разложить любой произвольный сигнал, принадлежащий этому линейному пространству.

Число базисных векторов определяет размерность векторного пространства. Так, для двумерных векторов в качестве ортогонального базиса пространства могут быть приняты векторы {v1, v2}, если выполняется условие их взаимной перпендикулярности - нулевое значение скалярного произведения v1, v2 = 0. При ||v1|| = ||v2|| = 1 эта пара векторов является ортонормированным базисом с единичными векторами координатных осей в качестве стандарта (единицы измерения) пространства.

Пример. Могут ли быть приняты в качестве координатного базиса двумерного пространства векторы v1 = (/2, 1/2), v2 = (-1/2, /2).

v1, v2 = (/2)·(-1/2) + (1/2)·(/2) = 0. Векторы ортогональны.

||v1|| = = 1. ||v2|| = = 1. Векторы нормированы. Векторы могут быть ортонормированным базисом пространства.

Разложение произвольного двумерного вектора - сигнала s в двумерном пространстве, по координатным осям v1 и v2 элементарно:

s = c1v1 + c2v2, (2.1.9)

где коэффициенты с1 и с2 выражают значения составляющих вектора s по направлениям векторов v1 и v2, т.е. являются проекциями вектора s на координатный базис пространства {v1, v2}. Значения проекций определяются скалярными произведениями:

c1 = s, v1, c2 = s, v2.

В этом нетрудно убедиться, если вычислить скалярные произведения левой и правой части выражения (2.1.9) сначала с вектором v1:

s, v1 = (c1v1+c2v2), v1 = с1v1, v1 + с2v2, v1 = с1v1, v1 + с2v2, v1.

При ортонормированности базиса {v1, v2} имеем:

v1, v1 = ||v1||2 = 1, v2, v1 = 0.

Отсюда следует: s, v1 = с1. Аналогичным образом можно получить и выражение для значения c2 = s, v2.

Пример. Разложить вектор s = (/2, 5/2) по базису, представленному векторами

v1 = (/2, 1/2) и v2 = (-1/2, /2) из предыдущего примера.

s = c1v1 + c2v2.

с1 = s, v1 = (/2)·(/2) + (5/2)·(1/2) = 2.

с2 = s, v2 = (/2)·(-1/2) + (5/2)·(/2) = .

Результат: В пространстве с базисом {v1, v2} вектор s однозначно определяется двумя векторами v1 и v2: s = 2v1 + v2.

Множество векторов {vk, k = 1, 2, …, N} может быть принято в качестве ортонормированного координатного базиса N-мерного пространства, если их совокупность является линейно независимой, равенство aivi = выполняется только в случае одновременного обращения в нуль всех числовых коэффициентов ai, и для всех векторов этого множества при единичной норме выполняется условие взаимной ортогональности:

vm, vn = (2.1.10)

Выражение (2.1.10) обычно записывается в следующей форме:

vm, vn = ?mn,

где ?mn - импульс Кронекера.

С использованием ортонормированного базиса любой произвольный сигнал можно представить в виде линейной комбинации взвешенных базисных векторов:

s = c1v1 + c2v2 + … + cNvN = civi,

где весовое значение сk представляет собой проекцию вектора s на соответствующее координатное направление и определяется скалярным произведением:

ck = s, vk.

Коэффициенты ck называют коэффициентами Фурье в базисе {vk}. Базисную систему {vk} называют полной, если ее размерность (и размерность соответствующего пространства) равна размерности представляемых в этой системе сигналов.

Комплексное линейное пространство, векторам которого также может быть поставлено в соответствие комплексное число скалярного произведения s, vk, называют унитарным. Для него действительны все свойства скалярного произведения с учетом сопряжения:

s, v = v, s*;

s, аv = аv, s* = a*s,v, где а - комплексное число.

2.2. Мощность и энергия сигналов [1, 3, 16].

Понятия мощности и энергии в теории сигналов не относятся к характеристикам каких-либо физических величин сигналов, а являются их количественными характеристиками, отражающими определенные свойства сигналов и динамику изменения их значений (отсчетов) во времени, в пространстве или по любым другим аргументам.

Для произвольного, в общем случае комплексного, сигнала s(t) = a(t)+jb(t), где а(t) и b(t) - вещественные функции, мгновенная мощность (instantaneous power) сигнала по определению задается выражением:

w(t) = s(t) s*(t) = [a(t)+jb(t)] [a(t)-jb(t)] = a2(t)+b2(t) = |s(t)|2, (2.2.1)

т.е. функция распределения мгновенной мощности по аргументу сигнала равна квадрату функции его модуля, для вещественных сигналов - квадрату функции амплитуд.

Аналогично для дискретных сигналов:

wn = sn s*n = [an+jbn] [an-jbn] = an2 + bn2 = |sn|2, (2.2.1')

Энергия сигнала (также по определению) равна интегралу от мощности по всему интервалу существования или задания сигнала. В пределе:

Еs =w(t)dt =|s(t)|2dt. (2.2.2)

Es =wn =|sn|2. (2.2.2')

Мгновенная мощность w(t) является плотностью мощности сигнала, так как измерения мощности возможны только через энергию на интервалах ненулевой длины:

w(?) = (1/?t)|s(t)|2dt?

Энергия сигналов может быть конечной или бесконечной. Конечную энергию имеют финитные сигналы и сигналы, затухающие по своим значениям в пределах конечной длительности, которые не содержат дельта-функций и особых точек (разрывов второго рода и ветвей, уходящих в бесконечность). В противном случае их энергия равна бесконечности. Бесконечна также энергия периодических сигналов.

Как правило, сигналы изучаются на определенном интервале Т, для периодических сигналов - в пределах одного периода Т, при этом средняя мощность (average power) сигнала:

WT(?) = (1/T)w(t) dt?= (1/T)|s(t)|2 dt. (2.2.3)

Понятие средней мощности может быть распространено и на незатухающие сигналы, энергия которых бесконечно велика. В случае неограниченного интервала Т строго корректное определение средней мощности сигнала должно производиться по формуле:

Ws = w(t) dt. (2.2.3')

Квадратный корень из значения средней мощности характеризует действующее (среднеквадратическое) значение сигнала (root mean sqare, RMS).

Применительно к электрофизическим системам, данным понятиям мощности и энергии соответствуют вполне конкретные физические величины. Допустим, что функцией s(t) отображается электрическое напряжение на резисторе, сопротивление которого равно R Ом. Тогда рассеиваемая в резисторе мощность, как известно, равна (в вольт-амперах):

w(t) = |s(t)|2/R,

а полная выделенная на резисторе тепловая энергия определяется соответствующим интегрированием мгновенной мощности w(t) по интервалу задания напряжения s(t) на резисторе R. Физическая размерность мощности и энергии в этом случае определяется соответствующей физической размерностью функции напряжения s(t) и сопротивления резистора R. Для безразмерной величины s(t) при R=1 это полностью соответствует выражению (2.2.1). В теории сигналов в общем случае сигнальные функции s(t) не имеют физической размерности, и могут быть формализованным отображением любого процесса или распределения какой-либо физической величины, при этом понятия энергии и мощности сигналов используются в более широком смысле, чем в физике. Они представляют собой метрологические характеристики сигналов.

Из сравнения выражений (2.1.2) и (2.2.2) следует, что энергия и норма сигнала связаны соотношениями:

Es = ||s(t)||2, ||s(t)|| = (2.2.4)

Пример. Цифровой сигнал задан функцией s(n) = {0,1,2,3,4,5,4,3,2,1,0,0,0,0....}.

Энергия сигнала: Es = s2(n) = 1+4+9+16+25+16+9+4+1 = 85. Норма: ||s(n)|| = 9.22

Вычислим энергию суммы двух произвольных сигналов u(t) и v(t)

E =[u(t)+v(t)]2 dt = Eu + Ev + 2u(t)v(t) dt. (2.2.5)

Как следует из этого выражения, энергия сигналов (а равно и их мощность), в отличие от самих сигналов, в общем случае не обладают свойством аддитивности. Энергия суммарного сигнала u(t)+v(t), кроме суммы энергий составляющих сигналов, содержит в себе и так называемую энергию взаимодействия сигналов или взаимную энергию

Euv = 2u(t)v(t) dt. (2.2.6)

Нетрудно заметить, что энергия взаимодействия сигналов равна их удвоенному скалярному произведению

Euv = 2 u(t), v(t). (2.2.6')

При обработке данных используются также понятия мощности взаимодействия двух сигналов x(t) и y(t):

wxy(t) = x(t) y*(t), (2.2.7)

wyx(t) = y(t) x*(t),

wxy(t) = w*yx(t).

Для вещественных сигналов:

wxy(t) = wyx(t) = x(t) y(t). (2.2.8)

С использованием выражений (2.2.7-2.2.8) интегрированием по соответствующим интервалам вычисляются значения средней мощности взаимодействия сигналов на определенных интервалах Т и энергия взаимодействия сигналов.

2.3. пространства функций [1,3,11,16,29].

Пространства функций можно считать обобщением пространства N-мерных сигналов - векторов на аналоговые сигналы, как на бесконечномерные векторы, с некоторыми чисто практическими уточнениями.

Нормирование метрических параметров. Норма функций в пространстве L2[a, b] определяется выражением:

||s(t)|| =.

Чем больше интервал [a, b] в этой формуле, тем больше (при прочих равных условиях) будет значение нормы. При анализе и сравнении сигналов такое понятие не всегда удобно, и вместо него часто используют понятие нормы, нормированной относительно длины интервала [a, b]. Для символьного обозначения нормирования будем применять знак :

||s(t)|| =, ||sn|| =.

Метрика сигналов (расстояние между сигналами) при аналогичном нормировании:

?(s, v) =, ?(s, v) =

Эти выражения применяются для вычисления среднеквадратического расхождения сигналов или среднеквадратической погрешности (стандартный индекс погрешности в абсолютных единицах измерений - ?) выполнения какой-либо операции при сравнении ее результата с теоретически ожидаемым или априорно известным.

Нормированное скалярное произведение сигналов:

s(t), v(t) = s(t)v(t) dt = ||s(t)|| ||v(t)||?cos ?.

sn, vn =(1/N)sn vn = ||sn||?||sn||?cos ?.

Косинус угла (коэффициент корреляции) между сигналами (функциями) не изменяет своих значений при вычислении как по нормированным, так и по ненормированным значениям скалярного произведения и нормы сигналов (значения нормировки в числителе и знаменателе выражения (2.1.8) сокращаются). Взаимная перпендикулярность функций определяется аналогично взаимной перпендикулярности векторов условием нулевого значения скалярного произведения.

Норма, метрика и скалярное произведение периодических функций обычно нормируются на длину одного периода Т.

Ортогональные сигналы. Два сигнала называются ортогональными (orthogonal), если имеют нулевое скалярное произведение

u(t), v(t) =u(t)v(t) dt = 0.

Соответственно, два таких сигнала в своем функциональном пространстве являются взаимно перпендикулярными (угол между сигналами равен ? = 90о), полностью независимыми друг от друга (некоррелированными, r = cos ??????, и имеют нулевую энергию взаимодействия (Euv = 0).

Рис. 2.3.1. Ортогональные сигналы.

На рисунке 2.3.1 приведены примеры взаимно ортогональных сигналов. Нулевое скалярное произведение двух левых сигналов обеспечивается их формой (равна нулю сумма положительных и отрицательных значений произведения сигналов), а двух правых - взаимным расположением (ненулевые значения сигналов не имеют общих координат).

Попутно заметим, что энергия и мощность суммы ортогональных сигналов обладают свойством аддитивности, т.к. имеют нулевое значение скалярного произведения и, соответственно, нулевую энергию взаимодействия.

Ортонормированный базис пространства. При распространении положений векторного базисного пространства на функциональное пространство L2[a, b], в качестве координатного базиса пространства мы можем использовать совокупность функций {u0(t), u1(t), u2(t), …}, в пределе - бесконечную, которая должна быть системой ортогональных функций {uk(t), k=0, 1, 2, …}, т.е. все функции на этом отрезке должны быть взаимно ортогональны:

um(t), un(t) =um(t) un(t) dt = 0, m = 1, 2, ... ; n = 1, 2, ... ; m n.

Система ортогональных функций на интервале [a, b] будет ортонормированной (orthonormal functions), если все функции системы при m=n имеют единичную норму, т.е. выполняются условия:

um(t), um(t) = ||um(t)||2 =(um(t))2 dt = 1, ||um(t)|| = 1, m = 1, 2, ....

Эти условия можно записать в следующей обобщенной форме:

um(t)·un*(t) dt = ?m,n.

Система ортогональных функций всегда может быть превращена в ортонормированную путем нормировки, т.е. деления всех функций на их норму.

Разложение сигнала в ряд. Произвольный сигнал s(t) H (пространство Гильберта), заданный на интервале [a, b], может быть разложен в ряд по упорядоченной системе ортонормированных базисных функций uk(t)

s(t) =ckuk(t). (2.3.2)

Для нахождения значений коэффициентов сk умножим обе части данного выражения на базисную функцию um(t) с произвольным номером m и проинтегрируем результаты по переменной t, при этом получим

s(t)um(t) dt =ck umuk dt.

С учетом ортонормированности функций ui(t), в правой части этого равенства остается только один член суммы с номером m = k при ukuk dt =1, который, по левой части уравнения, представляет собой скалярное произведение сигнала и соответствующего m = k базисного вектора, т.е. проекцию сигнала на соответствующее базисное направление

ck =s(t)uk(t) dt. (2.3.2)

Таким образом, в геометрической интерпретации коэффициенты сk представляют собой проекции вектор - сигнала s(t) на соответствующие базисные направления uk(t), т.е. координаты вектора s(t) по координатному базису, образованному системой ортогональных функций u(t), в пределе - бесконечномерной. При практическом использовании количество членов ряда (2.3.2) ограничивается определенным значением N, при этом для любого значения N совокупность коэффициентов ck обеспечивают наименьшее по средней квадратической погрешности приближение к заданному сигналу.

Соответственно, энергия взаимодействия двух сигналов x(t) и y(t) может вычисляться по скалярному произведению их координатных проекций, которое, с учетом взаимной ортогональности всех проекций, будет равно:

x(t), y(t)=x(t)y(t) dt =[anun(t)] [bmum(t)] dt =anbn. (2.3.3)

Косинус угла между векторами x(t) и y(t) с использованием выражения (2.3.3):

cos =anbn /(||x(t)||||y(t)||).

Возможность разложения непрерывных сигналов и функций в обобщенные ряды по системам ортогональных функций имеет огромное принципиальное значение, так как позволяет вместо изучения несчетного множества точек сигнала ограничиться счетной системой коэффициентов ряда.

К системам базисных функций, которые используются при разложении сигналов, предъявляют следующие основные требования:

- для любого сигнала ряд разложения должен сходиться;

- при ограничении ряда по уровню остаточной погрешности расхождения с заданным сигналом количество членов ряда должно быть минимальным;

- базисные функции должны иметь достаточно простую аналитическую форму;

- коэффициенты разложения в ряд должны вычисляться относительно просто.

Согласно теореме Дирехле, любой сигнал s(t), имеющий конечное число точек нарушения непрерывности первого рода, и конечный по энергии на интервале [a, b], может быть разложен по системе ортонормальных функций, если существуют интегралы модуля сигнала и модуля его первой производной, т.е.:

|s(t)| dt < , |s'(t)| dt < .

Ортонормированные системы функций хорошо известны в математике. Это полиномы Эрмита, Лежандра, Чебышева, функции Бесселя, Лагерра и целый ряд других. Выбор типа функций в качестве координатного базиса сигнального пространства, как и координатных осей для обычного трехмерного пространства (декартовы, цилиндрические, сферические и пр.), определяется удобством и простотой последующего использования при математической обработке сигналов. При спектральном анализе сигналов используются, в основном, два вида ортонормированных функций гармонические функции и функции Уолша.

На интервале [-?, ?] рассмотрим систему следующих гармонических функций:

{1, sin t, sin 2t, …, sin kt}, k = 1, 2, 3, … (2.3.4)

Вычислим нормированные на интервал скалярные произведения системы:

1, sin kt=(1/2?)sin kt dt = ??????k= 1, 2, 3, …

sin mt, sin nt=(1/2?)sin mt sin nt dt = 0, при m n.

Следовательно, система (2.3.4) является системой взаимно ортогональных функций. Норма функций:

||sin kt||2 = (1/2?)sin2 kt dt = 1/2.

||sin kt|| = 1/, k = 1, 2, 3, …

Соответственно, для превращения системы (2.3.4) в ортонормированную следует разделить все функции системы на значение нормы (рис. 2.3.2):

{1, uk(t) =sin kt}, k = 1, 2, 3, … (2.3.4')

Рис. 2.3.2. Ортонормированный базис гармонических функций.

Аналогичным образом можно убедиться в ортонормированности косинусной системы гармонических функций:

{1, uk(t) =cos kt}, k = 1, 2, 3, …, (2.3.5)

и объединенной синус-косинусной системы:

{1, uk(t) =sin kt, uk(t) =cos kt}, k = 1, 2, 3, … (2.3.6)

Наибольшее распространение в качестве базисных функций частотного разложения нашли комплексные экспоненциальные функции exp(pt) при p = jf (преобразование Фурье) и p = s+jf (преобразование Лапласа), от которых с использованием формул Эйлера

exp(j?t) = cos(?t) + j sin(?t), exp(-j?t) = cos(?t) - j sin(?t),

cos(?t) = [ехр(j?t)+exp(-j?t)]/2, sin(?t) = [ехр(j?t)-exp(-j?t)]/2j

всегда можно перейти к вещественным синус-косинусным функциям. Термин "частотное разложение" обязан своим происхождением независимой переменной частотного представления сигналов, которая измеряется в единицах, обратных единицам времени, т.е. в единицах частоты f = 1/|t|. Однако понятие частотного преобразования не следует связывать только с временным представлением сигналов, т.к. математический аппарат преобразования не зависит от физического смысла переменных. Так, например, при переменной "х", как единице длины, значение f будет представлять собой пространственную частоту - число периодических изменений сигнала на единице длины с размерностью 1/|х|.

Ортонормированная система функций Уолша, по существу, является предельной модификацией системы периодических функций с кратными частотами, при этом функции принимают значения только 1. Пример четырех первых функций Уолша на интервале Т от -0,5 до 0,5 приведен на рис. 2.3.3. Ортогональность и нормированность функций следует из принципа их построения. Стандартное математическое обозначение функций Уолша wal(k,х), где k = 0,1,2, … - порядковый номер функции, х = t/T - безразмерная координата (нормированная на интервал Т независимая переменная).

Наряду с функциями Уолша применяются также две связанные с ними системы четные и нечетные функции cal(n,х) = wal(2n,х), - аналогичные косинусам, и sal(n,х) = wal (2n-1,х), - аналогичные синусам.

При разложении сигналов форма спектров Уолша практически тождественна спектрам гармонических функций.

Разложение энергии сигнала. Допустим, что сигнал s(t) разложен в обобщенный ряд Фурье по гармоническим функциям. Вычислим энергию сигнала непосредственной подстановкой выражения (2.3.2) в выражение (2.2.2)

Es =s2(t) dt =cmcnumun dt =cmcn umun dt. (2.3.7)

В этом выражении, в силу ортонормированности базисной системы, отличны от нуля только члены с номерами m = n. Отсюда

Es =s2(t) dt =cn2, (2.3.8)

т.е. при разложении сигнала в обобщенный ряд Фурье энергия сигнала не изменяется, и равна сумме энергии всех составляющих ряда. Это соотношение называют равенством Парсеваля.

2.4. Функции корреляции сигналов [1, 25, 29].

Функции корреляции сигналов применяются для интегральных количественных оценок формы сигналов и степени их сходства друг с другом.

Автокорреляционные функции (АКФ) сигналов (correlation function, CF). Применительно к детерминированным сигналам с конечной энергией АКФ является количественной интегральной характеристикой формы сигнала, и представляет собой интеграл от произведения двух копий сигнала s(t), сдвинутых относительно друг друга на время ?:

Bs(?) = s(t) s(t+?) dt. (2.4.1)

Как следует из этого выражения, АКФ является скалярным произведением сигнала и его копии в функциональной зависимости от переменной величины значения сдвига ?. Соответственно, АКФ имеет физическую размерность энергии, а при ? = 0 значение АКФ непосредственно равно энергии сигнала:

Bs(0) =s(t)2 dt = Es.

Функция АКФ является непрерывной и четной. В последнем нетрудно убедиться заменой переменной t = t-? в выражении (2.4.1):

Bs(?) =s(t-?) s(t) dt = s(t) s(t-? ) dt = Bs(-?). (2.4.1')

...

Подобные документы

  • Основные понятия и определения систем передачи дискретных сообщений. Сигнальные созвездия при АФМ и квадратурная АМ. Спектральные характеристики сигналов с АФМ. Модулятор и демодулятор сигналов, помехоустойчивость когерентного приема сигналов с АФМ.

    дипломная работа [1,9 M], добавлен 09.07.2013

  • Измерение мощности низкочастотных и высокочастотных колебаний электрических сигналов. Диагностирование мощности колебаний сверхвысокочастотного излучения ваттметрами (поглощающего типа и проходящей мощности). Основные цифровые методы измерения мощности.

    контрольная работа [365,0 K], добавлен 20.09.2015

  • Понятие и содержание квантования по уровню как процесса преобразования сигнала с непрерывным множеством значений в сигнал с дискретными значениями. Определение погрешности квантования и его шума. Особенности квантования сигналов при наличии помех.

    презентация [130,4 K], добавлен 19.08.2013

  • Характеристика спектрального метода анализа сигналов, при помощи которого можно оценить спектральный состав сигнала, а также количественно выяснить его энергетические показатели. Корреляционный анализ сигнала для оценки прохождения сигнала через эфир.

    курсовая работа [169,7 K], добавлен 17.07.2010

  • Формула для сигнала при гармонической модуляции. Амплитуда и частота несущего колебания. Компьютерное моделирование ЧМ-сигналов с помощью программного пакета Electronics Workbench. Спектр частотно-модулированного сигнала. Частота модулирующего колебания.

    лабораторная работа [565,1 K], добавлен 04.06.2015

  • Общие свойства линейных цепей с постоянными параметрами. Рассмотрение преобразования сигналов линейными цепями в частотной и временной области. Простейшие цепи и их характеристики: фильтры интегрирующего, дифференцирующего и частотно-избирательного типа.

    контрольная работа [739,7 K], добавлен 13.02.2015

  • Способы преобразования звука. Применение преобразования Фурье в цифровой обработке звука. Свойства дискретного преобразования Фурье. Медианная фильтрация одномерных сигналов. Применение вейвлет-анализа для определения границ речи в зашумленном сигнале.

    курсовая работа [496,8 K], добавлен 18.05.2014

  • Пространство - единственная объективно существующая не материальная субстанция. Материальные субстанции - вещество, энергия, эфир. Время - последовательность изменения расположения материи. Магнетизм и электричество. Строение звезды. Черная дыра.

    статья [18,0 K], добавлен 07.03.2008

  • Примеры измерительных сигналов, используемых в различных разделах науки и техники. Спектральная плотность стационарного случайного процесса. Составляющая погрешности измерений. Причины возникновения внешних помех. Частотная, амплитудная модуляции.

    реферат [245,9 K], добавлен 07.05.2014

  • Фильтрация сигналов на фоне помех в современной радиотехнике. Понятие электрического фильтра как цепи, обладающей избирательностью реакции на внешнее воздействие. Классификация фильтров по типу частотных характеристик. Этапы проектирования фильтра.

    курсовая работа [1,3 M], добавлен 23.01.2010

  • Основные направления фундаментальной Теории многомерного пространства. Современные представления о теории атома. Пространства Вселенной: мертвой материи, видимое с Земли, желтое, серое и синее. Схема орбитально-динамического взаимодействия объектов.

    реферат [308,5 K], добавлен 18.10.2009

  • Определение операторной функции ARC-фильтра. Расчет амплитудного и фазного спектров реакции. Построение графика функции времени реакции цепи. Определение переходной и импульсной функции фильтра. Реакция цепи на непериодический прямоугольный импульс.

    курсовая работа [358,7 K], добавлен 30.08.2012

  • Преобразования Лоренца и основные следствия из них. Четырехмерное пространство Эйнштейна. Расстояние между точками трехмерного пространства. Интервал между двумя событиями. Промежуток собственного времени. События, разделенные вещественным интервалом.

    лекция [212,8 K], добавлен 28.06.2013

  • Основные понятия теории электрических цепей: переходные процессы; интеграл Дюамеля; передаточные характеристики; дискретизация. Первый и второй законы коммутации. Классический метод расчета переходных процессов. Сопоставление дискретизированных сигналов.

    курсовая работа [997,1 K], добавлен 22.08.2013

  • Излученный и отраженный свет. Яркостная и цветовая информация. Спектральный состав источника света. Сущность эффекта метамерии. Особенности восприятия цвета человеком. Спектральная чувствительность типов колбочек. Восприятие сигналов внешнего мира.

    презентация [4,3 M], добавлен 12.02.2014

  • Временные диаграммы периодических сигналов прямоугольной формы. Зависимость ширины спектра периодической последовательности прямоугольных импульсов от их длительности. Теорема Котельникова, использование для получения ИКМ-сигнала. Электрические фильтры.

    контрольная работа [1,3 M], добавлен 23.08.2013

  • Развитие представлений о пространстве и времени, их общие свойства. Необратимость времени как проявление асимметрии, асимметрия причинно-следственных отношений. Гипотезы Н.А. Козырева о новых свойствах времени. Теория N–мерности пространства и времени.

    контрольная работа [99,9 K], добавлен 05.10.2009

  • Асинхронные и синхронные двигатели. Многоуровневая структура электропривода. Переходные процессы при пуске по одной характеристике и при торможении. Замкнутая система с суммированием сигналов. Пути энергосбережения. Повышение загрузки рабочих машин.

    курс лекций [1,8 M], добавлен 06.08.2011

  • Эхо - волна (акустическая, электромагнитная и др.), отражённая от препятствия и принятая наблюдателем. Эхолокация - излучение и восприятие отражённых, как правило, высокочастотных, звуковых сигналов с целью обнаружения объектов в пространстве.

    реферат [9,8 K], добавлен 20.04.2002

  • Усилители как самые распространенные электронные устройства, особенности проектирования. Этапы расчёта оконечного каскада. Низкоомная нагрузка как сравнительно малое активное сопротивление. Способы усиления электрических сигналов, основные преимущества.

    контрольная работа [1,9 M], добавлен 25.01.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.