Системы отопления
Классификация и требования к современным отопительным системам. Виды и свойства теплоносителей. Определение тепловой нагрузки и режима помещений. Преимущества применения полимерных труб и фитингов. Способы эффективного обогрева площадок открытого типа.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 19.11.2018 |
Размер файла | 2,3 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://allbest.ru
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ
ОДЕССКИЙ НАЦИОНАЛЬНЫЙ МОРСКОЙ УНИВЕРСТЕТ
Кафедра « Морские порты, водные пути и их техническая эксплуатация»
РЕФЕРАТ
на тему: Системы отопления
Выполнила: Слободянюк В.И
Студентка 3го курса 1гр
Проверила: Калюжная В.Е
Одесса -2018г.
Содержание
Введение
1. Понятие системы отопления
2. Требования к системам отопления
3. Классификация систем отопления
4. Теплоносители. Основные характеристики
5. Схемы
Введение
С развитием строительства в последние годы, наряду с поиском архитектурно - планировочных решений строений, на первый план выходят требования по обеспечению комфорта находящихся в них людей. Одной из основных задач в этой области являются системы отопления, отвечающие современным требованиям. Под современными требованиями подразумевается:
*Высокая эффективность системы.
*Экономичность.
*Возможность автоматического регулирования и создания максимально комфортных условий проживания.
*Возможность получения необходимого количества горячей воды и совмещения с бассейным и климатическим оборудованием.
Отопительные системы разрешают одну из задач по созданию искусственного климата в помещениях. Они служат для поддержания заданной температуры воздуха во внутренних помещениях зданий в холодное время года.
1. Понятие системы отопления
Система отопления представляет собой комплекс элементов, необходимых для обогрева помещений. Основными элементами являются генераторы теплоты, теплопроводы, отопительные приборы. Передача теплоты осуществляется с помощью теплоносителей -- нагретой воды, пара или воздуха. При определении тепловой нагрузки систем отопления учитывают особенности теплового режима помещений. В помещениях с постоянным тепловым режимом, к которым относятся промышленные, жилые и общественные здания, сельскохозяйственные постройки, тепловую нагрузку определяют из теплового баланса. В помещениях с переменным режимом при определении тепловой нагрузки различают два периода -- рабочий и нерабочий. В нерабочее время необходимость в отоплении может отсутствовать.
Во всех случаях при расчете мощности систем отопления необходимо учитывать минимальные почасовые тепловыделения. Кроме того, системы отопления должны обеспечивать нормируемые параметры воздуха к началу рабочего периода. Отопление, рассчитанное только на период нерабочего времени, называют дежурным отоплением.
3. Требования к системам отопления
* Санитарно-гигиенические. Системы отопления должны обеспечивать внутри помещения заданную температуру воздуха равномерно по объему рабочей зоны помещения. Температуры внутренних поверхностей наружных ограждений и нагревательных приборов должны находиться в пределах нормы. Система должна быть безопасной и бесшумной в работе, должна обеспечивать наименьшее загрязнение вредными выделениями помещений и атмосферного воздуха.
*Экономические. Системы отопления должны обеспечивать минимум затрат по сооружению и эксплуатации. Показателями экономичности являются также расход материала, затраты труда на изготовление и монтаж. Экономичность системы определяется технико-экономическим анализом вариантов различных систем и применяемого оборудования.
*Строительные. Системы отопления должны соответствовать архитектурно-планировочному решению помещений. Размещение отопительных элементов должно быть увязано со строительными конструкциями.
*Монтажные. Элементы систем отопления должны изготавливаться преимущественно в заводских условиях, детали унифицированы, затраты труда на сборку минимальны.
*Эксплуатационные. Система отопления должна быть надежной в поддержании заданных температур воздуха. Надежность системы обусловливается ее долговечностью, безотказностью, простотой регулирования управления и ремонта.
Принципиально система отопления делится на гравитационную и насосную. Наиболее типичной системой является гравитационная система, в которой теплоноситель движется по трубам за счет того, что нагретая вода легче холодной. В результате горячая вода устремляется вверх, создавая при этом напор, и возникает циркуляция, вызывающая процесс теплообмена. Особенностью этих систем является то, что необходимо применение труб достаточно большого диаметра, так как значения напора в данных системах невелики. Отличительной чертой гравитационных систем является то, что трубопроводы располагаются, преимущественно, вертикально и распределение теплоносителя осуществляется сверху вниз. В настоящее время для увеличения напора применяются циркуляционные насосы, которые значительно повышают значения напора, производительности и, как следствие эффективности системы в целом. Основными схемами при монтаже систем отопления являются однотрубная и двухтрубная. Однотрубная схема в основном применяется в сфере производственно-гражданского строительства. Двухтрубная схема применяется в коттеджном и малоэтажном строительстве. С появлением циркуляционных насосов расположение трубопроводов перестало влиять на качество отопительных систем, а применение полимерных труб и фитингов позволило в корне изменить конструкции и потребительские свойства систем отопления. Теперь трубопроводы можно размещать в конструкциях пола и стен, что позволяет повысить эстетику жилых помещений. В двухтрубной схеме широко используются полипропиленовые трубы с металлизированной прослойкой (так называемые стабильные трубы). Долговечность этих труб может достигать 70 лет. По сравнению с металлическими трубами пластиковые имеют значительно более низкое гидравлическое сопротивление и их пропускная способность на 30% больше при одинаковом давлении насоса. Кроме того они гораздо практичнее в экплуатации, имеют меньшую массу, более эстетичный внешний вид, а также легко ремонтируются и восстанавливаются..
4. Классификация систем отопления
Различают местные и центральные системы отопления. К местным относят системы, в которых все элементы объединены в одном устройстве и которые предназначены для обогрева одного помещения. К местным системам относят печное отопление, газовое (при сжигании топлива в местном устройстве) и электрическое. Центральные системы обогревают ряд помещений из центра (котельная, ТЭЦ), в котором вырабатывается теплота, передаваемая теплоносителем к нагревательным приборам отапливаемых помещений. По виду теплоносителя системы отопления подразделяют на системы :водяного, газового, парового и воздушного отопления.
*В водяных и паровых системах теплоноситель -- вода или пар -- нагревается в генераторе теплоты и передается по трубопроводам к нагревательным приборам
*В воздушных системах нагретый воздух поступает непосредственно в помещение из распределительных каналов или отопительных агрегатов, распложенных в самом помещении.
*По способу перемещения теплоносителя центральные системы отопления подразделяют на системы с естественной циркуляцией и системы с механическим побуждением (принудительная циркуляция).
Классификация систем водяного отопления. Системы, использующие принцип водяного отопления, можно условно разделить на высокотемпературные (выше 105°С) и низкотемпературные (их температура не превышает 105°С). В данный момент существуют определенные ограничения на максимальный температурный предел в 150°С. Кроме всего прочего, водяные системы разделяют в зависимости от способа создания водной циркуляции. Так, они бывают гравитационные (с естественным процессом циркуляции) и насосные (с механическим способом побуждения циркуляции воды с применением насосов). Принцип функционирования гравитационной системы основан на различных показателях плотности воды, которая нагревается до различных температур. В насосной системе для циркуляции воды применяют электрический насос, действие которого направлено на увеличение гидравлического давления. В результате, кроме гравитационного движения, в системе возникает и вынужденное. В зависимости от принципа соединения труб в системе водяного отопления, различают двухтрубные и однотрубные системы.
Классификация систем парового отопления. В зависимости от высоты давления пара различают несколько разновидностей паровых отопительных систем. Так, это могут быть системы высокого давления, низкого и вакуум-паровые. В плане максимального показателя давления пара существуют определенные ограничения. Так, допустимый предел составляет порядка 0,37 МПа или 3,8 кг/смІ. Принцип работы систем парового отопления состоит в конденсации насыщенного пара на стенках в приборах отопления. Далее следует передача тепло фазового превращения непосредственно в помещение через стенки. После этого происходит удаление конденсата, и пар возвращается в котлы. В зависимости от способа возвращения конденсата обратно в котел, различают замкнутые и разомкнутые отопительные системы. В замкнутой системе происходит непрерывная подача конденсата в котел. Стоит заметить, что их конструкция подразумевает расположение отопительных приборов значительно выше самого котла. Разомкнутая система представляет собой непрерывное поступление пара в конденсатный бак, и передача его по мере накопления в котел. Теплопроводы в таких системах бывают конденсатопроводами и паропроводами.
Классификация систем воздушного отопления. В зависимости от способа, благодаря которому происходит циркуляция теплоносителя, различают гравитационные (работа которых основана на естественной циркуляции) и вентиляторные (работа основана на механическом побуждении движения воздуха).
Гравитационная разновидность предполагает использование воздуха различной плотности в результате нагревания до различных температур. Аналогично с водной гравитационной системой, естественное движение воздуха возникает в результате неоднородного распределения плотности.
Отопительная система вентиляторная работает с использованием электровентилятора, способного создавать вынужденное движение воздушных масс как результат повышения давления воздуха. В таких системах совмещен гравитационный и вентиляторный способы. Основным теплоносителем в таких системах является воздух. Он нагревается до температуры максимум в 70°С при помощи калорифера -- отопительного прибора. Обогрев калорифера изнутри происходит при помощи воды, электричества, пара, горячего газа.
В зависимости от источника нагрева и различают воздушные отопительные системы: они могут быть газовоздушными, паровоздушными, водовоздушными, электровоздушными и паровоздушными. В зависимости от радиуса воздействия, системы воздушного отопления классифицируются как местные либо центральные.
В местной нагрев воздуха происходит непосредственно в калорифере, расположенном в том помещении, которое нужно обогреть. В центральной отопительный прибор (калорифер) располагается в тепловом центре, а нагретый воздух передвигается путем обратных воздухоотводов.
Классификация системы газового отопления. Одним из наиболее экологически чистых видов топлива, предназначенного для отопления помещения, считается газ. Если правильно организовать процесс сжигания этого топлива, то можно добиться минимального выделения вредных веществ. Также применения газа в отопительных целях является чрезвычайно выгодным в экономическом плане. Стоит обратить внимание и на простоту эксплуатации для генерирования тепла в таких отопительных системах.
Одним из недостатков газа как вида топлива является его взрывоопасность и некоторая степень токсичности продуктов, выделяемых во время сгорания. При сооружении газовой отопительной системы следует предъявить повышенные требования к обеспечению безопасности и эксплуатации.
Газовые отопительные системы используют в большом количестве различных установок: в специализированных и обычных котлах, отопительных приборах для местного либо квартирного отопления, в различных агрегатах.
В системе отопления при помощи газов основными отопительными приборами выступают трубы, предназначенные для излучения тепла. Их необходимо расположить в верхнем участке помещения.
Принцип нагрева помещения достаточно прост. Отопительная конструкция представляет собой замкнутый круг, внутри которого происходит циркуляции смеси нагретого воздуха, содержащего различные продукты сгорания.
Теплоотдача происходит путем излучения. При использовании газовоздушной системы отопления существует масса преимуществ перед воздушной системой. За счет уменьшения разницы температур по всей высоте комнаты, ликвидируется возможность уменьшения температуры воздуха непосредственно в рабочей зоне.
Основными отопительными приборами в подобной системе отопления являются горелки, источающие инфракрасное излучение. Подобное отопление максимально выгодно использовать в помещениях больших размеров, характеризующихся большой степенью теплопотерь. Наибольшее распространение газовоздушная система отопления получила при обогреве площадок открытого либо частично-открытого типа (зачастую это автомобильные стоянки, монтажные и сборочные площадки и т.д.). За счет небольшой массы и размера источников тепла (горелок) можно размещать их максимально удобно в любом помещении. Поверхность теплопередачи этих устройств практически в 10 раз меньше, чем площадь, необходимая для сооружения системы водяного отопления. Лучистое газовоздушное отопление очень часто используют в сельскохозяйственных помещениях, характеризующихся большой площадью.
4. Теплоносители. Основные характеристики теплоносителей
Теплоноситель -- жидкое или газообразное вещество, применяемое для передачи тепловой энергии. На практике чаще всего применяют воду (в виде газа или жидкости), глицерин, нефтяные масла, расплавы металлов (Sn, Pb, Na, К), воздух, азот (в том числе жидкий), фреоны (в случае использования фазовых переходов обычно называют хладагентами) и др. При выборе теплоносителя необходимо учитывать санитарно-гигиенические, технико-экономические и эксплуатационные показатели.
Газы образуются при сгорании топлива, они имеют высокие температуры и энтальпию. Однако транспортировка газов усложняет систему отопления и приводит к значительным тепловым потерям. С санитарно-гигиенической точки зрения газы как теплоноситель малоприемлемы, так как трудно обеспечить допустимые температуры нагревательных приборов. Впуск газов непосредственно в помещение ухудшает состояние воздушной среды. отопительный тепловой полимерный фитинг
Вода обладает большой теплоемкостью и плотностью, что позволяет передавать большое количество теплоты при малом объеме теплоносителя. Это обеспечивает малые размеры трубопроводов и относительно невысокие потери теплоты. Допускаемая по санитарно-гигиеническим нормам температура нагревательных приборов легко достигается, однако на перемещение воды требуется затрата энергии. Пар при конденсации в нагревательных приборах отдает значительное количество теплоты за счет скрытой теплоты парообразования.
Вследствие этого масса пара при данной тепловой нагрузке уменьшается по сравнению с другими теплоносителями. Однако пар как теплоноситель в системах отопления уступает воде, так как температура приборов будет превышать 100 о С, что приводит к возгонке органической пыли, оседающей на приборах, и к выделению в помещение вредных веществ и неприятных запахов. Следует также учесть, что паровые системы могут быть источниками шума, кроме того, пар при низких давлениях (применяемых в системах отопления) имеет значительный удельный объем, что ведет к увеличению сечений трубопроводов. Воздух -- подвижный теплоноситель -- безопасен в пожарном отношении, в воздушных системах возможно простое регулирование температуры в помещении.
Однако вследствие малой теплоемкости воздуха для удовлетворения заданной тепловой нагрузки масса воздуха должна быть значительной, что приводит к необходимости иметь каналы с большим сечением для его перемещения и дополнительному расходу энергии. К тому же воздушное отопление в некоторых случаях может спровоцировать развитие вредоносных бактерий, легионел. Поэтому воздушное отопление применяют преимущественно на промышленных предприятиях. Водяное отопление получило в настоящее время наибольшее распространение в силу преимуществ перед другими системами отопления.
Опыт эксплуатации водяных систем показал их наилучшие гигиенические и эксплуатационные свойства. Системы водяного отопления более надежны, бесшумны, просты и удобны в эксплуатации, могут иметь значительный радиус действия по горизонтали. Радиус действия системы по вертикали определяется гидростатическим давлением. Особое значение получило водяное отопление с развитием централизованного теплоснабжения и теплофикации.
5. Схемы
Гравитационные. Схемы с естественной циркуляцией в последнее время уступают свои позиции. Доступными стали циркуляционные насосы, а преимущества их использования выглядят впечатляюще. Тем не менее, такие системы обеспечения теплом нередко встречаются в небольших домах.
Основное их преимущество - полная независимость от поставок электроэнергии.
В основу их функциональности положен факт разной плотности холодного и нагретого теплоносителя -- горячая вода всегда стремится вверх. В замкнутом пространстве холодные потоки вытесняют нагретые и заставляют их двигаться в сторону от источника тепла. При соблюдении некоторых правил монтажа создаются системы отопления с естественной циркуляцией теплоносителя. Здесь очень важно соблюсти уклоны тепловых магистралей.
Создание гравитационных систем подчиняется ряду требований:
*Котел желательно расположить ниже контура. Иногда его выносят в подвалы (за исключением газовых приборов) или же монтируют в углублении относительно пола. Стоит отметить, что современные отопительные устройства далеко не всегда нуждаются в подобном подходе.
*От котла подающий трубопровод поднимается вертикально вверх до максимально возможной точки. Таким способом создается возможность разгона теплоносителя.
*Открытые системы в самой верхней точке нуждаются в установке расширительного бака. В закрытых системах в этом месте монтируется автоматический отводчик воздуха. Реже устанавливается кран Маевского, который может работать исключительно в ручном режиме. Расширительный бачок в закрытых системах может быть установлен в любой другой части контура.
*Теплоноситель, имея потенциал кинетической энергии, проходит все радиаторы отопления, отдавая запас тепла. По возвращении к отопительному агрегату цикл повторяется.
В системах с естественной циркуляцией количество запорной арматуры сводится к минимуму. Жесткие требования и относительно диаметра труб -- он не должен быть меньше 32 мм. Все это направлено на снижение гидравлического сопротивления схемы.
Принудительные. В данных вариантах систем используется внешняя подача теплоносителя, а в автономных схемах монтируется циркуляционный насос. При этом они успешно используются в закрытых и открытых вариантах. Преимущества данного решения:
1. Монтаж труб может выполняться без уклона строго в горизонтальной плоскости. Хотя на практике большинство специалистов рекомендуют оставлять хотя бы небольшой уклон. Это предоставляет некоторые дополнительные возможности (описаны ниже).
2. Принудительная циркуляция позволяет быстро и равномерно обогреть все помещения. В гравитационных схемах радиаторы, расположенные ближе к котлу, всегда теплее, чем те, что установлены дальше.
Почему же предпочтительнее соблюдать уклоны? Все очень просто. Это дает возможность полноценно использовать систему при отключениях электричества. Циркуляционные насосы всегда монтируются через байпас. На основной трубе ставится кран, который закрыт при работающем насосе. Если нет электричества, кран открывается, и теплоноситель может циркулировать под воздействием гравитации. Получается практически энергонезависимая система.
Одно- или двухтрубные варианты. Однотрубная отопительная система выглядит довольно просто -- к одной магистрали параллельно или последовательно подключены радиаторы отопления. Здесь нет обратки. Несомненным достоинством такого решения является минимальный расход материалов. Однако недостаток еще более существенный -- очень большая разница температуры между первым и последним радиатором отопления. Двухтрубная система лишена этого недостатка. Более того, установив на каждой батарее кран, пользователь имеет возможность регулировки температуры по комнатам. Использование системы сопровождается дополнительными преимуществами:
· Приблизительно одинаковая температура батарей. Естественно, что некоторый разброс все-таки остается. Однако назвать его существенным никак нельзя.
· Экономия ресурсов. Неиспользуемые помещения можно закрыть и снизить температуру в них до минимума.
Магистрали для обратной циркуляции желательно выполнять из труб меньшего диаметра. Так удастся избежать движения теплоносителя по короткому контуру, когда горячим остается только первый радиатор.
Вертикальная или горизонтальная разводка: Варианты отличаются способом транспортировки теплоносителя. К примеру, одноэтажные здания все без исключения имеют горизонтальную разводку системы теплоснабжения. Вертикальная возможна в строениях большей этажности. В многоквартирных домах она доминирует.
Хотя на практике чаще всего встречаются комбинированные методы подачи тепла:
· В домах советской постройки. Наряду с вертикальными там встречаются участки горизонтальной подачи теплоносителя.
· Во многих новостройках. Здесь все еще более запутанно. Многие здания оснащены разводкой, которая сочетает оба метода. Специалисты уже успели окрестить ее перекрестной.
В частных постройках тоже возможны комбинированные варианты. Они встречаются в двухэтажных домах и одноэтажных строениях, если котельная расположена в подвале.
Литература
1. Ткаченко В. Н., Бритов Н. А., Парфенюк А. С. и др. Математическая модель теплообмена в зоне прессования… //. 1994. №2. С.19-21.
2. Швецов И. В., Стахеев С. Г., Сухоруков В. И. и др. "О механизме разрушения обогревательных простенков коксовых батарей // 1997г. №12. С.11-16.
3. Кривошеин В. Г. Тепловые приборы/1998г. №10. С.19-21.
4. Джелали В. В., Рубчевский В. Н., Шакун Г. В. и др. Тепловые процессы. 1999г. №3. С. 18-22.
5. Булах В. Л.. Монтаж теплового оборудования. 1990г. №11. С.52-56.
6. Булах В. Л., Пятикоп П. Д. Монтаж тепловых сетей. 1989г. №4. С.55-58.
7. Парфенюк А. С., Веретельник С. П., Кутняшенко И. В. и др. Факторы надежности теплового оборудования. //.2002г. №11. С.18-20.
8. https://ru.wikipedia.org
9. http://baurum.ru/_library/?cat=systems_heating&id=1548
Размещено на Allbest.ru
...Подобные документы
Расчет воздухообмена для коровника, тепловой мощности системы отопления, требования к ней. Расчет калориферов воздушного отопления, естественной вытяжной вентиляции. Определение тепловой нагрузки котельной. Гидравлический расчет сети теплоснабжения.
курсовая работа [1,1 M], добавлен 01.12.2014Что такое "Пассивный дом". Основные виды инфракрасного отопления. Применение системы инфракрасного обогрева на производстве. Расчет мощности инфракрасных обогревателей. Расчет мощности энергосберегающего дома. Основные свойства инфракрасного излучения.
отчет по практике [3,2 M], добавлен 12.04.2017Система отопления в древние времена. Принципы и механизмы обогрева помещений в древнем Риме. Печное отопление: русская печь, камин, оценка их эффективности, влияние на быт человека. Современные системы отопления: паровое, водяное, а также лучистое.
курсовая работа [173,9 K], добавлен 15.05.2014Принцип устройства и действия тепловой трубки Гровера. Основные способы передачи тепловой энергии. Преимущества и недостатки контурных тепловых труб. Перспективные типы кулеров на тепловых трубах. Конструктивные особенности и характеристики тепловых труб.
реферат [1,5 M], добавлен 09.08.2015Определение тепловых нагрузок помещений на систему отопления. Подбор приборов к системе отопления основной части здания и для четвертой секции, балансировка системы отопления. Гидравлический расчет системы отопления двухтрубной поквартирной системы.
курсовая работа [101,6 K], добавлен 23.07.2011Проектирование насосной системы водяного отопления индивидуального жилого дома. Характеристика наружных ограждений. Составление тепловых балансов помещений. Гидравлический расчет главного циркуляционного кольца. Тепловой расчет отопительных приборов.
курсовая работа [210,5 K], добавлен 22.03.2015Классификация видов отопления помещений в зависимости от преобладающего способа теплопередачи. Особенности конвективной и лучистой систем отопления. Характеристика огневоздушного, водяного, парового, инфракрасного и динамического вида отопления.
курсовая работа [1,2 M], добавлен 02.04.2015Потребление водяного пара и тепловой энергии предприятием. Расчёт нагрузок на системы обогрева и хозяйственно-бытового горячего водоснабжения. Система менеджмента для эффективного использования топливно-энергетических ресурсов предприятия г. Бобруйск.
курсовая работа [2,2 M], добавлен 08.01.2014Способы и схемы автоматического регулирования тепловой нагрузки и давления пара в котле. Выбор вида сжигаемого топлива; определение режима работы котла. Разработка функциональной схемы подсоединения паропровода перегретого пара к потребителю (турбине).
практическая работа [416,1 K], добавлен 07.02.2014Определение характеристики относительного прироста расхода топлива конденсационной тепловой электростанции. Расчет оптимального распределения нагрузки между агрегатами тепловой электростанции. Определение графика электрической нагрузки потребителей ЭЭС.
курсовая работа [2,3 M], добавлен 08.01.2017Классификация обогревателей по принципу действия. Определение тепловой нагрузки помещения и трансмиссионной потери через ограждающие конструкции. Сравнительное исследование двух обогревателей: инфракрасного "Пион" и масляного семисекционного типа Irit.
доклад [592,6 K], добавлен 04.02.2012Теплотехнический расчет наружных стен, пола, расположенного на грунте, световых проёмов, дверей. Определение тепловой мощности системы отопления. Расчет отопительных приборов. Гидравлический расчет системы водяного отопления. Расчет и подбор калорифера.
курсовая работа [422,1 K], добавлен 14.11.2017Монтаж стационарной отопительной установки. Гидравлический расчет системы водяного отопления. Тепловой расчет отопительных приборов системы водяного отопления. Подбор нерегулируемого водоструйного элеватора типа ВТИ. Расчет естественной вентиляции.
курсовая работа [169,7 K], добавлен 19.12.2010Традиционные системы отопления, их типы и значение на современном этапе. Преимущества использования инфракрасных отопительных приборов, характер влияния соответствующего излучения на человека. Принцип работы инфракрасной пленки, расчет энергопотребления.
дипломная работа [2,0 M], добавлен 02.06.2015Понятие, виды, технологическое назначение и конструкции теплообменников. Теплофизические свойства теплоносителей. Тепловой, компоновочный и гидравлический расчет теплообменного аппарата. Характеристика калорифера, классификация и принципы его работы.
курсовая работа [1,7 M], добавлен 22.11.2014Гидравлический расчет и конструирование системы отопления жилого здания. Характеристика отопительных приборов. Определение количества типоразмеров конвекторов. Прокладка магистральных труб. Установка отопительных стояков. Расчет отопительных приборов.
курсовая работа [35,2 K], добавлен 11.06.2013Определение тепловой мощности системы отопления. Выбор и обоснование схемного решения системы отопления. Выбор компрессора. Компоновка теплонасосной установки. Предохранительный клапан в контуре теплового насоса. Виброизоляция оборудования установки.
дипломная работа [2,2 M], добавлен 25.12.2015Расчет тепловых нагрузок отопления вентиляции. Сезонная тепловая нагрузка. Расчет круглогодичной нагрузки, температур и расходов сетевой воды. Расчет тепловой схемы котельной. Построение тепловой схемы котельной. Тепловой расчет котла, текущие затраты.
курсовая работа [384,3 K], добавлен 17.02.2010Факторы распространенности электроэнергии на современных производствах и в быту в виде энергии пара, горячей воды, продуктов сгорания топлива. Виды тепловых электрических станций. Графики электрической и тепловой нагрузки, способы покрытия их пиков.
контрольная работа [62,5 K], добавлен 19.01.2011Методика расчёта трубчатого воздухоохладителя, в котором охлаждаемый воздух омывает пучок латунных труб в поперечном направлении, внутри труб протекает охлаждающая вода. Определение теплового потока, конструктивных характеристик воздухоохладителя.
контрольная работа [2,7 M], добавлен 03.04.2010