Обсуждение к книги Ландау и Лифшица "Теория поля"

Функция Лагранжа для электромагнитного поля. Уравнения Максвелла в калибровке Лоренца. Закон сохранения энергии-импульса Пойнтинга. Закон сохранения энергии-импульса Умова. Уравнение движения заряда в поле другого заряда. Классическое уравнение движения.

Рубрика Физика и энергетика
Вид статья
Язык русский
Дата добавления 22.11.2018
Размер файла 267,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Это позволяет строго описать квазистатические явления электродинамики и теорию тяготения Ньютона, пользуясь методами классической аналитической механики [5]. Полученные нами результаты позволяют дать правильное объяснение взаимодействию и получить все законы сохранения [2]. Более того, «магнитные парадоксы» получили непротиворечивое объяснение [3].

Прием или излучение электромагнитных волн замкнутой системой заряженных частиц это диссипативный процесс. Чтобы его описать, нам необходимо в функцию Лагранжа, описывающую заряды, ввести диссипативную функцию Релея (см., например, [6]).

Современный подход, опирающийся на «баланс энергии» не является корректным. Он ведет к ошибкам в понимании и к проблемам при описании процессов излучения и приема волн зарядами (взаимодействие зарядов с волнами). Непонимание этого факта послужило основой парадокса «самоускорения» заряда из-за излучения при отсутствии внешнего воздействия (формула (75.8) и последующие комментарии в [1]).

7. Ошибки при объяснении взаимодействия зарядов в физике

Теперь мы покажем источник ошибок современной интерпретации взаимодействия зарядов. Для этого вернемся к интегралу действия

(2.6.1)

Раскроем скобки в выражении (2.6.1)

Кажется, что можно пренебречь «добавками к массам», т.е. и .

Тогда получим:

(2.6.2)

Убирая индексы 1 и 2, запишем интеграл действия для одного заряда.

(2.6.3)

Обычно выражение (2.6.3) в учебниках не выводится, а предлагается (постулируется). Мы же получили выше строгие выражения безо всяких гипотез.

Теперь мы остановимся на ошибках.

1. Лагранжиан в интеграле (2.6.3) не инвариантен относительно преобразования Галилея.

2. Как следствие, сила действия одного заряда на другой зависит от субъективного выбора наблюдателем инерциальной системы отсчета. В разных системах отсчета она различна.

3. При описании взаимодействия нарушается третий принцип Ньютона (см., например, парадокс Тамма).

Помимо этого, функция Гамильтона для первого заряда имеет «куцый вид»:

(2.6.3)

Из гамильтониана «исчезла» энергия векторного потенциала. Чтобы «вернуть» ее в гамильтониан искусственно вводят обобщенный импульс Р

или (2.6.4)

Новое выражение гамильтониана приобретает вид (ср. с выражением (2.5.3)):

(2.6.5)

Затем обобщенным импульсом Р пользуются, как обычным импульсом частицы р. Такой «искусственный прием» имеет свое название: «подгонка под нужный результат», т.е. фальсификация.

Научно-методические замечания. При объяснении явлений взаимодействия зарядов в современной физике допускается ряд ошибок в интерпретации явлений, связанных с непониманием или ошибочным истолкованием явлений. Выше мы привели примеры некоторых ошибок. Можно сделать следующие общие замечания научно-методического характера.

1. Физики в исследованиях постоянно пользуются условием «жесткой связи» электромагнитных потенциалов полей зарядов . Они даже не подозревают, что это условие неразрывно связано с мгновенным действием на расстоянии.

2. Как следствие, запаздывающие потенциалы и поля электромагнитных волн принципиально отличаются от потенциалов и полей зарядов, отвечающих мгновенному действию на расстоянии. Отождествление этих полей - «закостенелый» предрассудок, т.е. грубая гносеологическая ошибка.

3. По этой причине ошибочны некоторые определения физических понятий. Об одном из них сказано в Приложении 1. Это термин «скорость распространения взаимодействий», не отвечающий физической реальности. Упомянем еще об одном неточном определении. Речь пойдет об определении напряженности поля.

В зарубежных учебниках можно прочесть [6]: «The electric field intensity is defined as the force per unit positive charge that would be experienced by a stationary point charge, or «test charge», at a given location in the field: » .

В наших учебниках и справочниках дается аналогичное определение: «Напряженность электрического поля это силовая характеристика электромагнитного поля, численно равная силе, действующей на пробный (единичный, положительный, точечный) заряд ». Кажется, что это определение правильно. Однако оно имеет «дефект».

Приведем правильное определение: «Напряженность электрического поля это силовая характеристика электромагнитного поля, численно равная силе, действующей на пробный (единичный, положительный, точечный) заряд, покоящийся в системе отсчета наблюдателя».

Выделенное жирным шрифтом очень важный момент. Если заряд покоится в точке, где мы измеряем поле, мы измеряем правильную величину напряженности. Если же мы измеряем силу, действующую на пробный заряд, когда он проходит данную точку пространства с некоторой скоростью, то мы имеем ошибочное значение напряженности.

Сказанное также непосредственно относится к силам, действующим на заряд со стороны других зарядов. Эти силы (как и лагранжиан) инвариантны относительно выбора наблюдателем системы отсчета. Они зависит только от относительных расстояний между зарядами и от их относительных скоростей. Это положение справедливо для выражения (2.5.2). Есть и другие ошибки.

Заметим, что вопрос о том, что мгновенное действие на расстоянии не противоречит принципу причинности. Он исследован и решен положительно уже давно [7]. Мы рекомендуем ознакомиться с этой работой тем, кто считает, что причинность сводится только к последовательности событий. Добавим также, что мгновенное действие на расстоянии не противоречит преобразованию Лоренца [8].

Список источников к Главе 2

1. Л.Д. Ландау, Е.М Лифшиц. Теория поля. - М.: ГИФФМЛ. 1960.

2. В.А. Кулигин, Г.А. Кулигина, М.В. Корнева. Ревизия теоретических основ релятивистской электродинамики. http://www.sciteclibrary.ru/rus/catalog/pages/9078.html

3. М.В. Корнева, В.А. Кулигин, Г.А. Кулигина. «Магнитные» парадоксы и их объяснение. http://www.sciteclibrary.ru/rus/catalog/pages/9078.html

4. Б.М. Яворский, А.А. Детлаф. Справочник по физике. - М., 1979.

5. В.А. Кулигин. Гимн математике или авгиевы конюшни теоретической физики. http://www.sciteclibrary.ru/texsts/rus/stat/st6224.pdf

6. R.F. Feynman, R.B. Leighton, M. Sands. The Feynman Lectures on Physics. V. 1, ADDISON-WESLEY PUBLISHING COMPANY, INC. 1963.

7. В.А. Кулигин. Причинность и взаимодействие в физике. // Детерминизм и современная физика. Воронеж, ВГУ, 1986 . (См. также: http://n-t.ru/tp/ns/pvf.htm).

8. В.А. Кулигин. Неисправленная ошибка Пуанкаре и анализ СТО. http://n-t.ru/tp/st/sa.htm

Заключение

Наша статья не является какой-либо «рецензией» на книгу Л.Д. Ландау и Е.М. Лифшица «Теория поля». Мы выбрали это произведение талантливых авторов, чтобы на нем показать застарелые ошибки в современной интерпретации явлений электромагнетизма и причины, вызвавшие эти ошибки. Ошибок в физике за столетие накопилось много.

Центральной ошибкой является отказ «мгновенному действию на расстоянии» быть объективной реальностью. Это закоренелый предрассудок сложился в конце 19 века в период кризиса физики, когда «рушили» основы классической физики. Многое «помогло» утвердиться этому предрассудку: ошибка Максвелла, записавшего некорректно свои уравнения, работы Эйнштейна, который всю физику как огород «застолбил» своими постулатами и т.д. Но самой серьезной ошибкой явился отказ от материалистического мировоззрения. Теперь представим итоги по конкретным результатам.

В Части 1мы установили, что условие «жесткой связи» потенциалов и мгновенное действие на расстоянии взаимообусловлены. Без признания мгновенного действия невозможно решить проблему электромагнитной массы.

В Части 2 нам удалось дать непротиворечивое описание релятивистского и классического вариантов теории взаимодействия зарядов. Единственное условие, которое мы использовали, это условие «жесткой связи» потенциалов. Нам удалось продемонстрировать несколько ошибок в математическом формализме и в объяснении явлений электродинамики, присущих современной физической литературе.

Подавление математическим формализмом здравого смысла, неумение постичь физическую сущность анализируемых явлений, подгонки и фальсификации сегодня явление не редкое. Сегодня теоретики «паразитируют» на достижениях эмпирических исследований.

В физике нет «строго установленных истин» (абсолютных истин). Развитие физики это путь исправления ошибок и преодоления закоренелых предрассудков. Возвращение мгновенного действия на расстоянии в физику это серьезный шаг, который многое изменяет в миропонимании. Мы не будем описывать перспективы. Область приложения результатов гораздо шире, чем тема статьи. Каждый специалист может сделать это самостоятельно хотя бы для области своих исследований.

Размещено на Allbest.ru

...

Подобные документы

  • Уравнения Максвелла. Идея о существовании электромагнитного поля. Магнитные явления, закон электромагнитной индукции Фарадея. Следствия уравнения непрерывности. Закон сохранения энергии, сила Лоренца. Дипольное, квадрупольное, магнито-дипольное излучение.

    курс лекций [3,9 M], добавлен 07.08.2015

  • Гидроаэромеханика. Законы механики сплошной среды. Закон сохранения импульса. Закон сохранения момента импульса. Закон сохранения энергии. Гидростатика. Равновесие жидкостей и газов. Прогнозирование характеристик течения. Уравнение неразрывности.

    курсовая работа [56,6 K], добавлен 22.02.2004

  • Измерение полного импульса замкнутой системы. Строение и свойства лазерного наноманипулятора. Направление момента силы относительно оси. Закон изменения и сохранения момента импульса. Уравнение движения центра масс. Системы отсчета, связанные с Землей.

    презентация [264,6 K], добавлен 29.09.2013

  • Понятие механической системы; сохраняющиеся величины. Закон сохранения импульса. Взаимосвязь энергии и работы; влияние консервативной и результирующей силы на кинетическую энергию частицы. Момент импульса материальной точки; закон сохранения энергии.

    курсовая работа [111,6 K], добавлен 06.12.2014

  • Закон сохранения импульса, закон сохранения энергии. Основные понятия движения жидкостей и газов, закон Бернулли. Сила тяжести, сила трения, сила упругости. Законы Исаака Ньютона. Закон всемирного тяготения. Основные свойства равномерного движения.

    презентация [1,4 M], добавлен 22.01.2012

  • Электрический заряд. Взаимодействие заряженных тел. Закон Кулона. Закон сохранения заряда. Електрическое поле. Напряженность электрического поля. Электрическое поле точечного заряда. Принцип суперпозиции полей. Электромагнитная индукция. Магнитный поток.

    учебное пособие [72,5 K], добавлен 06.02.2009

  • Общие характеристики, энергия и масса электромагнитного поля. Закон электромагнитной индукции в дифференциальной форме. Дивергенция плотности тока проводимости. Уравнения электромагнитного поля в интегральной форме. Сущность теоремы Умова-Пойнтинга.

    презентация [326,8 K], добавлен 29.10.2013

  • Измерение силы тока, проходящего через резистор. Закон сохранения импульса. Трение в природе и технике. Закон сохранения механической энергии. Модели строения газов, жидкостей и твердых тел. Связь температуры со скоростью хаотического движения частиц.

    шпаргалка [126,6 K], добавлен 06.06.2010

  • Макроскопическое электромагнитное поле в сплошных неподвижных средах. Уравнения Максвелла в дифференциальной форме. Энергия электромагнитного поля и теорема Пойнтинга. Применение метода комплексных амплитуд. Волновой характер электромагнитного поля.

    реферат [272,7 K], добавлен 19.01.2011

  • Элементарный электрический заряд. Закон сохранения электрического заряда. Напряженность электрического поля. Напряженность поля точечного заряда. Линии напряженности силовые линии. Энергия взаимодействия системы зарядов. Циркуляция напряженности поля.

    презентация [1,1 M], добавлен 23.10.2013

  • Расчет тангенциального и полного ускорения. Определение скорости бруска как функции. Построение уравнения движения в проекции. Расчет начальной скорости движения конькобежца. Импульс и закон сохранения импульса. Ускорение, как производная от скорости.

    контрольная работа [151,8 K], добавлен 04.12.2010

  • Теоремы об изменении кинетической энергии для материальной точки и системы; закон сохранения механической энергии. Динамика поступательного и вращательного движения твердого тела. Уравнение Лагранжа; вариационный принцип Гамильтона-Остроградского.

    презентация [1,5 M], добавлен 28.09.2013

  • Закон полного тока. Единая теория электрических и магнитных полей Максвелла. Пояснения к теории классической электродинамики. Система уравнений Максвелла. Скорость распространения электромагнитного поля. Релятивистская трактовка магнитных явлений.

    презентация [1,0 M], добавлен 14.03.2016

  • Движение материальной точки в поле тяжести земли. Угловое ускорение. Скорость движения тел. Закон Кулона. Полная энергия тела. Сила, действующая на заряд. Поверхностная плотность заряда. Электростатическое поле. Приращение потенциальной энергии заряда.

    контрольная работа [378,0 K], добавлен 10.03.2009

  • Определение средней скорости. Модули линейной скорости. Движение с ускорением. Применение законов Ньютона. Кинематический закон движения. Зависимость скорости от времени. Модуль импульса, закон сохранения энергии. Закон Дальтона и парциальное давление.

    задача [340,1 K], добавлен 04.10.2011

  • Появление вихревого электрического поля - следствие переменного магнитного поля. Магнитное поле как следствие переменного электрического поля. Природа электромагнитного поля, способ его существования и конкретные проявления - радиоволны, свет, гамма-лучи.

    презентация [779,8 K], добавлен 25.07.2015

  • Понятие электрического заряда, единица его измерения. Закон сохранения алгебраической суммы заряда в замкнутой системе. Перераспределение зарядов между телами при их электризации. Особенности взаимодействия зарядов. Основные свойства электрического поля.

    презентация [185,5 K], добавлен 07.02.2015

  • Электрический заряд и закон его сохранения в физике, определение напряженности электрического поля. Поведение проводников и диэлектриков в электрическом поле. Свойства магнитного поля, движение заряда в нем. Ядерная модель атома и реакции с его участием.

    контрольная работа [5,6 M], добавлен 14.12.2009

  • Закон сохранения электрического заряда. Взаимодействие электрических зарядов в вакууме, закон Кулона. Сложение электростатических полей, принцип суперпозиции. Электростатическое поле диполя, взаимодействие диполей. Напряженность электростатического поля.

    презентация [3,2 M], добавлен 13.02.2016

  • Движение несвободной частицы. Силы реакции и динамика частиц. Движение центра масс, закон сохранения импульса системы. Закон сохранения кинетического момента системы. Закон сохранения и превращения механической энергии системы частиц. Теорема Кёнига.

    доклад [32,7 K], добавлен 30.04.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.