Квантовая модель тяготения

Изучение взаимодействия между заряженными частицами путем обмена фотонами. Частота электромагнитного излучения. Схожесть законов Кулона и всемирного тяготения. Скорость распространения гравитационной энергии. Сопротивление эфира движущемуся телу.

Рубрика Физика и энергетика
Вид статья
Язык русский
Дата добавления 22.11.2018
Размер файла 487,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Квантовая модель тяготения

Анатолий Гринчик

В квантовой электродинамике взаимодействие между заряженными частицами осуществляется путем обмена фотонами: одна из взаимодействующих частиц испускает фотон, который, перемещаясь в пространстве с конечной скоростью, достигает второй взаимодействующей частицы и изменяет состояние ее движения. Заряженная частица непрерывно испускает и поглощает фотоны, которые образуют, окружающее ее, электромагнитное поле. Энергия фотона W связана с частотой электромагнитного излучения н:

W = hн,

h - постоянная Планка. В свою очередь, частота электромагнитного излучения, регистрируемая приемником, зависит от относительного движения источника и приемника этого излучения. Следовательно, сила взаимодействия между заряженными частицами зависит от их относительной скорости.

Схожесть законов Кулона и всемирного тяготения заставляет думать, что аналогичным механизмом обладает и гравитационное взаимодействие: массивные тела обмениваются квантами гравитационной энергии, вследствие чего происходит их взаимное сближение. При этом скорость, приобретаемая каждым телом в результате взаимодействия, напрямую зависит от количества гравитационной энергии, поглощаемой им за единицу времени.

Рассмотрим систему, состоящую из двух одинаковых гравитационных источников, расположенных на некотором расстоянии друг от друга. Пробное тело, помещенное в середину отрезка, соединяющего данные источники, поглощает за единицу времени от каждого из них одно и то же количество гравитационной энергии

Q - энергия, поглощаемая пробным телом от каждого источника за время t. Результирующая сила тяготения в рассматриваемой точке системы равна нулю. Пробное тело сохраняет состояние покоя.

v через рассматриваемую точку системы, в сторону одного из источников, возникает неуравновешенная сила тяготения, так как в направлении своего движения пробное тело поглощает за единицу времени гравитационную энергию в количестве

<="" font="">

<="" font="">

u - скорость распространения гравитационной энергии.

Допустим, наше предположение соответствует действительности. Тогда необходимо признать, что любое движение, в том числе и равномерное, возможно только при наличии некоторой силы, приложенной к движущемуся телу. В рассмотренном выше примере пробное тело, двигаясь с постоянной скоростью v, за равные промежутки времени поглощает равные порции неуравновешенной гравитационной энергии

k - коэффициент пропорциональности. Из последней формулы вытекает условие равномерного движения пробного тела для рассмотренного примера:

kE = u.

Найденное условие может быть создано сразу для всех направлений в центре однородного по плотности шара. А если предположить, что радиус гравитационного взаимодействия имеет конечную величину RG, то любую точку пространства можно считать центром такого шара. В этом случае движущееся тело взаимодействует только с той частью вселенной, которая расположена внутри сферы с радиусом RG, окружающей данное тело.

Многие попытки объяснить возникновение гравитационной силы механическим взаимодействием массивных тел с частицами эфира закончились неудачно. Основной недостаток подобного подхода - сопротивление эфира движущемуся телу, не наблюдаемое на опыте. Действительно, в направлении движения столкновения с частицами эфира всегда происходят чаще, чем в любом другом направлении, что и приводит к замедлению тела. Но если несколько иначе посмотреть на природу массивных тел, можно построить эфирную модель тяготения лишенную данного недостатка.

Основные определения

Наверное, всем приходилось видеть бегущие огни на елочной гирлянде. Последовательное включение и выключение лампочек создает полную иллюзию их перемещения. Представим, что движение массивных тел основано на том же принципе. То есть, массивные тела не движутся сквозь эфир, а они собственно и есть эфир, но в особом возбужденном состоянии.

Проиллюстрируем сказанное (рис. 1). Окружающее нас пространство заполнено гравитационным эфиром - неподвижной средой, являющейся проводником гравитационного излучения. Гравитационный эфир состоит из отдельных элементов, взаимодействующих друг с другом. Взаимодействие происходит путем передачи порции энергии, или, другими словами, гравитационного импульса от возбужденного элемента гравитационного эфира к невозбужденному элементу. Невозбужденный элемент, поглотивший гравитационный импульс, переходит в возбужденное состояние, а затем, передав этот импульс следующему элементу, возвращается в первоначальное состояние. (На рисунке возбужденные и невозбужденные элементы гравитационного эфира изображены, соответственно, черными и белыми точками.) Возбужденный элемент гравитационного эфира, окруженный со всех сторон такими же возбужденными элементами, остается в этом состоянии как угодно долго, так как два возбужденных элемента не могут обменяться гравитационными импульсами. Именно такой механизм распространения гравитационной энергии соответствует принципу Гюйгенса.

Рис. 1

Сферическая область гравитационного эфира, состоящая исключительно из возбужденных элементов, является наименьшей частицей массивных тел - массоном. Масса тела определяется числом массонов, входящих в его состав.

Расстояние l между двумя соседними элементами гравитационного эфира будем называть квантом пространства. Очевидно, что любое перемещение, совершаемое массоном, должно быть кратным l. Из рис. 2 видно, как оно происходит.

Рис. 2

OX. (Здесь и в дальнейшем минимальное количество гравитационных импульсов, необходимых для перемещения массона на расстояние l, будем считать одним квантом гравитационной энергии.)

Рис. 3

Анализ предложенного механизма перемещения показал, что от любого воздействия массивные тела практически мгновенно должны приобретать скорость равную скорости распространения гравитационной энергии. Для того чтобы этого не происходило, и наша модель точно описывала движение реальных тел, необходимо сделать еще одно допущение: гравитационная энергия, достигнувшая поверхности массона, поглощается им не сразу, а спустя определенный интервал времени T, который в дальнейшем будем называть квантом времени. То есть, массон перемещается на расстояние l через промежуток времени T, после того, как его поверхности достиг один квант гравитационной энергии.

Гравитационные импульсы, испускаемые массоном во всех направлениях, образуют гравитационное поле массона.

Гравитационные импульсы, поглощаемые массоном со всех направлений, образуют гравитационное поле вселенной.

Направленный поток гравитационных импульсов представляет собой гравитационное излучение, скорость распространения которого u(r) зависит от пройденного им расстояния:

u - скорость распространения гравитационного излучения в начальный момент испускания в непосредственной близости от гравитационного источника; r - расстояние, пройденное гравитационным излучением от точки испускания; H - постоянная, показывает на какую величину u изменится скорость гравитационного излучения за единицу пройденного им пути Дr:

Найдем предельный радиус гравитационного взаимодействия RG, считая, что u(RG) = 0:

Напряженность гравитационного поля G в заданной точке пространства и в заданном направлении определяется следующей формулой:

l - квант пространства; T - квант времени; n - число квантов гравитационной энергии, прошедшей за время T через площадку s, равную по площади проекции массона на плоскость; i - единичный вектор нормали к площадке s, начало и направление которого совпадают, соответственно, с заданной точкой пространства и с заданным направлением (рис. 4).

Рис. 4

Гравитационное поле одиночного источника

Рассмотрим гравитационное поле, создаваемое частицей массой M. Расположим площадку s так, чтобы единичный вектор i был направлен в сторону центра частицы, а его начало совпало с рассматриваемой точкой поля (рис. 5). (В этом случае i = - r/r, где r - радиус - вектор, соединяющий центр частицы с рассматриваемой точкой поля.)

Рис. 5

T испускает m квантов гравитационной энергии. Тогда частица, состоящая из M массонов, за то же время T будет испускать кванты гравитационной энергии в количестве mM. Через площадку s за один квант времени T будет проходить гравитационная энергия в количестве

е - объемная плотность гравитационной энергии в излучении на расстоянии r от источника:

Подставив полученное выражение для n в формулу (3), найдем напряженность гравитационного поля на расстоянии r от источника с массой M:

Полученную формулу можно упростить для расстояний uT << r << RG:

Введем гравитационную постоянную:

Формула (6) примет классический вид:

s со скоростью v, относительно гравитационного эфира, изменится число квантов гравитационной энергии, пересекающей площадку s за время T. Перепишем формулу (4) с учетом движения площадки s:

и - угол, образованный вектором скорости v с радиусом - вектором r.

Полная формула для определения напряженности гравитационного поля на расстоянии r от источника с массой M, учитывающая абсолютное движение приемника гравитационного излучения, будет выглядеть следующим образом:

Гравитационное поле вселенной

Определим напряженность гравитационного поля созданного совокупной массой вселенной, в заданной точке пространства O и в заданном направлении (рис. 6).

Рис. 6

O расположена достаточно далеко от одиночных источников гравитационного излучения. Расположим площадку s таким образом, чтобы начало и направление единичного вектора i, нормали к площадке s, совпали, соответственно, с заданной точкой пространства O и с заданным направлением. Введем декартову систему координат так, чтобы ее начало совпало с заданной точкой O, а направление оси OZ совпало с заданным направлением. Ось OX зафиксируем в произвольном направлении. Искомую напряженность гравитационного поля создают только те источники гравитационного излучения, координаты которых удовлетворяют условию:

Область V, удовлетворяющая данному условию, есть полушарие. Разобьем область V на элементарные объемы Vk, включающие в себя точки Ok. Каждый элементарный объем Vk вносит свой вклад в искомую напряженность гравитационного поля в виде

сk - плотность вещества в элементарном объеме Vk, а xk, yk, zk - координаты точки Ok. Предположим, что вещество во вселенной распределено равномерно по всему объему, тогда, при Vk> 0, получим суммарную напряженность гравитационного поля Gs в заданной точке пространства и в заданном направлении:

сs - средняя плотность вещества во вселенной. При переходе от декартовых координат x, y, z к сферическим координатам r, и, ц, связанным с x, y, z соотношениями:

x = rsinиcosц, y = rsinиsinц, z = rcosи,

J = r2sinи и формула (8) примет вид:

Сферические координаты изменяются в следующих пределах:

Вычислив интеграл, получим искомую напряженность гравитационного поля, созданного совокупной массой вселенной:

Напряженность гравитационного поля, созданного совокупной массой вселенной, можно найти другим способом. Из закона сохранения энергии следует, что массон в течение кванта времени Tдолжен испускать и поглощать одно и то же количество квантов гравитационной энергии. То есть, внутри сферы с радиусом uT, окружающей заданную точку пространства, находятся mгравитационных квантов, испущенных совокупной массой вселенной, которые будут поглощены массоном в течение одного кванта времени T. Следовательно, через единицу площади поверхности массона за время T проходят гравитационные кванты в количестве

rm - радиус массона. Через площадку s, равную по площади

расположенную в той же точке пространства, за время T будут проходить гравитационные кванты в количестве

Подставив значение n в формулу (3), найдем искомую напряженность гравитационного поля

Приравняем правые части формул (9) и (10):

Подставив значение г из формулы (7) в последнее уравнение, найдем среднюю плотность вещества во вселенной:

сs модуль напряженности гравитационного поля, созданного совокупной массой вселенной, будет равен

Формулы (9) и (10) справедливы для любой точки пространства, достаточно удаленной от одиночных источников гравитационного излучения, и для любого направления. Поэтому результирующая напряженность гравитационного поля в этих точках пространства равна нулю. Относительно приемника излучения, движущегося со скоростью v в абсолютной системе отсчета, симметрия гравитационного поля, созданного совокупной массой вселенной, будет нарушена:

где и - угол, образованный вектором скорости v с радиусом - вектором r, соединяющим приемник и источник гравитационного излучения. (Направление единичного вектора i, нормали к площадке s, совпадает с направлением вектора скорости v.) Вычислив интеграл, получим:

Движение тела в гравитационном поле

Исходя из предложенной модели, рассмотрим свободное падение пробного тела в гравитационном поле одиночного источника излучения. Пусть одиночный источник в месте нахождения пробного тела создает гравитационное поле с напряженностью

t0 удерживающая сила исчезает. С момента времени t0 до момента времени t1 = t0 + T пробное тело остается неподвижным. При этом со стороны одиночного источника излучения к поверхности каждого массона пробного тела, поступает на n0 гравитационных квантов больше, чем с любой другой стороны. Поэтому, в течение следующего кванта времени T, с момента времени t1 до момента времени t2 = t1 + T, пробное тело совершит n0 перемещений l в направлении одиночного источника гравитационного излучения. Таким образом, если за промежуток времени T = t1 - t0 средняя скорость пробного тела была равна нулю:

v0 = 0,

T = t2 - t1

она составила величину

T, будем называть мгновенной скоростью.) Результирующая напряженность гравитационного поля, измеренная относительно движущегося тела за промежуток времени T = t2 - t1, будет равна

T = t3 - t2:

Мгновенная скорость тела, измеренная в течение (k+1) - го кванта времени, равна результирующей напряженности гравитационного поля, измеренной, относительно движущегося тела, в течение k - го кванта времени:

k = 0, 1, 2, 3, :

G в произвольном направлении, его мгновенная скорость vk+1 будет равна

<="" font="">и - угол, образованный вектором скорости vk с вектором напряженности гравитационного поля G.

tk = t0 + kT прекратит поступать гравитационная энергия от одиночного источника, то, начиная с момента времени tk+1 = t0 + (k+1)T, мгновенная скорость пробного тела будет равна

Gs = 3u она останется такой же и в дальнейшем, то есть будет иметь место инерция.

Запишем, с учетом инерции, ряд мгновенных скоростей, приобретаемых телом в гравитационном поле с напряженностью G, с первого по k - ый квант времени:

Подставив значение скорости v1 в формулу для скорости v2, затем, полученное выражение для скорости v2, в формулу для скорости v3 и так далее, найдем выражение для скорости vk:

Найдем мгновенное ускорение, приобретаемое телом в гравитационном поле с напряженностью G:

G с нулевого по k - ый квант времени включительно, будет равен

Допустим, что в течение кванта времени T тело переместилось из точки A в точку B со скоростью vk(рис. 7). В течение следующего кванта времени T рассматриваемое тело продолжило бы двигаться по прямой AC в силу инерции, если бы наличие источника гравитационного излучения в точке O не изменило направление его скорости.

Рис. 7

Найдем условие равномерного движения тела по окружности радиусом r. Значение скорости тела при таком движении остается постоянным:

vk+1 = vk = v,

OBD и BCD следует

Заключение

сs. Тогда из формулы (11) следует, что vk+1 > vk, так как в этом случае

сs - там происходит торможение тел и накапливание вещества до величины сs. Именно по этой причине вещество не собралось вместе под действием сил тяготения, а равномерно распределилось по всему объему вселенной.

Согласно предложенной модели тяготения наша вселенная стационарна и бесконечна. Понятия инертной и гравитационной масс следует упразднить: все тела обладают единой массой, инертные свойства которой определяются поглощением энергии, а гравитационные - излучением.

По другому должны интерпретироваться некоторые известные явления: "реликтовое" излучение есть ни что иное, как совокупная светимость вещества, заключенного в сфере с радиусом RE (предельным радиусом электромагнитного взаимодействия). Постоянная Хаббла показывает, на какую величину изменится скорость электромагнитного излучения за единицу пройденного им пути.

Источники информации

фотон электромагнитный излучение тяготение

1. Физический энциклопедический словарь. - Москва, "Большая российская энциклопедия", 1995.

2. Яворский Б.М., Детлаф А.А. Справочник по физике. - Москва, "Наука", 1990.

3. Гусак А.А., Гусак Г.М., Бричникова Е.А. Справочник по высшей математике. - Минск, "ТетраСистемс", 1999.

Размещено на Allbest.ru

...

Подобные документы

  • Сущность фундаментального закона Кулона, который количественно описывает взаимодействие заряженных тел. Его запись в векторном виде и схожесть с законом всемирного тяготения. Вычисления при помощи закона Кулона, требующие определения единицы заряда.

    презентация [507,6 K], добавлен 04.02.2016

  • История открытия Исааком Ньютоном "Закона всемирного тяготения", события, предшествующие данному открытию. Суть и границы применения закона. Формулировка законов Кеплера и их применение к движению планет, их естественных и искусственных спутников.

    презентация [2,4 M], добавлен 25.07.2010

  • Явление тяготения и масса тела, гравитационное притяжение Земли. Измерение массы при помощи рычажных весов. История открытия "Закона всемирного тяготения", его формулировка и границы применимости. Расчет силы тяжести и ускорения свободного падения.

    конспект урока [488,2 K], добавлен 27.09.2010

  • Фундаментальные физические взаимодействия - субстанциональные основания материальной организации Вселенной. Закон всемирного тяготения. Теория гравитации Ньютона. Анализ тенденций объединения взаимодействий на квантовом уровне. Квантовая теория поля.

    презентация [8,1 M], добавлен 25.11.2016

  • Физическая сущность понятий: "пространство–время", "коэффициент пропорциональности". Уточнение закона всемирного тяготения. Масса ядра и материальной оболочки Земли. Луна – "нарушитель" правил орбитального движения. Параметры орбиты нашей Галактики.

    научная работа [32,5 K], добавлен 06.12.2007

  • Понятие фундаментального физического взаимодействия. Гравитация, электромагнетизм, слабое взаимодействие, сильное взаимодействие. Ньютоновская теория всемирного тяготения. Учения об электричестве и магнетизме в единой теории электромагнитного поля.

    презентация [214,9 K], добавлен 23.02.2014

  • Законы движения планет Кеплера, их краткая характеристика. История открытия Закона всемирного тяготения И. Ньютоном. Попытки создания модели Вселенной. Движение тел под действием силы тяжести. Гравитационные силы притяжения. Искусственные спутники Земли.

    реферат [339,9 K], добавлен 25.07.2010

  • История открытия закона всемирного тяготения. Иоган Кеплер как один из первооткрывателей закона движения планет вокруг солнца. Сущность и особенности эксперимента Кавендиша. Анализ теории силы взаимного притяжения. Основные границы применимости закона.

    презентация [7,0 M], добавлен 29.03.2011

  • Построение и численное решение моделей на основе фундаментальных законов природы (законов Ньютона, Закона всемирного тяготения). Модель движения лодки. Движение точки под действием центральных сил. Исследование движения планеты в системе двух звезд.

    практическая работа [5,2 M], добавлен 22.05.2013

  • Концепция единого поля силового пространственного взаимодействия материальных тел. Перенесение в пространстве вакуумной среды энергии ее возбуждения. Законы Кулона в электромагнетизме и тяготения Мичелла-Кавендиша. Модификационная постоянная Планка.

    статья [215,2 K], добавлен 09.04.2012

  • Почему упало яблоко? В чем состоит закон тяготения? Сила всемирного тяготения. "Дыры" в пространстве и времени. Роль масс притягивающихся тел. Почему гравитация в космосе не такая, как на земле? Движение планет. Ньютоновская теория гравитации.

    курсовая работа [120,5 K], добавлен 25.04.2002

  • Закон сохранения импульса в классической механике и его связь с законом динамики Ньютона. Суть законов Кеплера, их связь с законом всемирного тяготения. Понятие о метрической системе. Развитие идей эволюции видов. Понятие солнечной активности, излучения.

    контрольная работа [123,7 K], добавлен 26.05.2008

  • Физика – фундаментальная отрасль естествознания. Механистическая картина мира - законы динамики. Электромагнитная картина мира - физика полей. Современная научная картина мира - теория относительности. Закон всемирного тяготения и принцип относительности.

    презентация [8,5 M], добавлен 12.10.2012

  • Обобщение закона тяготения Ньютона. Принцип эквивалентности сил инерции и сил тяготения. Потенциальная энергия тела. Теория тяготения Эйнштейна. Положения общей теории относительности (ОТО). Следствия из принципа эквивалентности, подтверждающие ОТО.

    презентация [6,6 M], добавлен 13.02.2016

  • Биография и научная деятельность Исаака Ньютона. "Математические начала натуральной философии", изложение закона всемирного тяготения и трех законов механики. Разработка дифференциального и интегрального исчисления. Изобретение зеркального телескопа.

    доклад [21,7 K], добавлен 13.01.2010

  • Оптические свойства аэрозолей. Релеевский закон рассеяния. Взаимодействие электромагнитного излучения с одиночной частицей. Оптические характеристики аэрозолей. Пределы применимости теории Ми. Процессы взаимодействия излучения с аэродисперсными частицами.

    реферат [748,7 K], добавлен 06.01.2015

  • Равномерное и равноускоренное прямолинейное движение. Законы динамики, проявление закона сохранения импульса в природе и использование его в технике. Закон всемирного тяготения. Превращение энергии при механических колебаниях. Закон Бойля–Мариотта.

    шпаргалка [243,2 K], добавлен 14.05.2011

  • Тепловое излучение, квантовая гипотеза Планка. Квантовые свойства электромагнитного излучения. Формула Эйнштейна для фотоэффекта. Корпускулярно-волновой дуализм материи. Соотношения неопределенностей Гейзенберга. Стационарное уравнение Шредингера.

    учебное пособие [1,4 M], добавлен 06.05.2013

  • Поля и излучения низкой частоты. Влияние электромагнитного поля и излучения на живые организмы. Защита от электромагнитных полей и излучений. Поля и излучения высокой частоты. Опасность сотовых телефонов. Исследование излучения видеотерминалов.

    реферат [11,9 K], добавлен 28.12.2005

  • Гравитационные силы как один из видов фундаментальных сил. Теория тяготения Ньютона. Законы Кеплера и космические скорости. Тождественность инерциальной и гравитационной масс как основа общей теории относительности Эйнштейна. Теория наблюдения Коперника.

    презентация [39,7 M], добавлен 13.02.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.