Новая интерпретация преобразования Лоренца

Отображение объектов с помощью световых волн из одной инерциальной системы отсчета в другую как основная цель преобразования Лоренца. Подходы к его интерпретации. Угол аберрации: понятие и порядок определения, а также обоснование необходимости учета.

Рубрика Физика и энергетика
Вид статья
Язык русский
Дата добавления 23.11.2018
Размер файла 188,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Новая интерпретация преобразования Лоренца

аберрация световой волна инерциальный

Современная релятивистская теоретическая физика оказалась в тупике не сейчас. Корни кризиса уходят в конец XIX века, когда агрессивный позитивизм буквально задавил материалистическое миропонимание. Стремление к поиску научной истины стало подменяться служению авторитетам и их точке зрения. Не останавливаясь на известных фактах истории, отметим, что СТО является интерпретацией преобразований Лоренца, предложенной Эйнштейном.

Анализ показал [1], что в своих гениальных «мысленных экспериментах» Эйнштейн допустил ошибки. Эти ошибки обусловлены слабым пониманием сущности физических процессов. Особенно отчетливо противоречия проявляются при интерпретации явлений, связанных с вращательным движением (парадокс Эренфеста и др. парадоксы).

Тем не менее, благодаря рекламности (пиару, как принято говорить сейчас) эта теория прочно заняла свое место в физике вопреки здравому смыслу и логике. Теория относительности Эйнштейна буквально извратила содержание физики от ньютоновской механики до квантовой электродинамики. Сказки о «предельном переходе» при малых скоростях движения это миф, поскольку предельный переход - явление не только формально-математическое. При переходе должно существовать и концептуально-понятийное соответствие, которого не существует.

Здесь нам следует упомянуть о соответствии СТО экспериментам. Их буквально «притягивают за уши» к СТО и ОТО [2]. Не упомянули мы о многих предрассудках и заблуждениях, порожденных теорией относительности.

Мы проанализировали много вариантов решения этой тупиковой проблемы (баллистическая гипотеза Ритца, различные «эфирные» теории и т.д.). Наиболее интересным оказалась гипотеза о том, что электромагнитная волна в вакууме представляет собой самостоятельный вид материи и для нее должно быть свое преобразование. Что касается механики, то преобразование Галилея здесь отвечает физике явлений. Этот вариант мы назвали «Волновым вариантом гипотезы Ритца».

В данной работе дана новая интерпретация преобразования Лоренца, которая радикально меняет взгляд на релятивистские явления и устраняет противоречия в их объяснении. Вскрыты ошибки в теории относительности А. Эйнштейна.

Два способа отображений

Теория относительности А. Эйнштейна, несмотря на критику, достаточно долго удерживается «на плаву» только по утверждению, что ее «подтверждает» теория ускорителей элементарных частиц и эксперименты, проводимые на них. Вопрос этот не простой, поскольку ни одна из альтернативных гипотез не смогла привести достаточно убедительную альтернативу в свою пользу. Мы попробуем изложить свою точку зрения и аргументы, опираясь на волновой вариант теории Ритца.

Этот вариант сохраняет мгновенное дальнодействие и преобразование Галилея для материальных объектов. Для всех видов материи пространство является общим, а время - единым (в том числе и для света). Баллистическая гипотеза в теории Рица отклоняется и заменяется другой: свет в вакууме рассматривается как особая форма материи. Только для света справедливо преобразование Лоренца.

Сначала необходимо дать предварительные пояснения, поскольку за 100 лет выводы из СТО уже столь основательно «вбиты» в сознание обывателя, что осмысление нового превращается в трудную работу. Итак, существует два вида отображений [3]

1. Классическое отображение. Со школьной скамьи, решая физические задачи механики, мы привыкли к тому, что положение тела в пространстве в данный момент времени отображается объективно (без каких либо искажений). Такое отображение опирается по своей сути на «мгновенное взаимодействие» (мгновенную передачу информации). Оно никогда и ни у кого не вызывало подозрений в некорректности, хотя никто и никогда не предлагал физической модели реализации этого способа.

2. Отображение с помощью световых лучей. Иное дело - световые лучи. Они тоже способны передавать информацию. Однако эта информация в отличие от мгновенного отображения может восприниматься с искажениями. Преобразование Лоренца как раз и описывает такой способ. Заметим, что не случайно ни один «мысленный эксперимент» А. Эйнштейна не обходится без световых лучей. Сейчас наша задача будет состоять в том, чтобы проанализировать этот способ и сравнить его с классическим.

3. Однако эти способы отображения не являются взаимоисключающими. Они взаимосвязаны. Всегда можно перейти от одного способа описания к другому, от мгновенного отображения к отображению с помощью световых лучей и обратно.

Замечание 1. Особенность преобразования Лоренца в том, что оно отображает механическое перемещение объектов с помощью световых лучей и дает отображение волнового процесса с сохранением постоянства скорости света во всех инерциальных системах. Это обстоятельство накладывает определенные условия на интерпретацию явлений электродинамики.

Допустим, на футбольном поле футболист А пасует мяч бегущему футболисту В. Мяч летит со скоростью V. В системе отсчета «поле» мяч и футболист В встречаются в точке В*. Мяч проходит расстояние АВ*.

Рис. 1

В системе отсчета, связанной с бегущим футболистом В, мяч проходит расстояние А*В, которое отличается от АВ* (рис. 1).

Какое расстояние мяч пролетел в действительности, если его замерить в момент приема футболистом В? При мгновенном отображении (преобразование Галилея) этот вопрос теряет смысл. В каждой системе отсчета мяч пролетает свое расстояние.

Со светом картина иная, поскольку скорость света постоянна в любой инерциальной системе отсчета. Расстояние, пройденное светом от источника к наблюдателю, не зависит от выбора системы отсчета наблюдателя, а скорость света должна быть постоянна. По этой причине следует относиться с осторожностью к применению «механических» аналогий. Они не всегда бывают корректны.

Замечание 2. Отображение с помощью световых лучей (преобразование Лоренца) пространственных отрезков и интервалов времени из одной инерциальной системы отсчета в другую имеет кинематический характер. Оно не связано с реальным изменением отображаемых объектов.

Сопоставляя системы отсчета наблюдателя и источника света, мы можем выделить базовую систему отсчета. Это та система отсчета, в которой световой источник неподвижен. В базовой системе отсчета отсутствует эффект Доплера, аберрация света и другие явления. Параметры, измеренные в базовой системе отсчета, являются как бы эталонами (стандартами).

Наблюдаемые изменения (искажения), возникающие при отображении, когда наблюдатель переходит из одной инерциальной системы отсчета в другую, относятся к явлениям (о явлении и сущности см. в [4]). Например, наблюдаемое сокращение движущегося отрезка или наблюдаемое изменение темпа времени есть явление, т.е. искаженное отображение неподвижного отрезка или интервала времени из базовой системы в систему отсчета движущегося наблюдателя. Заметим, что в СТО А. Эйнштейна такой подход отсутствует. В ней явления истолковываются как реальные изменения, а не как кинематические явления.

Параметры, которые мы будем относить исключительно к базовой системе, мы будем помечать индексом «0».

Замечание 3. Электромагнитная волна отличается от материальных объектов. После излучения электромагнитной волны источником эта волна уже не зависит от «судьбы» породившего ее источника. Она может дифрагировать, отражаться, рассеиваться материальными телами и т.д. Казалось бы, что после излучения мы, рассматривая электромагнитную волну, можем «забыть» об источнике. Однако это не совсем так.

Когда порождается световой луч, в момент излучения в этот луч источником закладывается определенная информация, например, диаграмма направленности излучения, поляризация, амплитуда, частота, фаза и т.д. То, что будет воспринимать наблюдатель, зависит, как известно, от относительной скорости инерциальных систем источника излучения и наблюдателя.

Если источник света движется в системе отсчета наблюдателя, то могут возникать искажения при регистрации наблюдателем характеристик светового сигнала, например, могут возникнуть явления аберрации света, эффект Доплера и др. Теперь мы можем перейти к описанию явлений, которые возникают при движении источника света относительно наблюдателя.

Замечание 4. Пусть, наблюдатель N движется относительно источника света S со скоростью V, как показано на рис. 2. Базовая система отсчета (x0, y, z, t0).

В момент излучения светового импульса источником S наблюдатель будет находиться в точке N*. В точке N световой импульс и наблюдатель встречаются. Из-за движения направление фронта световой волны наблюдатель будет воспринимать искаженным. Воспринимаемый наблюдателем фронт не будет перпендикулярен направлению SN. Из-за этого наблюдатель будет регистрировать положение источника в точке S* (аберрация света).

Рис. 2. V - скорость движения наблюдателя относительно источника; S* - мнимое изображение источника в момент приема светового сигнала; S - действительное положение источника в тот же момент времени; R - расстояние, измеренное наблюдателем в момент приема сигнала; R0 - действительное расстояние между источником и наблюдателем в момент приема сигнала наблюдателем

аберрация световой волна инерциальный

Это интересный и важный факт. Поскольку наблюдатель воспринимает фронт волны в искаженном виде (повернутым), он как бы «достраивает» объект с его характеристиками, продолжая лучи перпендикулярно фронту. Это не субъективный, а объективный факт. То же делает и измерительный прибор, связанный с наблюдателем.

Фактически наблюдатель имеет дело с двумя объектами: с действительным объектом (сущность) и с его мнимым изображением (явление). Это важное обстоятельство релятивисты обходят. Действительное положение объекта описывается с помощью мгновенного отображения, а мнимое - с помощью достроенных световых лучей. Если же его принять во внимание, то вся эйнштейновская интерпретация релятивистских явлений разваливается как «карточный домик». Любые релятивистские эффекты (замедление времени, сжатие масштаба, эффект Доплера и т.д.) представляют собой явления, относящиеся только к мнимому положению объекта.

Это не случайное обстоятельство. Мах тоже не понял различия между сущностью и явлением. В результате он пришел к идеалистическим выводам, которые были разгромлены Лениным в книге «Материализм и эмпириокритицизм» [5]. Эйнштейн, объявлявший себя поклонником Маха, так не смог превзойти своего кумира. Это укор тем, кто ставит себя выше материалистического миропонимания и третирует материалистическое мировоззрение (да и любую философию естествознания), кто стремится «избавить физику от любой философии» и поставить себя выше философии.

Итак, наблюдатель имеет дело с двумя объектами. Первый или реальный объект, который создает световую волну, воспринимаемую наблюдателем. В силу конечной скорости распространения и относительного движения наблюдатель его не видит (положение S). Второй (наблюдаемый) объект является мнимым изображением, построенным на продолжении лучей (положение S*). В базовой системе (рис. 2) все явления, воспринимаемые наблюдателем (аберрация, эффект Доплера и др.), формируются в точке приема N.

Перейдем в систему отсчета наблюдателя (рис. 3). Здесь мы также сталкиваемся с явлением аберрации. Свет от источника S*, идущий под углом И к оси x, будет распространяться к наблюдателю конечное время. За время этого распространения источник переместится со скоростью V в новое положение S. Таким образом, в момент приема светового сигнала источник будет находиться уже в другом месте по отношению к наблюдаемому исследователем положению. Наблюдатель будет видеть мнимое изображение. Это явление носит название аберрации света.

Рис. 3 Явления, происходящие в системе отсчета наблюдателя

Таким образом, имеются два эквивалентных объяснения явления аберрации, но оба они опираются на существование реального объекта и его мнимого отображения.

Количественные выражения для явлений

Мы не отвергаем математический формализм преобразования Лоренца, а даем ему новую интерпретацию. Поэтому мы не будем здесь выводить известные соотношения, описание которых имеется в любом учебнике. Рассмотрим явления.

Как и преобразование Галилея, преобразование Лоренца описывает кинематические явления, т.е. явления, обусловленные относительным движением наблюдателя и объекта наблюдения [4]. Преобразование Лоренца показывает, как отображаются с помощью световых лучей линейные отрезки, пространственные интервалы и т.д. из базовой системы отсчета в систему отсчета наблюдателя. Вся эта отображенная информация относится к мнимому объекту. Она является объективной.

Из-за относительного движения наблюдателя и источника пространственные отрезки и временные интервалы отображаются светом с искажениями. Исследования показали, что преобразование Лоренца является частным случаем более общего преобразования [6].

Существует два подхода к интерпретации преобразования Лоренца.

Первый подход опирается на аналогию с преобразованием Галилея. Он опирается на классические представления о пространстве и времени. Пространство является общим для всех инерциальных систем отсчета, а время для них единым. Свет рассматривается как переносчик информации, который передает эту информацию с искажениями. Сразу же отметим, что в этом подходе «парадокс близнецов» исчезает. Темп их жизни не зависит от выбора системы отсчета и одинаков (время едино!). Кажущееся «замедление» темпа жизни движущегося близнеца есть следствие эффекта Доплера.

Второй подход опирается на постулаты Эйнштейна. Специальная теория относительности это авторская (эйнштейновская) интерпретация преобразования Лоренца. Позже мы покажем ошибки, сделанные Эйнштейном в его мысленных экспериментах. Они обусловили часть известных парадоксов СТО.

Классический подход, связанный с признанием действительного положения объекта и его наблюдаемого (мнимого) положения, противоречит СТО Эйнштейна, т.к. этим отрицается многомерный пространственно-временной формализм. Сейчас мы не будем «ковыряться» в этих противоречиях.

Мы начнем обсуждение явлений, вытекающих из преобразования Лоренца. Повторим, что при новой интерпретации пространство является общим для всех инерциальных систем, а время - единым. Ниже мы приведем результаты исследований, снабдив их краткими комментариями.

1. Наблюдаемая скорость движения объекта (явление). Пусть источник излучения покоится в базовой системе отсчета К0, а наблюдатель в движущейся системе К. В работе [6] дан вывод выражения для наблюдаемой скорости v движения мнимого источника в К. Эта скорость зависит от угла наблюдения И. Скорость vлор это скорость, входящая в преобразование Лоренца в качестве относительной скорости инерциальных систем отсчета. Наблюдаемая скорость равна

(2.1)

Она может превышать скорость света в вакууме.

Рис. 4

Полученный результат имеет интересные следствия. Когда мнимый источник света виден наблюдателю под углом И = 90о, мы имеем vнабл = vлор. Здесь наблюдаемая скорость совпадает с той скоростью, которая входит в преобразование Лоренца. Но это не означает, что скорость vлор является действительной скоростью относительного движения. Она искажена эффектом Доплера.

2. Критический угол наблюдения. В преобразовании Лоренца здесь существует критический угол наблюдения, при котором отсутствует эффект Доплера. Этот угол равен

(2.2)

Интересно отметить следующее.

Во-первых, что при критическом угле наблюдения отсутствуют искажения при отображении интервалов времени и длин отрезков (нет явлений «замедления» времени и «сжатия» масштаба Дx = Дx0; Дy = Дy0; Дz = Дz0; Дt = Дt0). Это говорит о том, что для всех инерциальных систем отсчета пространство является общим, а время в них едино. Тем самым исчезает «парадокс близнецов» и ряд других.

Во вторых, существование критического угла позволяет всегда осуществлять «синхронизацию часов» двух инерциальных систем (одна из проблем СТО), если посылать сигналы под этим углом.

В третьих, можно найти действительную скорость относительного движения инерциальных систем отсчета. Для этого обратимся к рис. 4, где приведен график наблюдаемой скорости.

Действительная скорость относительного движения инерциальных систем наблюдается только при критическом угле наблюдения. Только при этом угле наблюдения отсутствуют искажения отрезков и интервалов времени: Дx = Дx0; Дy = Дy0; Дz = Дz0; Дt = Дt0. Действительная скорость относительного движения не зависит от угла наблюдения (в отличие от наблюдаемой скорости), постоянна и равна

(2.3)

Выражая в преобразовании Лоренца скорость vлор через V, можно записать модифицированное преобразование, которое имеет вид

(2.4)

Скорость V, входящая в преобразование, это скорость относительного движения двух объектов: наблюдателя и объекта наблюдения. Она вычисляется по классическому правилу сложения скоростей (правило параллелограмма). По этой причине нет необходимости в применении формулы сложения скоростей Эйнштейна и в использовании групповых свойств преобразования Лоренца (нет необходимости в последовательном использовании этого преобразования при переходе из одной системы отсчета в другую). И еще. Обратите внимание на первое соотношение в (2.4). Скорость V входит безо всяких «релятивистских корешков».

Итак, наблюдаемая скорость и критический угол, выраженые через скорость V, имеют вид:

Иллюстрация. Введение действительной скорости относительного движения позволяет дать новую интерпретацию релятивистским явлениям, например, «увеличению времени жизни» мезонов, как бы «подтверждающему» СТО. Расстояние, проходимое мезонами, равно

Мы можем эту формулу интерпретировать иначе. Время жизни мезонов не зависит от выбора инерциальной системы отсчета, а их действительная скорость относительного движения не зависит от угла наблюдения и может превышать скорость света.

3. Искажение наблюдаемого расстояния (явление). Расстояние R0 это расстояние между наблюдателем и положением источника света в момент приема (мгновенное отображение), а R - расстояние от наблюдаемой точки излучения до наблюдателя в момент приема (рис. 3).

(2.5)

4. Закон «преломления». Выражение (2.5) напоминает закон Снелиуса при прохождении света из одной среды в другую [4]. Поэтому по аналогии величину отношения синусов мы назовем законом «преломления» и введем «показатель преломления» nлор. Этот параметр нам будет часто встречаться в дальнейшем.

(2.6)

5. Искаженное отображение скорости света (явление). Обратимся к выражению (2.5). Здесь возникает интересная ситуация.

Свет в любой инерциальной системе отсчета имеет одну и ту же скорость с.

Время T0 = R0/c, затраченное на прохождения расстояния R0, должно быть тем же и системе отсчета наблюдателя и источника (время едино!).

В силу того, что расстояние R отличается от R0, мы вынуждены признать, что наблюдаемое (мнимое) расстояние R свет проходит с другой (мнимой) скоростью.

В силу того, что наблюдаемое расстояние R изменилось, а фактическое время осталось тем же, изменилась и мнимая скорость света.

Наблюдатель может заявить, что свет прошел расстояние R (S*N) за время T0. Следовательно, свет должен был бы распространяться как бы со скоростью (рис. 5), в то время как реально наблюдатель будет измерять в своей системе скорость c. Эта «трансформация» скорости возникла из-за относительного движения, из-за искажения фронта волны в точке ее приема.

Рис. 5

Запишем выражение для этой скорости

(2.7)

Заметим, что волновое число k0 при распространении вдоль SN в системе отсчета наблюдателя не претерпевает изменений. Изменяется лишь направление вектора k0.

4. Эффект Доплера (явление). Выражение для эффекта Доплера. Его можно получить стандартным способом, но можно воспользоваться тем, что волновое число k0 сохраняет свою величину (но не направление!) в системе отсчета наблюдателя.

или (2.8)

5. Аберрация света (явление). Угол аберрации, определим как угол, связанный с изменением направления фронта волны воспринимаемого движущимся наблюдателем по отношению к направлению фронта волны в базовой системе отсчета.

(2.9)

6. Явление изменения ракурса движущегося источника (явление). С явлением изменения направления наблюдаемого фронта волны прямо связано явление изменения ракурса наблюдаемого источника. В системе отсчета источника лучи к наблюдателю распространяются под углом И0. Благодаря относительному движению наблюдатель будет воспринимать фронт волны так, как будто лучи подходят к нему под углом И (рис. 5). Из-за этого наблюдаемый объект будет казаться для него повернутым на угол аберрации [4], как показано на рис. 6. Это явление, поскольку мы говорим о мнимом изображении, сам же объект не меняет своей ориентации в пространстве.

Рис. 6. 1. Направление лучей в системе отсчета источника излучения; 2 - направление лучей воспринимаемых наблюдателем в своей системе отсчета

Явление изменения ракурса имеет прямую связь с явлением либрации.

Теперь необходимо обратиться к «мысленным экспериментам» А. Эйнштейна.

Ошибка Эйнштейна

Вновь мы начнем с предварительного замечания. Анализ теории относительности А. Эйнштейна невозможен без анализа электродинамики. Исследуя проблемы электродинамики, мы получили результаты, которые до сих пор не нашли отражения в научной литературе.

Оказалось, что электромагнитные поля волны и поля зарядов не только обладают различными свойствами. Это различные виды материи. Поэтому переход от волновых полей к квазистатическим полям принципиально невозможен. Это доказано, исходя из энергетических соотношений [7].

При ускоренном движении заряды (в общем случае) не могут излучать электромагнитных волн. Они могут переизлучать волны только при взаимодействии с электромагнитной волной [8], [9]. Действительно, волна может воздействовать на заряд и менять его кинетическую энергию. При этом сама волна меняется, поскольку реакцией заряда на это воздействие является рассеяние этой волны зарядом. На фоне невозмущенной волны появляется переизлученная волна, которая распространяется от заряда (диссипативный процесс).

С этой точки зрения любой заряд или материальное тело становится источником вторичного излучения. Для отраженной и преломленной волн независимо от движения первичного источника место отражения в среде является источником вторичного излучения. С ним связана базовая система отсчета вторичных волн.

Рис. 7

Заметим, что электромагнитная волна в вакууме принципиально отличается от электромагнитной волны в среде. Распространение волны в среде жестко связано с самой средой. Для описания поведения волны в среде применимы приемы и методы, используемые сторонниками теории эфира. Этот важный факт остался вне поля зрения физиков.

Если точка падения падающего луча перемещается по поверхности, то вместе с областью, освещенной лучом (вторичные источники), перемещается базовая система отсчета. Такой подход необходим для правильного вычисления результатов и объяснения опытов Физо, Майкельсона и других. Но на них мы не будем останавливаться.

«Gedanken Experimts». Теперь мы можем проанализировать второй мысленный эксперимент А. Эйнштейна. Обратимся к [10], где дано краткое описание этого эксперимента. Цитируем [10].

«В т о р о й о п ы т. Сравнение хода часов. При сравнении хода часов, связанных с системами отсчета, движущихся друг относительно друга, необходимо помнить, что нельзя одни часы в системе сравнить с одними часами в системе так как часы пространственно совпадают, друг с другом лишь в один момент времени. … Пусть в той точке, где расположены часы в системе , находится источник света (рис. 8).

Световой сигнал, испущенный перпендикулярно к v, отразится зеркалом … и вернется обратно. Для наблюдателя в время, необходимое для этого равно

Наблюдатель, покоящийся в , измерит это время посредством пары часов… Так как скорость света не зависит от системы отсчета, ….

(15.4)

Интересно отметить, что для наблюдателя, покоящегося в системе , время больше, нежели собственное время. Это явление называется «замедлением времени»».

Рис. 8 (Рисунок 15.2 из работы [10])

Комментарий. Этот мысленный эксперимент можно проводить не только с зеркалом, но и с любым материальным телом, способным отражать электромагнитные волны (свет). Этим обстоятельством мы и воспользуемся.

Рассмотрим процесс в системе отсчета неподвижного наблюдателя и разобьем его на две стадии:

распространение света от наблюдателя к движущемуся телу и

распространение отраженного сигнала обратно к наблюдателю.

Рассмотрим процесс в системе отсчета, связанной с наблюдателем (рис. 9).

Первая стадия. В момент t1, когда движущееся тело проходит точку 1, наблюдатель посылает световой сигнал в точку 2. В момент времени t2 сигнал встречается в точке 2 с телом. Поскольку источник света покоится в базовой системе отсчета, световой луч пройдет расстояние R01 без искажений для наблюдателя.

Вторая стадия. В момент времени t2 световой луч отразится от тела. Наблюдателю, принимающему сигнал в момент времени t3, будет казаться, что свет прошел расстояние R2. Однако в момент приема тело будет в точке 3. Таким образом, действительное расстояние между наблюдателем и телом в момент приема будет R02.

Итак, расстояние, пройденное световым сигналом, будет равно сумме расстояний R01 и R02. Время, затраченное на «путешествие» сигнала T = (R01 + R02)/c.

Рис. 9

Теперь рассмотрим этот же процесс в системе отсчета, связанной с телом (рис. 9).

Первая стадия. Мы обращаем внимание на то, что наблюдатель относительно тела будет двигаться в обратную сторону (рис. 10). Итак, в момент времени t1 в точке 1 движущийся наблюдатель запускает световой импульс. Для наблюдателя, покоящегося на неподвижном теле и принявшем в момент t2 световой сигнал, будет казаться, что световой импульс прошел расстояние R1. На самом деле в момент приема действительное расстояние, которое прошел свет, будет равно R01.

Вторая стадия. Далее сигнал отражается от тела и движется к точке встречи 3, где он возвращается в момент t3 к движущемуся наблюдателю. Поскольку свет распространяется в базовой системе отсчета, он проходит действительное расстояние R02.

Таким образом, как и в системе отсчета, связанной с наблюдателем, в системе отсчета тела свет проходит расстояние, равное R01 + R02, затрачивая на это время T = (R01 + R02)/c.

Рис. 10

Как мы видим, эти времена одинаковы, и нет никакого замедления времени в одной системе отсчета по отношению к другой. Эйнштейн не принял во внимание, что наблюдаемое расстояние соответствует действительному только, если наблюдатель покоится в базовой системе отсчета.

Следующий «мысленный эксперимент» по доказательству «сокращения масштаба» мы рассматривать не будем, т.к. в его описании используется ошибочное положение А. Эйнштейна («замедление времени»). Никакого «сокращения» в действительности не существует.

Локация Венеры

Существует ряд экспериментов, результаты которых противоречат выводам СТО А. Эйнштейна. Одним из них являются результаты по радиолокации Венеры. Прежде, чем переходить к описанию эксперимента, рассмотрим четыре модели определения расстояния радиолокационным способом.

Допустим, что мимо нас со скоростью V движется объект, расстояние до которого нам необходимо определить методом радиолокационных измерений. Для этой цели мы посылаем электромагнитный импульс к этому объекту и принимаем отраженный сигнал. Измеряя время распространения сигнала до объекта и обратно, и зная скорость света, мы сможем определить расстояние до объекта. Мы будем считать, что от РЛС сигнал распространяется со скоростью света без искажений, а отраженный сигнал искажается. Здесь возможны четыре различных варианта исчисления времени возвращения сигнала:

1) При распространении к РЛС скорость света и скорость движения объекта складываются по закону параллелограмма (c-v теория [11]).

2) Релятивистский вариант (специальная теория относительности). Время распространения сигнала от РЛС к объекту равно времени возвращения отраженного сигнала к РЛС.

3) Вариант, в котором ошибка Эйнштейна исправлена (см. предыдущий параграф).

4) Использование новой интерпретации преобразования Лоренца.

Не приводя простых расчетов, поместим формулы для этих четырех случаев в Таблицу 1.

Таблица 1

Точная формула

Приближенное

выражение

R0 - расстояние до Венеры в момент приема отраженного сигнала.

Первый вариант

(c + v) [12]

Второй вариант (СТО А. Эйнштейна)

.

.

Третий вариант

(новая интерпретация пр. Лоренца)

Теперь мы можем обсудить результаты локации Венеры, приведенные в [11], [12]. Поскольку детальное описание приведено в указанной литературе, мы приведем цитаты, характеризующие эти измерения [11]:

«…Радиолокация Венеры в 1961 г. впервые дала возможность преодолеть технический барьер и выполнить решающий эксперимент по проверке относительной скорости света в пространстве. Предполагалось, что радар даст погрешность 1,5 км, и при этом из-за вращения Земли в вычисленных расстояниях могла возникнуть разность до 260 км в зависимости от того, какую принять из двух моделей для распространения волн. Венера наблюдалась в нижнем соединении.

В [12] на рис. 11 значения большой полуоси орбиты Земли - астрономические единицы (а.е.), полученные по ньюкомбовским орбитам Земли и Венеры и вычисленные по лазерным наблюдениям в Мильстоуне с использованием эйнштейновской модели (с - модели) для распространения света; при этом были обнаружены чрезмерно большие вариации в значении а.е., превосходящие иногда 2000 км….»

«…Естественно, астрономическая единица имеет единственное значение, вариации же наблюдаемой величины превышали максимальное значение всех возможных ошибок. Вариации а.е. содержали суточную компоненту, пропорциональную скорости вращения Земли, тридцатидневную компоненту, пропорциональную скорости движения системы Земля - Луна и синодическую компоненту, пропорциональную относительным скоростям. Я провел анализ восьми радарных наблюдений Венеры, опубликованных в 1961 г., используя две модели: с и с + v. Результаты были опубликованы в 1969 г. В статье

«Радарная проверка относительной скорости света в пространстве». На рис. 11 представлен график разностей между средними гелиоцентрическими радиус-векторами Венеры (вычисления велись по таблицам Ньюкомба) и 1) Ньюкомбовскими возмущенными радиусами - эта разность обозначена через N, и 2) радиусами, найденными по радарным измерениям расстояний для эйнштейновской с - модели (Е) и 3) ими же для галилеево-ньютоновской c + v - модели (G). Все разности выражены в миллионных долях а.е.

Рис. 11. (Рисунок 1в из работы [12])

Так полный анализ с - модели по всем данным радиолокации дал значение планетных масс почти такие же, как у Ньюкомба, и при этом в Мильстоуне использовалась эйнштейновская с - модель, то кривая Е должна совпадать с N с точностью до максимально возможных ошибок в наблюдениях. Однако проанализированные мною наблюдения свидетельствуют против с - модели Эйнштейна, поскольку разности N - E значительно превосходят ошибку.

Точки на кривой G представляют значения, полученные по эфемеридам, которые я вычислил по методу Коуэлла для численного интегрирования уравнений движения. Хорошее согласие между эфемероидными точками и кривой G неопровержимо свидетельствует в пользу с + v - модели, т.е. подтверждает ньютоновскую модель движения света в пространстве…»

Акад. Л.Д. Ландау любил повторять: «Высшим судьей научной теории является эксперимент!». Вариации более 2000 км. при погрешности ± 1,5 км - это не «ошибка измерений», а промах теории! Судья вынес приговор, но релятивисты не спешат его выполнять, т.е. признать эйнштейновскую теорию некорректной. Это в их духе. Есть другие эксперименты, не согласующиеся со СТО, но мы их рассматривать не будем. Сошлемся лишь на остроумную статью [2].

Итак, результаты экспериментов по локации Венеры опровергают предсказания специальной теории относительности. Но они не противоречат ни первому, ни третьему, вариантам. Интересно отметить, что 1 и 3 варианты совпадают друг с другом с точностью до квадратичных членов отношения V/c.

СТО и ускорители

Считается, что работа циклических ускорителей элементарных частиц служит твердым экспериментальным подтверждением специальной теории относительности. А так ли это? Это легко проверить, поскольку полученные выше выводы имеют непосредственное отношение к теории циклических ускорителей.

Пусть заряженная частица летит прямолинейно с постоянной относительной скоростью мимо наблюдателя. Ее движение можно описать двумя способами, используя либо лоренцевскую скорость vлор (явление, т.е. скорость мнимого изображения, входящая в преобразование Лоренца), либо действительную скорость V (сущность). Эти скорости, как мы уже знаем, различны.

По существу использование той или иной скорости связано с тем, что мы хотим описать: движение действительного источника или же движение его мнимого отображения. Теория относительности А. Эйнштейна сосредоточена на описании мнимого изображения, считая его действительным материальным объектом. Посмотрим, какие результаты вытекают из ее положений.

Пусть заряженная частица влетает в однородное магнитное поле перпендикулярно его силовым линиям. Она будет двигаться по окружности постоянного радиуса. Здесь возникает интересная ситуация.

Мы не будем воспроизводить критические замечания А.В. Мамаева [13], которые касаются работы этих ускорителей. Мы по разному относимся к решению релятивистских проблем, но его замечания мы считаем квалифицированными.

Изложим суть проблемы. Предположим, что заряженная частица влетает в однородное магнитное поле перпендикулярно силовым линиям этого поля. Согласно законам электродинамики частица будет двигаться в этом поле по окружности. Чтобы ее ускорить, необходимо подать переменное электрическое поле с частотой, равной частоте вращения частицы по окружности.

Вот здесь и возникает проблема. Скорость частицы согласно СТО не может превышать скорость света в вакууме (постулат Эйнштейна). Какова бы ни была скорость релятивистского заряда, она не может превышать скорость света. Так, частицы могут иметь скорость vлор = 0,99 c; vлор = 0,999 c или vлор = 0,9999 c и т.д. По этой причине угловая скорость вращения частиц при таких скоростях должна быть практически одна и та же, приблизительно равная c/R. На самом деле это не так!

Мамаев следующим образом описывает характеристики армянского ускорителя (синхротрон АРУС) и объяснение его работы. Цитируем [13]:

«…Интересующие нас технические характеристики электронного синхротрона АРУС имеют следующие значения. (Быстров Ю.А., Иванов С.А. Ускорительная техника и рентгеновские приборы. - М.: Высшая школа, 1983. - с. 159 - - 162):

· - длина орбиты 2R = 216,7 м;

· - энергия инжекции электронов W = 50 МэВ;

· - частота ускоряющего поля f = 132,8 МГц;

· - кратность ускорения g = 96;

· - энергия покоя электрона E0 = 0,511 МэВ.

Согласно формуле, вытекающей из специальной теории относительности, частота обращения электронных сгустков по орбите ускорителя АРУС в момент инжекции электронов при кинетической энергии электронов W = 48,55 МэВ будет равна

(А)

Но период 7,53 нс обращения электронных сгустков по орбите длиной 216,7 м означал бы, что электроны движутся со скоростью, в 96 раз большей скорости света c0 (т.е. реальная частота ускоряющего поля в ускорителе равна 132,8 МГц - прим наше). Согласно же специальной теории относительности сверхсветовые скорости электронов невозможны.

Поэтому для того, чтобы объяснить экспериментальное значение периода облучения мишени 7,53 нс в рамках специальной теории относительности, потребовалось ввести понятие «кратность ускорения» и объявить, что «под действием ускоряющего поля частицы инжектированного пучка распадаются на сгустки, группирующиеся вокруг устойчивых равновесных фаз. Число таких сгустков, располагающихся по окружности ускорителя, равно кратности ускорения g». (Бурштейн Э.Л. Ускорители заряженных частиц // Большая советская энциклопедия, 3-е изд., т. 27. - М.: Советская энциклопедия, 1977. - с. 108).

И действительно, разделив величину из выражения (11.11) на величину из выражения (11.12), получим g = 96 - кратность ускорения электронного синхротрона АРУС. А, разделив величину из выражения (11.6) на величину из выражения (11.7), получим, что кратность ускорения протонного синхротрона ЦЕРН в эксперименте равна 19. (Test of the second postulate of special relativity in the GeV region / Alvager T., Farley F., Kjellman J., Wallin J. // Physical Letters. - 1964. - v. 12. - No. 3. - p. 260 -262)

Таким образом, экспериментальные значения частоты обращения сгустков элементарных частиц в рассмотренных двух ускорителях подтверждают не формулу из специальной теории относительности…

… Для объяснения же экспериментальных значений частоты обращения сгустков элементарных частиц в рамках специальной теории относительности и согласования этих значений с формулой (А) используется специальная гипотеза, основанная на введении ad hoc понятия «кратность ускорения»….».

В некоторых учебниках по теории ускорителей элементарных частиц гипотеза названа «остроумной». Сторонники СТО так и не смогли понять причину этого явления. Вот и пришлось теоретикам выдумывать и вводить гипотезу ad hoc о существовании кратности ускорения - g. На самом деле никакого «распада на сгустки, группирующиеся вокруг устойчивых равновесных фаз» в синхротроне не существует. Это фантазия, домысел.

Действительно, для этого достаточно рассмотреть одиночный (!) электрон, влетающий в ускоритель. Он тоже «разбивается на сгустки, группирующиеся вокруг устойчивых равновесных фаз»? (!) Согласуется ли этот вывод с классической или квантовой электродинамикой? Конечно, нет.

Ранее было установлено, что действительная скорость частиц V больше наблюдаемой скорости их мнимого отображения vлор, входящей в преобразование Лоренца. Она равна . Именно с такой линейной скоростью (вопреки запретам СТО) движутся по окружности заряженные частицы в рассмотренном выше ускорителе. Для оценки подсчитаем эту скорость. Пусть скорость мнимого изображения заряда равна v0 = 0,99995c. Тогда величина действительной скорости заряженной частицы будет равна V = 100c. Вот откуда «растут ноги» у «остроумной гипотезы» о кратности ускорения g. Мы вернемся к этому вопросу.

Эйнштейновская теория относительности извратила физику явлений от классической механики до квантовой электродинамики и породила нагромождение фантастических физических гипотез. Особенно отчетливо, как мы увидим далее, это прослеживается на примерах вращательного движения.

Теперь поговорим об экспериментальной проверке. Известно, что на Большой Адронный Коллайдер затрачено более 10 миллиардов долларов и несколько лет постройки. Интересно знать, чего реально добились ученые, инженеры и строители, если исправить ошибки СТО и провести переоценку после установления реальных соотношений?

Для установления научной истины (корректной теории) сейчас не требуется специальных экспериментальных исследований, а денег на теоретический анализ потребуется намного меньше, чем затрачено на БАК. Экспериментов уже накоплено предостаточно. Необходимо лишь произвести перерасчеты на основе новых представлений и сопоставить их с экспериментальными данными. Строить же (для Книги Гиннеса?) новый будущий суперколлайдер (МГУ), не опираясь на корректную теорию, безрассудно (авантюра). Ведь давно и хорошо известен афоризм «нет ничего практичнее хорошей теории».

Парадокс Эренфеста

Итак, помимо «линейных» парадоксов, связанных со сравнением явлений в двух различных инерциальных системах отсчета, существует большое число парадоксов, обусловленных вращательным движением одной системы отсчета относительно другой. К таким парадоксам относится парадокс Эренфеста. Он был сформулирован нидерландским физиком-теоретиком Паулем Эренфестом в 1909 году. Цитируем [14], обозначив буквами в скобках (i) места, которые будем комментировать (жирный шрифт в цитате наш):

«Описание. Рассмотрим плоский, абсолютно твердый диск, вращающийся вокруг своей оси таким образом, чтобы линейная скорость его края была сравнима со скоростью света по порядку величины. Согласно специальной теории относительности, длина края этого диска должна испытывать лоренцово сокращение, равное

где l - длина края вращающегося диска относительно внешнего наблюдателя, l0 - длина края вращающегося диска относительно внутреннего наблюдателя (находящегося на диске), v - линейная скорость вращения края диска, а c - скорость света.

Длины внутренних (относительно края диска) окружностей также должны испытывать это сокращение, но не пропорциональное, сохраняющее этот диск плоским, а такое, чтобы последний обретал отрицательную кривизну. В радиальном направлении лоренцова сокращения нет, поэтому радиусы диска должны сохранять свою длину.

Согласно Эренфесту, это свидетельствует о невозможности приведения абсолютно твердого тела во вращательное движение (поскольку абсолютно твердое тело не может изменять свою форму). В то же время, в классической механике известно множество примеров жестких дисков, вращающихся с достаточно большой скоростью (шлифовальные камни, крыльчатки пылесосов и т.д.), для которых эффекты специальной теории относительности должны быть ощутимыми

Решение. Данный парадокс является софизмом (a). Абсолютно твердое тело - это такая же идеализация, допускаемая классической механикой, как материальная точка, идеальный газ, идеальная жидкость и т.д. (b). Реальные тела не являются абсолютно твердыми и деформируются под воздействием соответствующих сил. Этот момент особо оговаривается в специальной теории относительности, в которой все воздействия передаются с конечной скоростью, не превышающей скорость света. В классической механике, если подействовать на абсолютно твердое тело некоторой силой, то все его точки должны мгновенно (одновременно) прийти в движение. Согласно специальной теории относительности, подобная ситуация невозможна, и точки тела не одновременно приходят в движение по мере того, как передают друг другу начальное воздействие с некоторой конечной скоростью. Следовательно, диск Эренфеста может вращаться и может изменять свою форму (c).

Впрочем, дело здесь даже не в этом, а в том, что сжатие тел, движущихся с околосветовой скоростью, - это кинематический эффект, который существует в одних системах отсчета и исчезает в других системах отсчета. Это сжатие не обусловлено никакими силами (поскольку происходит в инерциальных системах отсчета, движущихся равномерно и прямолинейно), оно обусловлено самой геометрией пространства-времени нашей Вселенной (d). Проблема в том, что в случае вращающегося диска говорить, что это сжатие не обусловлено никакими силами, можно только с большой натяжкой. Вращение диска - это неинерциальное движение, в котором действуют центробежные силы. Эти силы, правда, не искривляют диск, а только растягивают его в радиальном направлении (e). ….

… Более того, в случае вращающегося диска мы не только не можем говорить, что его периметрическое сжатие не обусловлено никакими силами, но даже то, что это сжатие является лоренцовым! (f). Лоренцово сжатие происходит только в относительном движении, в котором мы всегда можем указать такую систему отсчета, в которой движущееся (и, соответственно, сжимающееся) тело покоится. Например, внутреннюю систему отсчета самого этого тела. Но во вращательном движении мы не можем указать такую (локальную!) систему отсчета, относительно которой вращающееся тело покоилось бы, которую невозможно было бы отличить от невращающейся системы отсчета….

…Происходит это потому, что вращательное движение осуществляется не относительно каких-то конкретных тел, а относительно всего пространства-времени нашей Вселенной. Или, что равносильно, относительно всех материальных тел во Вселенной. Вполне возможно, что не только существующих, но и тех, которые существовали когда-то или будут существовать….

Пока теория относительности не ответит на эти вопросы, бесполезно искать решение данного парадокса, оставаясь в ее сегодняшних рамках. Можно только искать экспериментальное подтверждение обозначенных в нем эффектов… (g)».

Комментарии к объяснению. Пусть диск вращается вокруг оси z, а наблюдатель находится на оси диска. Согласно Эренфесту в соответствии с теорией относительности и преобразованием Лоренца имеют место два эффекта:

1. «Сжатие» длины окружности при неизменном радиусе вращающегося диска (релятивистское «сокращение» длины). Это «сжатие» тем сильнее, чем больше расстояние от оси вращения и чем больше угловая скорость.

2. Поскольку линейная скорость пропорциональна радиусу, периферийные слои должны вращаться медленнее, чем внутренние. Возникает постоянно нарастающее во времени смещение кольцевых слоев друг относительно друга.

На эти эффекты и обратил внимание Эренфест.

a. Еще не приведя объяснение, авторы объявляют парадокс софизмом. На каком основании? Ведь парадокс не только существует, но и имеет имя. Если авторы его так классифицируют, то им следовало бы писать: «софизм Эренфеста»!

b. Конечно, нет ни одной физической теории, где не использовалась бы идеализация. Это необходимый и неизбежный элемент. Такой идеализацией является понятие абсолютно твердого тела. Ничего «крамольного» в этом нет.

c. Гипотеза ad hos о том, что абсолютно твердых тел в СТО не существует, была выдвинута Эйнштейном сразу после появления парадокса Эренфеста. В [14] даже записано: «Согласно Эренфесту, это свидетельствует о невозможности приведения абсолютно твердого тела во вращательное движение (поскольку абсолютно твердое тело не может изменять свою форму)». Абсурдность этого «заключения» очевидна.

d. Сил нет, а деформация есть! Каковы ее причины? СТО - замкнутая теория. Это означает, что все предсказываемые ею явления должны иметь объяснение в рамках СТО. Но что мы видим? Для объяснения парадоксов призывают «варягов»! Например, для объяснения «парадокса близнецов» притягивают другую теорию - ОТО, говоря о геометрии пространства-времени Вселенной, хотя ее параметры в СТО не входят! Вот это и есть софистика.

e. Радиальные силы авторы нашли, но ведь не «растяжение» радиуса описывает парадокс!

f. Вот и «договорились» до того, что и «сжатие» длины окружности диска «даже не является лоренцевым»! А ведь в описании парадокса фигурирует лоренцевское сокращение! Ну и интерпретаторы!

g. Далее идут фантазии относительно пространства-времени нашей Вселенной. И в конце (наконец-то!) искреннее признание: «Пока теория относительности не ответит на эти вопросы, бесполезно искать решение данного парадокса, оставаясь в ее сегодняшних рамках. Можно только искать экспериментальное подтверждение обозначенных в нем эффектов». Это весьма пессимистичный вывод, поскольку «решения» парадокса Эренфеста в рамках СТО релятивисты так и не дали, но зато обозвали «софистикой»!

...

Подобные документы

  • Изменение формы движущегося объекта и другие явления в рамках преобразования Лоренца. Гносеологические ошибки Специальной теории относительности А. Эйнштейна. Проблема определения границ применимости альтернативной интерпретации преобразования Лоренца.

    доклад [3,1 M], добавлен 29.08.2009

  • Характеристика силы Лоренца - силы, с которой магнитное поле действует на заряженные частицы. Определение направления силы Лоренца по правилу левой руки. Пространственные траектории заряженных частиц в магнитном поле. Примеры применения силы Лоренца.

    презентация [169,3 K], добавлен 27.10.2015

  • Преобразования Галилея и Лоренца. Создание специальной теории относительности. Обоснование постулатов Эйнштейна и элементов релятивистской динамики. Принцип равенства гравитационной и инертной масс. Пространство-время ОТО и концепция эквивалентности.

    презентация [329,0 K], добавлен 27.02.2012

  • Сила Лоренца - сила, действующая на заряженную частицу, движущуюся в электромагнитном поле. Магнитные силовые линии; влияние индукции магнитного поля на силу Ампера. Применение силы Лоренца в электроприборах; Северное сияние как проявление ее действия.

    презентация [625,3 K], добавлен 14.05.2012

  • Тахион как гипотетическая частица, движущаяся со сверхсветовой скоростью. Преобразования Лоренца как следствие инвариантности скорости света. Вид релятивистского уравнения для определения энергии тахиона. Теория относительности как математическая теория.

    статья [297,9 K], добавлен 09.12.2013

  • Принцип относительности Галилея. Закон сложения скоростей. Постулаты Эйнштейна, их значение. Преобразования Лоренца и следствия из них. Интерферометр Майкельсона и принципы. Сложение скоростей в релятивистской механике. Взаимосвязь массы и энергии покоя.

    презентация [1,4 M], добавлен 31.10.2016

  • Введення в електродинаміку уявлення про дискретності електричних зарядів. Визначення напряму вектора сили Лоренца. Траєкторія руху зарядженої частинки. Дія магнітного поля на заряджені частки. Складові вектору швидкості: прямолінійний рух, рух по колу.

    презентация [107,8 K], добавлен 27.12.2012

  • История появления новой релятивистской физики, положения которой изложены в работах А. Эйнштейна. Преобразования Лоренца и их сравнение с преобразованиями Галилея. Некоторые эффекты теории относительности. Основной закон и формулы релятивистской динамики.

    контрольная работа [90,2 K], добавлен 01.11.2013

  • Преобразования Лоренца и основные следствия из них. Четырехмерное пространство Эйнштейна. Расстояние между точками трехмерного пространства. Интервал между двумя событиями. Промежуток собственного времени. События, разделенные вещественным интервалом.

    лекция [212,8 K], добавлен 28.06.2013

  • Принцип относительности Г. Галилея для механических явлений. Основные постулаты теории относительности А. Эйнштейна. Принципы относительности и инвариантности скорости света. Преобразования координат Лоренца. Основной закон релятивистской динамики.

    реферат [119,5 K], добавлен 01.11.2013

  • Виды отображений в физике. Относительные скорости инерциальных систем. Эффекты, связанные с постоянством скорости света в инерциальных системах. Закон "преломления" луча. Эффекты при вращательном движении. Применение модифицированного преобразования.

    реферат [181,9 K], добавлен 15.12.2009

  • Опыт Майкельсона и крах представлений об эфире. Эксперименты, лежащие в основе специальной теории относительности. Астрономическая аберрация света. Эффект Доплера, связанный с волновыми движениями. Принцип относительности и преобразования Лоренца.

    курсовая работа [214,7 K], добавлен 24.03.2013

  • Доказательство ошибочности специальной теории относительности (СТО). Выяснение физического смысла преобразования Лоренца, подход к анализу "мысленных экспериментов" Эйнштейна и исправление ошибок в этих экспериментах. "Волновой вариант теории Ритца".

    статья [68,5 K], добавлен 07.01.2010

  • Гравитационное поле и его свойства. Направленность гравитационных сил, силовая характеристика гравитационного поля. Действие магнитного поля на движущийся заряд. Понятие силы Лоренца, определение ее модуля и направления. Расчет обобщенной силы Лоренца.

    контрольная работа [1,7 M], добавлен 31.01.2013

  • Различная запись преобразования Лоренца. Следствия преобразований. Парадоксы кинематики специальной теории относительности: одногодок (модифицированный парадокс близнецов), антиподов, "n близнецов", расстояний и пешеходов. Итоги теории относительности.

    реферат [230,7 K], добавлен 03.04.2012

  • Способы преобразования звука. Применение преобразования Фурье в цифровой обработке звука. Свойства дискретного преобразования Фурье. Медианная фильтрация одномерных сигналов. Применение вейвлет-анализа для определения границ речи в зашумленном сигнале.

    курсовая работа [496,8 K], добавлен 18.05.2014

  • Волновая теория света и принцип Гюйгенса. Явление интерференции света как пространственного перераспределения энергии света при наложении световых волн. Когерентность и монохроматичных световых потоков. Волновые свойства света и понятие цуга волн.

    презентация [9,4 M], добавлен 25.07.2015

  • Обзор дифракции в сходящихся лучах (Френеля). Правила дифракции световых волн на круглом отверстии и диске. Схема дифракции Фраунгофера. Исследование распределения интенсивности света на экране. Определение характерных параметров дифракционной картины.

    презентация [135,3 K], добавлен 24.09.2013

  • Метод последовательных приближений. Генерация второй гармоники. Параметрическая генерация и усиление волн. Коэффициент параметрического усиления. Нелинейная поляризация на собственной частоте. Воздействие одной волны на другую. Фазовая скорость волны.

    контрольная работа [81,0 K], добавлен 20.08.2015

  • Характерные особенности поверхностных волн на глубокой воде. Основы преобразования энергии волн. Преобразователи энергии волн. Колеблющийся водяной столб. Преимущества подводных устройств. Преимущества подводных устройств. Экология энергии океана.

    реферат [1,6 M], добавлен 27.10.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.