Тепловой расчет котла
Определение состава рабочей массы топлива. Выбор топочного устройства. Тепловой баланс парогенератора. Определение коэффициента избытка воздуха на выходе из котельного агрегата. Расчет конвективных поверхностей нагрева. Расчет теплообмена в топке.
Рубрика | Физика и энергетика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 11.09.2018 |
Размер файла | 336,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Тепловой расчет котла
Целью теплового расчета является определение конструктивных размеров расчетной площади теплопередающих поверхностей нагрева, обеспечивающих требуемую паропроизводительность при заданных параметрах пара, питательной воды и топлива. Одновременно с этим в задачу расчета входит определение расхода топлива, воздуха и продуктов сгорания. [1]
Исходные данные
парогенератор котельный топливо конвективный
Тип котла: ВАГНЕР ХОХДРУК
Производительность: Dк = 1.2 (кг/с)
Давление пара: Рк = 0,7 (МПа)
Топливо: МОТОРНОЕ
Температура питательной воды: tп.в. = 70?С
1. Определение состава рабочей массы топлива
Состав горючей массы
- углерод;
- водород;
- азот;
- кислород;
- сера.
состав рабочей массы
- зола;
- влага.
(1)
- проверка
низшая теплота сгорания
кДж/кг
кДж/кг (2)
кДж/кг
2. Выбор топочного устройства
Форсунку выбираем паровую, исходя из процентного содержания серы в топливе.
3. Определение коэффициента избытка воздуха
Коэффициент избытка воздуха на выходе из котельного агрегата - бyx определяется по формуле:
бyx=бm+??б (3)
где: ?б - суммарная величина присосов холодного воздуха в газоходах котла.
Для морских котлов обшитых листовым железом можно принять
выбираем , у прототипа котла
4. Определение объёмов воздуха и продуктов сгорания топлива
Для твердого топлива или жидкого топлива расчет теоретических объемов воздуха и продуктов сгорания при производят исходя из состава рабочей массы по следующим формулам:
Теоретический объем воздуха
нм3/кг (4)
нм3/кг
теоретический объем сухих продуктов сгорания
нм3/кг (5)
нм3/кг
нм3/кг (6)
нм3/кг
теоретический объем дымовых газов при
(7)
нм3 (8)
WФ=0,4 - при постановке паровой форсунки.
нм3
нм3/кг
действительные объемы продуктов сгорания при избытке воздуха в газоходах б =1.2
нм3/кг (9)
нм3/кг
нм3/кг (10)
нм3/кг
Для учета лучистой составляющей газа определяют объемные доли трехатомных газов
объемная доля трехатомных газов
(11)
объемная доля водяных паров
(12)
объемная доля трехатомных газов и водяных паров
(13)
5. Расчет энтальпии воздуха и продуктов сгорания
Для всех видов топлив энтальпии теоретических объемов воздуха и продуктов сгорания, при средней расчетной температуре газа 0С и б=1, определяют по формулам:
(14)
Энтальпия продуктов сгорания при избытке воздуха
[кДж/кг] (15)
где: - энтальпия теоретического количества воздуха. (16)
В приведенных формулах: , , и - теплоемкости соответственно, воздуха, диоксида углерода, водяных паров и азота при постоянном давлении, кДж/м3К.
Расчет энтальпии дымовых газов проводят при нескольких значениях температуры газов и воздуха от 100 до 2200 и коэффициента избытка воздуха б=1,2. Расчет сводится в Таблицу 1.
По результатам таблицы строят зависимости энтальпии газов от температуры и при коэффициентах избытка воздуха равных б=1,2. Зависимость представлена на Рисунке 1.
Таблица 1
t -ра |
3-х атомные газы |
2-х атомные газы |
Водные пары |
I'г |
Влажный воздух |
(a-1)*Iвл в |
Iг |
|||||
газов |
Ссо2* tг |
IRO2 |
СN2* tг |
IN2 |
СH2O* tг |
IH2O |
Свл.в*tг |
Iвл. В |
||||
100 |
169 |
269,6 |
130 |
1116 |
151 |
312 |
1697 |
132 |
1457 |
291 |
1989 |
|
200 |
357 |
569,5 |
260 |
2232 |
304 |
628 |
3429 |
266 |
2935 |
587 |
4017 |
|
300 |
559 |
891,7 |
392 |
3365 |
463 |
956 |
5213 |
403 |
4448 |
889 |
6103 |
|
400 |
772 |
1231,5 |
527 |
4524 |
626 |
1293 |
7049 |
542 |
5982 |
1196 |
8245,5 |
|
500 |
996 |
1588,8 |
664 |
5726 |
794 |
1640 |
8955 |
684 |
7549 |
1510 |
10465,5 |
|
600 |
1222 |
1943,3 |
804 |
6902 |
967 |
1998 |
10849 |
830 |
9161 |
1832 |
12681,5 |
|
700 |
1461 |
2330,5 |
946 |
8121 |
1147 |
2370 |
12821 |
979 |
10805 |
2161 |
14982,7 |
|
800 |
1704 |
2718,2 |
1093 |
9382 |
1335 |
2758 |
14859 |
1130 |
12472 |
2494 |
17354 |
|
900 |
1951 |
3112,2 |
1243 |
10966 |
1524 |
3149 |
16931 |
1281 |
14138 |
2827 |
19759,4 |
|
1000 |
2202 |
3512,6 |
1394 |
11966 |
1725 |
3564 |
19046 |
1436 |
15849 |
3170 |
22219,9 |
|
1100 |
2457 |
3919,4 |
1545 |
13263 |
1926 |
3979 |
21162 |
1595 |
17604 |
3524 |
24683,3 |
|
1200 |
2717 |
4343,4 |
1696 |
14559 |
2131 |
4403 |
23296 |
1754 |
19359 |
3872 |
27168,5 |
|
1300 |
2975 |
4745 |
1850 |
15881 |
2344 |
4843 |
25470 |
1913 |
21114 |
4223 |
29693,4 |
|
1400 |
3240 |
5168 |
2009 |
17246 |
2558 |
5286 |
27700 |
2076 |
22913 |
4582 |
32282,4 |
|
1500 |
3504 |
5589 |
2164 |
18576 |
2779 |
5742 |
29908 |
2239 |
24712 |
4942 |
34850,7 |
|
1600 |
3767 |
6009 |
2323 |
19941 |
3001 |
6201 |
32151 |
2403 |
26522 |
5304 |
37456,2 |
|
1700 |
4035 |
6436 |
2482 |
21306 |
3227 |
6668 |
34411 |
2566 |
28321 |
5664 |
40075,3 |
|
1800 |
4303 |
6864 |
2642 |
22680 |
3458 |
7145 |
36689 |
2729 |
30120 |
6024 |
42713,8 |
|
1900 |
4571 |
7291 |
2805 |
24079 |
3688 |
7621 |
38991 |
2897 |
31974 |
6395 |
45386,6 |
|
2000 |
4843 |
7725 |
2964 |
25444 |
3926 |
8112 |
41282 |
3064 |
33817 |
6763 |
48045,7 |
|
2100 |
5115 |
8159 |
3127 |
26843 |
4161 |
8598 |
43601 |
3232 |
35672 |
7134 |
50735,5 |
|
2200 |
5387 |
8593 |
3290 |
28242 |
4399 |
9090 |
45926 |
3399 |
37515 |
7503 |
53429,1 |
Рисунок 1
6 Тепловой баланс парогенератора
Целью расчета теплового баланса является определение расхода топлива. Величина расхода топлива вычисляется по формуле, полученной из уравнения «прямого» баланса парогенератора: [7]
кг/с (17)
Здесь:зК - коэффициент полезного действия (к.п.д.) парогенератора, %.
% (18)
Расчет теплового баланса начинают с вычисления располагаемой теплоты рабочей массы топлива по формуле:
(19)
Qm -физическое тепло топлива
кДж/кг (20)
Удельную теплоемкость жидкого топлива можно вычислять по формуле:
, кДж/кг град (21)
Где tm - температура подогретого топлива, 0С определяем из графика зависимости вязкости топлива от его температуры. tm = 75 0С [1]
кДж/кг град
кДж/кг
(22)
кДж/кг
Величина потерь теплоты с уходящими газами вычисляется по формуле:
, % (23)
Для вычисления q2 задаёмся температурой уходящих газов. tух.г:
tух.г = 180 0С
Затем по диаграмме J-t дымовых газов по этой температуре определяем энтальпию уходящих газов Jух. г. Зависимость представлена на Рисунке 2.
Jух.г = 3616,2 кДж/кг
Температуру воздуха в машинном отделении примем: tв = 30 0С
Теплоёмкость воздуха: Св = 1,3 кДж/кг град
%
Тепловые потери от химического q3 и механического q4 недожога для стационарных парогенераторов определяются в зависимости от конструкции топки и рода топлива
При сжигании жидкого и газообразного топлива потери от механического недожога q4=0.
В судовых котлах, использующих жидкое топливо, потери теплоты q3 принимаются в пределах 0,5-1,0%. Принимаем: q3 = 0.6 %
Потери теплоты через обмуровку стационарных котлов q5 определяют из графика зависимости удельной потери через обмуровку от паропроизводительности
В судовых котлах q5 принимают в пределах 1-5 %. Принимаем q5 = 2,56 % [5]
, % (24)
%
- энтальпия питательной воды
(25)
кДж/кг
- энтальпия насыщенного пара
= f(Pk) [9]
= 2768,4 кДж/кг
(26)
кДж/кг
кг/с
7. Расчет теплообмена в топке
Для топки проводят поверочный тепловой расчет. Цель расчета - определение величины тепловосприятия (температуры дымовых газов на входе из топки ) при заданной величине радиационной поверхности нагрева .
Перед расчетом процесса теплообмена проверяют соответствие тепловыделения в топке ее размерам. Для этого сравнивают величины фактических и допустимых тепловых напряжений:
(27)
Величину объема топочного пространства берем из прототипа котла Vт=1,93
Допустимая величина теплонапряженности топочного устройства также берётся из прототипа
Условие - не выполняется
Если фактические тепловые напряжения превышают допустимые, то это означает, что размеры топки недостаточны для сжигания данного количества топлива. В этом случае по величинам допускаемых тепловых напряжений определяют объем топочного пространства: [7]
(28)
Для вычисления формулу можно переписать в виде:
Та - абсолютная температура горения (теоретическая)
Во - величина критерия Больцмана
- степень черноты топки
- температура дымовых газов на входе из топки
Поскольку величины критерия Больцмана и степени черноты топки зависят от температуры дымовых газов на выходе из топки , расчет проводят методом последовательных приближений.
В общем случае для первого приближения можно принять = 1473 К
Степень черноты камерной топки вычисляют по формуле:
(30)
- коэффициент снижения тепловосприятия зависящий от рода топлива
Для мазута = 0,55
- степень экранирования топки
Нл - площадь радиационной поверхности нагрева. Берётся из прототипа котла. [1] Нл = 6,52
Fст - суммарная поверхность стен топки
(32)
- эффективная степень черноты факела
(33)
Степень черноты светящегося пламени (факела) вычисляется по формуле:
(34)
Эффективную толщину излучающего слоя пламени вычисляют по формуле:
(35)
Для топок котлов, работающих без наддува, .
Коэффициент ослабления лучей для трехатомных газов вычисляется по формуле:
(36)
Коэффициент ослабления лучей сажистыми частицами вычисляют по формуле:
(37)
Степень черноты не светящегося пламени (факела) вычисляется по формуле:
(39)
Коэффициент усреднения выбирается в зависимости от величины теплового напряжения топочного объема и рода топлива: [5]
при - жидкое топливо.
Критерий Больцмана вычисляют по формуле:
(40)
Коэффициент сохранения теплоты:
(41)
0,988
Теплосодержание дымовых газов , соответствующее абсолютной теоретической температуре горения , вычисляют по формуле:
(42)
По величине по диаграмме дымовых газов определяют величину абсолютной теоретической температуры горения . Зависимость представлена на Рисунке 2.
= 2009,7 К
По диаграмме дымовых газов определяют также и величину теплосодержания дымовых газов на выходе из топки по температуре .
= 29693,3 кДж/кг
Величина коэффициента М зависит от топочного устройства. Для топки судовых котлов на мазутном отоплении М = 0,64 [5]
Величину средней суммарной теплоемкости продуктов сгорания вычисляют по формуле:
(43)
По уравнению баланса для дымовых газов можно вычислить величину тепловосприятия в топке:
(44)
8. Расчет конвективных поверхностей нагрева
При расчете конвективных поверхностей используют:
а) уравнение теплового баланса, в которых приравнивается тепло, отданное газами, с одной стороны:
(45)
= 29693,4 кДж/кг
По диаграмме дымовых газов определяют величину по температуре . Зависимость представлена на Рисунке 2.
кДж/кг
кДж/кг
кДж/кг
б) уравнение теплопередачи:
(46)
Коэффициент теплопередачи рассчитывают по формулам:
(47)
- коэффициент теплоотдачи от дымовых газов к стенке
Н - площадь конвективных поверхностей
- температурный напор
- коэффициент теплоотдачи от дымовых газов к стенке, , определяется как:
(48)
- коэффициент теплоотдачи конвекцией
- коэффициент омывания труб. Как правило, для парообразующих притопочных пучков водотрубных вертикальных котлов, пучков, находящихся на резких поворотах газового потока .
При поперечном омывании шахматных гладкотрубных пучков труб газом или воздухом коэффициент теплоотдачи конвекцией рассчитывают по формуле:
- коэффициент теплопроводности, ;
- наружный диаметр трубы, м;
W- скорость газового потока, ;
- критерий Прандтля;
- поправка на число рядов труб;
- поправка на компоновку;
- кинематическая вязкость для продуктов сгорания;
Физические параметры , , для воздуха и продуктов сгорания среднего состава принимают по средней температуре потока из таблицы. [5]
(50)
Таблица 2
921,8 |
151 |
10,18 |
0,58 |
|
971,8 |
161 |
10,62 |
0,58 |
|
1021,8 |
172 |
11,05 |
0,57 |
Скорость потока газов при поперечном омывании пучка труб - W рассчитывают по следующей формуле:
(51)
- площадь живого сечения при поперечном омывании пучка труб:
(52)
- средняя длина проекции активно работающей, в рассматриваемом пучке, трубы (без учета застойных зон) на плоскость, перпендикулярную направлению потока;
- ширина газохода;
- число труб в ряду;
- наружный диаметр.
(52)
Значения , ,, определяем по чертежу
м
=11
=0,029 м
м
м/с
м/с
м/с
Поправка на компоновку , определяемая в зависимости от относительных поперечного и продольного шагов рассчитывают по формуле (55):
(53)
(54)
(55)
Поправку на число рядов труб определяют по следующей формуле:
- число рядов труб по направлению потока.
Коэффициент теплоотдачи излучением определяют по формуле:
(57)
- степень черноты газового потока при его средней температуре
(58)
(59)
- коэффициент ослабления лучей трехатомными газами.
(60)
- суммарная объемная доля трехатомных газов в газоходе;
- давление в топке, Мпа;
S - эффективная толщина излучающего слоя газов в межтрубном пространстве для
гладкотрубных пучков определяют по формуле:
(61)
Температура наружной поверхности стенки труб определяют по формуле:
(62)
- средняя температура обогреваемой среды, . Для кипящей жидкости её принимают равной температуре насыщения. t = 164,96
- коэффициенты загрязнения. Зависит от скорости движения газов. [5]
(м2·К/Вт)
Н - испарительная конвективная поверхность нагрева. Определяется из прототипа котла.
Н = 57,9
При поперечном омывании шахматных гладкотрубных пучков труб
a = 0.45
b = 1.72
z = 11*20 = 220
м/с
м/с
м/с
- коэффициенты загрязнения. Зависит от скорости движения газов. [5]
(м2·К/Вт)
Найдём среднее значение коэффициента теплоотдачи
Температурный напор есть усредненная по всей поверхности нагрева разность температур греющей (газов) о обогреваемой среды. Для противотока и прямотока определяется по формуле:
(64)
- разность температур между теплоносителями в том конце поверхности нагрева, где она больше;
= (65)
- разность температур на другом конце поверхности, где она меньше.
(66)
Таблица 3
кВт |
W м/с |
Q кВт |
||||||
800 |
1018 |
183,53 |
17,65 |
24,16 |
1194,815 |
517,96 |
2654,2 |
|
900 |
819,55 |
188,82 |
18,5 |
25,17 |
1244,815 |
498,4 |
2950,3 |
|
1000 |
616,56 |
191,96 |
19,4 |
26,18 |
1294,815 |
480,87 |
3242,4 |
Рисунок 3
Из графика Q = f(t'') в точке пересечения находим истинные значения
Qист = 1730(кВт) и tист = 445 єС которые следует принять при расчете.
Размещено на Allbest.ru
...Подобные документы
Характеристика котла ДЕ-10-14ГМ. Расчет объемов продуктов сгорания, объемных долей трехатомных газов. Коэффициент избытка воздуха. Тепловой баланс котельного агрегата и определение расхода топлива. Расчет теплообмена в топке, водяного экономайзера.
курсовая работа [267,4 K], добавлен 20.12.2015Энтальпия воздуха и продуктов сгорания. Тепловой баланс парогенератора и расход топлива. Основные конструктивные характеристики топки. Расчет фестона, перегревателя, испарительного пучка и хвостовых поверхностей. Определение теплообмена в топке.
курсовая работа [541,4 K], добавлен 25.06.2013Расчет топочной камеры котельного агрегата. Определение геометрических характеристик топок. Расчет однокамерной топки, действительной температуры на выходе. Расчет конвективных поверхностей нагрева (конвективных пучков котла, водяного экономайзера).
курсовая работа [139,8 K], добавлен 06.06.2013Расчетные характеристики топлива. Расчет теоретических объемов воздуха и основных продуктов сгорания. Коэффициент избытка воздуха и объемы дымовых газов по газоходам. Тепловой баланс котла и топки. Тепловой расчет конвективных поверхностей нагрева.
контрольная работа [168,0 K], добавлен 26.03.2013Характеристика котла ТП-23, его конструкция, тепловой баланс. Расчет энтальпий воздуха и продуктов сгорания топлива. Тепловой баланс котельного агрегата и его коэффициент полезного действия. Расчет теплообмена в топке, поверочный тепловой расчёт фестона.
курсовая работа [278,2 K], добавлен 15.04.2011Тепловой баланс котельного агрегата, расчет теплообмена в топке и теплообмена пароперегревателя. Теплосодержание газов на входе и выходе, коэффициент теплоотдачи конвекцией. Расчет водяного экономайзера, воздухоподогревателя, уточнение теплового баланса.
практическая работа [270,8 K], добавлен 20.06.2010Общая характеристика котла. Определение составов и объемов воздуха и продуктов сгорания по трактам. Расчет энтальпии дымовых газов. Тепловой баланс котельного агрегата. Основные характеристики экономайзера. Расчет конвективных поверхностей нагрева.
курсовая работа [151,1 K], добавлен 27.12.2013Расчет горения топлива. Тепловой баланс котла. Расчет теплообмена в топке. Расчет теплообмена в воздухоподогревателе. Определение температур уходящих газов. Расход пара, воздуха и дымовых газов. Оценка показателей экономичности и надежности котла.
курсовая работа [4,7 M], добавлен 10.01.2013Выбор типа котла. Энтальпия продуктов сгорания и воздуха. Тепловой баланс котла. Тепловой расчет топки и радиационных поверхностей нагрева котла. Расчет конвективных поверхностей нагрева котла. Расчет тягодутьевой установки. Расчет дутьевого вентилятора.
курсовая работа [542,4 K], добавлен 07.11.2014Расчет объема продуктов сгорания и воздуха. Тепловой баланс, коэффициент полезного действия и расход топлива котельного агрегата. Тепловой расчет топочной камеры. Расчет конвективных поверхностей нагрева и экономайзера. Составление прямого баланса.
курсовая работа [756,1 K], добавлен 05.08.2011Виды топлива, его состав и теплотехнические характеристики. Расчет объема воздуха при горении твердого, жидкого и газообразного топлива. Определение коэффициента избытка воздуха по составу дымовых газов. Материальный и тепловой баланс котельного агрегата.
учебное пособие [775,6 K], добавлен 11.11.2012Пересчет состава и теплоты сгорания топлива. Тепловой баланс парогенератора. Предварительная расчетная схема и конструктивные размеры топки. Определение тепловыделения в топке и теоретической температуры горения. Характеристики и расчет экономайзера.
курсовая работа [1,2 M], добавлен 21.05.2016Выбор температуры уходящих газов и коэффициента избытка воздуха. Расчет объемов воздуха и продуктов сгорания, а также энтальпии воздуха. Тепловой баланс теплового котла. Расчет теплообменов в топке, в газоходе парового котла. Тепловой расчет экономайзера.
курсовая работа [242,4 K], добавлен 21.10.2014Описание конструкции и технических характеристик котельного агрегата ДЕ-10-14ГМ. Расчет теоретического расхода воздуха и объемов продуктов сгорания. Определение коэффициента избытка воздуха и присосов по газоходам. Проверка теплового баланса котла.
курсовая работа [2,4 M], добавлен 23.01.2014Определение объемов воздуха и продуктов сгорания, коэффициента полезного действия и расхода топлива. Расчет топки котла, радиационно-конвективных поверхностей нагрева, ширмового пароперегревателя, экономайзера. Расчетная невязка теплового баланса.
дипломная работа [1,5 M], добавлен 15.11.2011Действительное количество воздуха и продуктов сгорания. Тепловой баланс котельного агрегата и расход топлива. Основные конструктивные характеристики топки. Расчет теплообмена, фестона, пароперегревателя, хвостовых поверхностей и невязки теплового баланса.
курсовая работа [2,9 M], добавлен 24.10.2013Описание конструкции котла и топочного устройства. Расчет объемов продуктов сгорания топлива, энтальпий воздуха. Тепловой баланс котла и расчет топочной камеры. Вычисление конвективного пучка. Определение параметров и размеров водяного экономайзера.
курсовая работа [1,1 M], добавлен 20.01.2014Тепловой расчет промышленного парогенератора БКЗ-75-39 ФБ при совестном сжигании твердого и газообразного топлива. Выбор системы пылеприготовления и типа мельниц. Поверочный расчет всех поверхностей нагрева котла. Определение невязки теплового баланса.
курсовая работа [413,3 K], добавлен 14.08.2012Выполнение теплового расчета стационарного парового котла. Описание котельного агрегата и горелочных устройств, обоснование температуры уходящих газов. Тепловой баланс котла, расчет теплообмена в топочной камере и конвективной поверхности нагрева.
курсовая работа [986,1 K], добавлен 30.07.2019Описание парового котла. Состав и теплота сгорания топлива. Расчёт объемов и энтальпий воздуха, теплосодержания дымовых газов и продуктов сгорания, потерь теплоты и расхода топлива, топочной камеры, теплообмена в топке и конвективных поверхностей нагрева.
курсовая работа [1000,2 K], добавлен 19.12.2015