Тепловой расчет котла

Определение состава рабочей массы топлива. Выбор топочного устройства. Тепловой баланс парогенератора. Определение коэффициента избытка воздуха на выходе из котельного агрегата. Расчет конвективных поверхностей нагрева. Расчет теплообмена в топке.

Рубрика Физика и энергетика
Вид курсовая работа
Язык русский
Дата добавления 11.09.2018
Размер файла 336,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Тепловой расчет котла

Целью теплового расчета является определение конструктивных размеров расчетной площади теплопередающих поверхностей нагрева, обеспечивающих требуемую паропроизводительность при заданных параметрах пара, питательной воды и топлива. Одновременно с этим в задачу расчета входит определение расхода топлива, воздуха и продуктов сгорания. [1]
Исходные данные
парогенератор котельный топливо конвективный
Тип котла: ВАГНЕР ХОХДРУК
Производительность: Dк = 1.2 (кг/с)
Давление пара: Рк = 0,7 (МПа)
Топливо: МОТОРНОЕ
Температура питательной воды: tп.в. = 70?С
1. Определение состава рабочей массы топлива
Состав горючей массы
- углерод;
- водород;
- азот;
- кислород;
- сера.
состав рабочей массы
- зола;
- влага.
(1)
- проверка
низшая теплота сгорания
кДж/кг
кДж/кг (2)
кДж/кг
2. Выбор топочного устройства
Форсунку выбираем паровую, исходя из процентного содержания серы в топливе.
3. Определение коэффициента избытка воздуха
Коэффициент избытка воздуха на выходе из котельного агрегата - бyx определяется по формуле:
бyx=бm+??б (3)
где: ?б - суммарная величина присосов холодного воздуха в газоходах котла.
Для морских котлов обшитых листовым железом можно принять
выбираем , у прототипа котла
4. Определение объёмов воздуха и продуктов сгорания топлива
Для твердого топлива или жидкого топлива расчет теоретических объемов воздуха и продуктов сгорания при производят исходя из состава рабочей массы по следующим формулам:
Теоретический объем воздуха
нм3/кг (4)
нм3/кг
теоретический объем сухих продуктов сгорания
нм3/кг (5)
нм3/кг
нм3/кг (6)
нм3/кг
теоретический объем дымовых газов при
(7)
нм3 (8)
WФ=0,4 - при постановке паровой форсунки.
нм3
нм3/кг
действительные объемы продуктов сгорания при избытке воздуха в газоходах б =1.2
нм3/кг (9)
нм3/кг
нм3/кг (10)
нм3/кг
Для учета лучистой составляющей газа определяют объемные доли трехатомных газов
объемная доля трехатомных газов
(11)
объемная доля водяных паров
(12)
объемная доля трехатомных газов и водяных паров
(13)
5. Расчет энтальпии воздуха и продуктов сгорания
Для всех видов топлив энтальпии теоретических объемов воздуха и продуктов сгорания, при средней расчетной температуре газа 0С и б=1, определяют по формулам:
(14)
Энтальпия продуктов сгорания при избытке воздуха
[кДж/кг] (15)
где: - энтальпия теоретического количества воздуха. (16)
В приведенных формулах: , , и - теплоемкости соответственно, воздуха, диоксида углерода, водяных паров и азота при постоянном давлении, кДж/м3К.
Расчет энтальпии дымовых газов проводят при нескольких значениях температуры газов и воздуха от 100 до 2200 и коэффициента избытка воздуха б=1,2. Расчет сводится в Таблицу 1.
По результатам таблицы строят зависимости энтальпии газов от температуры и при коэффициентах избытка воздуха равных б=1,2. Зависимость представлена на Рисунке 1.
Таблица 1

t -ра

3-х атомные газы

2-х атомные газы

Водные пары

I'г

Влажный воздух

(a-1)*Iвл в

газов

Ссо2* tг

IRO2

СN2* tг

IN2

СH2O* tг

IH2O

Свл.в*tг

Iвл. В

100

169

269,6

130

1116

151

312

1697

132

1457

291

1989

200

357

569,5

260

2232

304

628

3429

266

2935

587

4017

300

559

891,7

392

3365

463

956

5213

403

4448

889

6103

400

772

1231,5

527

4524

626

1293

7049

542

5982

1196

8245,5

500

996

1588,8

664

5726

794

1640

8955

684

7549

1510

10465,5

600

1222

1943,3

804

6902

967

1998

10849

830

9161

1832

12681,5

700

1461

2330,5

946

8121

1147

2370

12821

979

10805

2161

14982,7

800

1704

2718,2

1093

9382

1335

2758

14859

1130

12472

2494

17354

900

1951

3112,2

1243

10966

1524

3149

16931

1281

14138

2827

19759,4

1000

2202

3512,6

1394

11966

1725

3564

19046

1436

15849

3170

22219,9

1100

2457

3919,4

1545

13263

1926

3979

21162

1595

17604

3524

24683,3

1200

2717

4343,4

1696

14559

2131

4403

23296

1754

19359

3872

27168,5

1300

2975

4745

1850

15881

2344

4843

25470

1913

21114

4223

29693,4

1400

3240

5168

2009

17246

2558

5286

27700

2076

22913

4582

32282,4

1500

3504

5589

2164

18576

2779

5742

29908

2239

24712

4942

34850,7

1600

3767

6009

2323

19941

3001

6201

32151

2403

26522

5304

37456,2

1700

4035

6436

2482

21306

3227

6668

34411

2566

28321

5664

40075,3

1800

4303

6864

2642

22680

3458

7145

36689

2729

30120

6024

42713,8

1900

4571

7291

2805

24079

3688

7621

38991

2897

31974

6395

45386,6

2000

4843

7725

2964

25444

3926

8112

41282

3064

33817

6763

48045,7

2100

5115

8159

3127

26843

4161

8598

43601

3232

35672

7134

50735,5

2200

5387

8593

3290

28242

4399

9090

45926

3399

37515

7503

53429,1

Рисунок 1
6 Тепловой баланс парогенератора
Целью расчета теплового баланса является определение расхода топлива. Величина расхода топлива вычисляется по формуле, полученной из уравнения «прямого» баланса парогенератора: [7]
кг/с (17)
Здесь:зК - коэффициент полезного действия (к.п.д.) парогенератора, %.
% (18)
Расчет теплового баланса начинают с вычисления располагаемой теплоты рабочей массы топлива по формуле:
(19)
Qm -физическое тепло топлива
кДж/кг (20)
Удельную теплоемкость жидкого топлива можно вычислять по формуле:
, кДж/кг град (21)
Где tm - температура подогретого топлива, 0С определяем из графика зависимости вязкости топлива от его температуры. tm = 75 0С [1]
кДж/кг град
кДж/кг
(22)
кДж/кг
Величина потерь теплоты с уходящими газами вычисляется по формуле:
, % (23)
Для вычисления q2 задаёмся температурой уходящих газов. tух.г:
tух.г = 180 0С
Затем по диаграмме J-t дымовых газов по этой температуре определяем энтальпию уходящих газов Jух. г. Зависимость представлена на Рисунке 2.
Jух.г = 3616,2 кДж/кг
Температуру воздуха в машинном отделении примем: tв = 30 0С
Теплоёмкость воздуха: Св = 1,3 кДж/кг град
%
Тепловые потери от химического q3 и механического q4 недожога для стационарных парогенераторов определяются в зависимости от конструкции топки и рода топлива
При сжигании жидкого и газообразного топлива потери от механического недожога q4=0.
В судовых котлах, использующих жидкое топливо, потери теплоты q3 принимаются в пределах 0,5-1,0%. Принимаем: q3 = 0.6 %
Потери теплоты через обмуровку стационарных котлов q5 определяют из графика зависимости удельной потери через обмуровку от паропроизводительности
В судовых котлах q5 принимают в пределах 1-5 %. Принимаем q5 = 2,56 % [5]
, % (24)
%
- энтальпия питательной воды
(25)
кДж/кг
- энтальпия насыщенного пара
= f(Pk) [9]
= 2768,4 кДж/кг
(26)
кДж/кг
кг/с
7. Расчет теплообмена в топке
Для топки проводят поверочный тепловой расчет. Цель расчета - определение величины тепловосприятия (температуры дымовых газов на входе из топки ) при заданной величине радиационной поверхности нагрева .
Перед расчетом процесса теплообмена проверяют соответствие тепловыделения в топке ее размерам. Для этого сравнивают величины фактических и допустимых тепловых напряжений:
(27)
Величину объема топочного пространства берем из прототипа котла Vт=1,93
Допустимая величина теплонапряженности топочного устройства также берётся из прототипа
Условие - не выполняется

Если фактические тепловые напряжения превышают допустимые, то это означает, что размеры топки недостаточны для сжигания данного количества топлива. В этом случае по величинам допускаемых тепловых напряжений определяют объем топочного пространства: [7]

(28)

Для вычисления формулу можно переписать в виде:

Та - абсолютная температура горения (теоретическая)

Во - величина критерия Больцмана

- степень черноты топки

- температура дымовых газов на входе из топки

Поскольку величины критерия Больцмана и степени черноты топки зависят от температуры дымовых газов на выходе из топки , расчет проводят методом последовательных приближений.

В общем случае для первого приближения можно принять = 1473 К

Степень черноты камерной топки вычисляют по формуле:

(30)

- коэффициент снижения тепловосприятия зависящий от рода топлива

Для мазута = 0,55

- степень экранирования топки

Нл - площадь радиационной поверхности нагрева. Берётся из прототипа котла. [1] Нл = 6,52

Fст - суммарная поверхность стен топки

(32)

- эффективная степень черноты факела

(33)

Степень черноты светящегося пламени (факела) вычисляется по формуле:

(34)

Эффективную толщину излучающего слоя пламени вычисляют по формуле:

(35)

Для топок котлов, работающих без наддува, .

Коэффициент ослабления лучей для трехатомных газов вычисляется по формуле:

(36)

Коэффициент ослабления лучей сажистыми частицами вычисляют по формуле:

(37)

Степень черноты не светящегося пламени (факела) вычисляется по формуле:

(39)

Коэффициент усреднения выбирается в зависимости от величины теплового напряжения топочного объема и рода топлива: [5]

при - жидкое топливо.

Критерий Больцмана вычисляют по формуле:

(40)

Коэффициент сохранения теплоты:

(41)

0,988

Теплосодержание дымовых газов , соответствующее абсолютной теоретической температуре горения , вычисляют по формуле:

(42)

По величине по диаграмме дымовых газов определяют величину абсолютной теоретической температуры горения . Зависимость представлена на Рисунке 2.

= 2009,7 К

По диаграмме дымовых газов определяют также и величину теплосодержания дымовых газов на выходе из топки по температуре .

= 29693,3 кДж/кг

Величина коэффициента М зависит от топочного устройства. Для топки судовых котлов на мазутном отоплении М = 0,64 [5]

Величину средней суммарной теплоемкости продуктов сгорания вычисляют по формуле:

(43)

По уравнению баланса для дымовых газов можно вычислить величину тепловосприятия в топке:

(44)

8. Расчет конвективных поверхностей нагрева

При расчете конвективных поверхностей используют:

а) уравнение теплового баланса, в которых приравнивается тепло, отданное газами, с одной стороны:

(45)

= 29693,4 кДж/кг

По диаграмме дымовых газов определяют величину по температуре . Зависимость представлена на Рисунке 2.

кДж/кг

кДж/кг

кДж/кг

б) уравнение теплопередачи:

(46)

Коэффициент теплопередачи рассчитывают по формулам:

(47)

- коэффициент теплоотдачи от дымовых газов к стенке

Н - площадь конвективных поверхностей

- температурный напор

- коэффициент теплоотдачи от дымовых газов к стенке, , определяется как:

(48)

- коэффициент теплоотдачи конвекцией

- коэффициент омывания труб. Как правило, для парообразующих притопочных пучков водотрубных вертикальных котлов, пучков, находящихся на резких поворотах газового потока .

При поперечном омывании шахматных гладкотрубных пучков труб газом или воздухом коэффициент теплоотдачи конвекцией рассчитывают по формуле:

- коэффициент теплопроводности, ;

- наружный диаметр трубы, м;

W- скорость газового потока, ;

- критерий Прандтля;

- поправка на число рядов труб;

- поправка на компоновку;

- кинематическая вязкость для продуктов сгорания;

Физические параметры , , для воздуха и продуктов сгорания среднего состава принимают по средней температуре потока из таблицы. [5]

(50)

Таблица 2

921,8

151

10,18

0,58

971,8

161

10,62

0,58

1021,8

172

11,05

0,57

Скорость потока газов при поперечном омывании пучка труб - W рассчитывают по следующей формуле:

(51)

- площадь живого сечения при поперечном омывании пучка труб:

(52)

- средняя длина проекции активно работающей, в рассматриваемом пучке, трубы (без учета застойных зон) на плоскость, перпендикулярную направлению потока;

- ширина газохода;

- число труб в ряду;

- наружный диаметр.

(52)

Значения , ,, определяем по чертежу

м

=11

=0,029 м

м

м/с

м/с

м/с

Поправка на компоновку , определяемая в зависимости от относительных поперечного и продольного шагов рассчитывают по формуле (55):

(53)

(54)

(55)

Поправку на число рядов труб определяют по следующей формуле:

- число рядов труб по направлению потока.

Коэффициент теплоотдачи излучением определяют по формуле:

(57)

- степень черноты газового потока при его средней температуре

(58)

(59)

- коэффициент ослабления лучей трехатомными газами.

(60)

- суммарная объемная доля трехатомных газов в газоходе;

- давление в топке, Мпа;

S - эффективная толщина излучающего слоя газов в межтрубном пространстве для

гладкотрубных пучков определяют по формуле:

(61)

Температура наружной поверхности стенки труб определяют по формуле:

(62)

- средняя температура обогреваемой среды, . Для кипящей жидкости её принимают равной температуре насыщения. t = 164,96

- коэффициенты загрязнения. Зависит от скорости движения газов. [5]

(м2·К/Вт)

Н - испарительная конвективная поверхность нагрева. Определяется из прототипа котла.

Н = 57,9

При поперечном омывании шахматных гладкотрубных пучков труб

a = 0.45

b = 1.72

z = 11*20 = 220

м/с

м/с

м/с

- коэффициенты загрязнения. Зависит от скорости движения газов. [5]

(м2·К/Вт)

Найдём среднее значение коэффициента теплоотдачи

Температурный напор есть усредненная по всей поверхности нагрева разность температур греющей (газов) о обогреваемой среды. Для противотока и прямотока определяется по формуле:

(64)

- разность температур между теплоносителями в том конце поверхности нагрева, где она больше;

= (65)

- разность температур на другом конце поверхности, где она меньше.

(66)

Таблица 3

кВт

W м/с

Q

кВт

800

1018

183,53

17,65

24,16

1194,815

517,96

2654,2

900

819,55

188,82

18,5

25,17

1244,815

498,4

2950,3

1000

616,56

191,96

19,4

26,18

1294,815

480,87

3242,4

Рисунок 3

Из графика Q = f(t'') в точке пересечения находим истинные значения

Qист = 1730(кВт) и tист = 445 єС которые следует принять при расчете.

Размещено на Allbest.ru

...

Подобные документы

  • Характеристика котла ДЕ-10-14ГМ. Расчет объемов продуктов сгорания, объемных долей трехатомных газов. Коэффициент избытка воздуха. Тепловой баланс котельного агрегата и определение расхода топлива. Расчет теплообмена в топке, водяного экономайзера.

    курсовая работа [267,4 K], добавлен 20.12.2015

  • Энтальпия воздуха и продуктов сгорания. Тепловой баланс парогенератора и расход топлива. Основные конструктивные характеристики топки. Расчет фестона, перегревателя, испарительного пучка и хвостовых поверхностей. Определение теплообмена в топке.

    курсовая работа [541,4 K], добавлен 25.06.2013

  • Расчет топочной камеры котельного агрегата. Определение геометрических характеристик топок. Расчет однокамерной топки, действительной температуры на выходе. Расчет конвективных поверхностей нагрева (конвективных пучков котла, водяного экономайзера).

    курсовая работа [139,8 K], добавлен 06.06.2013

  • Расчетные характеристики топлива. Расчет теоретических объемов воздуха и основных продуктов сгорания. Коэффициент избытка воздуха и объемы дымовых газов по газоходам. Тепловой баланс котла и топки. Тепловой расчет конвективных поверхностей нагрева.

    контрольная работа [168,0 K], добавлен 26.03.2013

  • Характеристика котла ТП-23, его конструкция, тепловой баланс. Расчет энтальпий воздуха и продуктов сгорания топлива. Тепловой баланс котельного агрегата и его коэффициент полезного действия. Расчет теплообмена в топке, поверочный тепловой расчёт фестона.

    курсовая работа [278,2 K], добавлен 15.04.2011

  • Тепловой баланс котельного агрегата, расчет теплообмена в топке и теплообмена пароперегревателя. Теплосодержание газов на входе и выходе, коэффициент теплоотдачи конвекцией. Расчет водяного экономайзера, воздухоподогревателя, уточнение теплового баланса.

    практическая работа [270,8 K], добавлен 20.06.2010

  • Общая характеристика котла. Определение составов и объемов воздуха и продуктов сгорания по трактам. Расчет энтальпии дымовых газов. Тепловой баланс котельного агрегата. Основные характеристики экономайзера. Расчет конвективных поверхностей нагрева.

    курсовая работа [151,1 K], добавлен 27.12.2013

  • Расчет горения топлива. Тепловой баланс котла. Расчет теплообмена в топке. Расчет теплообмена в воздухоподогревателе. Определение температур уходящих газов. Расход пара, воздуха и дымовых газов. Оценка показателей экономичности и надежности котла.

    курсовая работа [4,7 M], добавлен 10.01.2013

  • Выбор типа котла. Энтальпия продуктов сгорания и воздуха. Тепловой баланс котла. Тепловой расчет топки и радиационных поверхностей нагрева котла. Расчет конвективных поверхностей нагрева котла. Расчет тягодутьевой установки. Расчет дутьевого вентилятора.

    курсовая работа [542,4 K], добавлен 07.11.2014

  • Расчет объема продуктов сгорания и воздуха. Тепловой баланс, коэффициент полезного действия и расход топлива котельного агрегата. Тепловой расчет топочной камеры. Расчет конвективных поверхностей нагрева и экономайзера. Составление прямого баланса.

    курсовая работа [756,1 K], добавлен 05.08.2011

  • Виды топлива, его состав и теплотехнические характеристики. Расчет объема воздуха при горении твердого, жидкого и газообразного топлива. Определение коэффициента избытка воздуха по составу дымовых газов. Материальный и тепловой баланс котельного агрегата.

    учебное пособие [775,6 K], добавлен 11.11.2012

  • Пересчет состава и теплоты сгорания топлива. Тепловой баланс парогенератора. Предварительная расчетная схема и конструктивные размеры топки. Определение тепловыделения в топке и теоретической температуры горения. Характеристики и расчет экономайзера.

    курсовая работа [1,2 M], добавлен 21.05.2016

  • Выбор температуры уходящих газов и коэффициента избытка воздуха. Расчет объемов воздуха и продуктов сгорания, а также энтальпии воздуха. Тепловой баланс теплового котла. Расчет теплообменов в топке, в газоходе парового котла. Тепловой расчет экономайзера.

    курсовая работа [242,4 K], добавлен 21.10.2014

  • Описание конструкции и технических характеристик котельного агрегата ДЕ-10-14ГМ. Расчет теоретического расхода воздуха и объемов продуктов сгорания. Определение коэффициента избытка воздуха и присосов по газоходам. Проверка теплового баланса котла.

    курсовая работа [2,4 M], добавлен 23.01.2014

  • Определение объемов воздуха и продуктов сгорания, коэффициента полезного действия и расхода топлива. Расчет топки котла, радиационно-конвективных поверхностей нагрева, ширмового пароперегревателя, экономайзера. Расчетная невязка теплового баланса.

    дипломная работа [1,5 M], добавлен 15.11.2011

  • Действительное количество воздуха и продуктов сгорания. Тепловой баланс котельного агрегата и расход топлива. Основные конструктивные характеристики топки. Расчет теплообмена, фестона, пароперегревателя, хвостовых поверхностей и невязки теплового баланса.

    курсовая работа [2,9 M], добавлен 24.10.2013

  • Описание конструкции котла и топочного устройства. Расчет объемов продуктов сгорания топлива, энтальпий воздуха. Тепловой баланс котла и расчет топочной камеры. Вычисление конвективного пучка. Определение параметров и размеров водяного экономайзера.

    курсовая работа [1,1 M], добавлен 20.01.2014

  • Тепловой расчет промышленного парогенератора БКЗ-75-39 ФБ при совестном сжигании твердого и газообразного топлива. Выбор системы пылеприготовления и типа мельниц. Поверочный расчет всех поверхностей нагрева котла. Определение невязки теплового баланса.

    курсовая работа [413,3 K], добавлен 14.08.2012

  • Выполнение теплового расчета стационарного парового котла. Описание котельного агрегата и горелочных устройств, обоснование температуры уходящих газов. Тепловой баланс котла, расчет теплообмена в топочной камере и конвективной поверхности нагрева.

    курсовая работа [986,1 K], добавлен 30.07.2019

  • Описание парового котла. Состав и теплота сгорания топлива. Расчёт объемов и энтальпий воздуха, теплосодержания дымовых газов и продуктов сгорания, потерь теплоты и расхода топлива, топочной камеры, теплообмена в топке и конвективных поверхностей нагрева.

    курсовая работа [1000,2 K], добавлен 19.12.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.