Влияние азота на свойства стали

Рассмотрение результатов исследования взаимодействия азота со сталью. Определение основных последствий легирования азотом дисперсионно-твердеющих сталей. Расчет степени растворимости азота в железе. Анализ растворимости азота в зависимости от давления.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 10.12.2018
Размер файла 259,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Влияние азота на свойства стали

Азот является одним из наиболее распространенных элементов: его содержание в нижних слоях атмосферы составляет 78,11% а в земной коре - 0,04%. В нормальных условиях (Т=20 °С и P=1атм) азот представляет собой 2-х атомный газ. Атомный номер - 7, атомный вес - 14,008, плотность молекулярного азота - 1,649*10-3 г/см3. Температура плавления - 209,9 °С, а температура кипения - 195,7 °С.

Исследования взаимодействия азота со сталью проводились в течении всего 20 века. Они были начаты Н.П.Чижевским и И.И.Жуковым [7]. Однако только после 40-х годов стали рассматривать возможность использования азота как легирующего элемента. Вопросам влияния азота на свойства сталей, его растворимости и поведения в металле уделялось много внимания, как в нашей стране, так и за рубежом [2…4, 8, 9]. В настоящее время в промышленности используется более 200марок сталей, легированных азотом.

Стали, легированные азотом, принято подразделять на две категории:

-стали с содержанием азота ниже равновесного;

-стали с содержанием азота выше равновесного ("сверхравновесные").

Первые получают в условиях выплавки и кристаллизации при атмосферном давлении азота. Вторые - при повышенном давлении азота, позволяющем сохранить большее его содержание в металле, чем при открытой выплавке.

В последние годы в качестве перспективных сталей с различным уровнем легирования азота для разнообразных сфер применения были отмечены [10]:

- дисперсионно-твердеющие стали, легированные ванадием, ниобием и титаном;

- высокопрочные коррозионно-стойкие, аустенитные стали;

- стали со структурой азотистого феррита и мартенсита.

Легирование азотом дисперсионно-твердеющих сталей приводит к образованию мелкодисперсных нитридов по границам зерен, препятствующих их росту, позволяет повысить предел текучести и ударную вязкость металла [8].

Легирование азотом нержавеющих сталей, позволяет уменьшить в них содержание никеля и марганца в полтора - два раза, а в некоторых случаях вообще исключить эти элементы. Нержавеющие стали, легированные азотом, превосходят по прочности, вязкости и коррозионной стойкости традиционные нержавеющие стали.

Легированные азотом безникелевые стали, применяемые в медицине для изготовления хирургического инструмента и имплантатов [11-12] обладают повышенной прочностью, износостойкостью и не вызывают негативных явлений и аллергических реакций в человеческом организме.

Нержавеющие мартенситные и ферритные стали, легированные азотом, при соответствующей термической и термопластической обработке обладают повышенной прочностью, коррозионной стойкостью и улучшенной технологической пластичностью при высоких и низких температурах.

Подробное аналитическое обобщение данных о структуре и свойствах нержавеющих сталей, легированных азотом; растворимости азота в них; термодинамике этих растворов, в том числе, в зависимости от концентрации примесей и легирующих элементов; от температур и давлений реакций, протекающих в жидком металле; параметров диффузии и других факторов, связанных с особенностями выплавки, по состоянию на 60-е годы было сделано М.В. Приданцевым, Н.П. Таловым и Ф.Л. Левиным [13].

На основе анализа многочисленных публикаций [14-17] было показано, что азот:

- образует твердые растворы внедрения в аустените и феррите;

- увеличивает количество аустенита и стабилизирует аустенит по отношению к г > б и г>е превращениям при охлаждении и пластической деформации;

- изменяет предельную растворимость легирующих элементов в г и б - твердых растворах и влияет на распределение хрома, никеля и других легирующих элементов между аустенитом и ферритом;

- изменяет кинетику образования карбидных и других избыточных фаз при термической обработке;

- снижает энергию дефектов упаковки и, в связи с этим увеличивает деформационную способность аустенита.

Введение азота в сплавы позволяет:

- уменьшить в сплавах содержание никеля, марганца и других аустенитообразующих элементов при сохранении заданной аустенитной или иной структуры и, соответственно, уровня ферромагнитности сплава;

- увеличить содержание в сплавах элементов ферритообразователей, положительно влияющих на механические и коррозионные характеристики сплавов;

- улучшить характеристики технологической пластичности в результате расширения интервала существования аустенита в высокотемпературной области;

- повысить термическую стабильность аустенита и снизить вероятность его распада при нагреве с образованием нитридов и других фаз;

- увеличить коррозионную стойкость (сопротивление питтинговой и ножевой коррозии, коррозионному растрескиванию под напряжением, интеркристаллитной коррозии);

- повысить прочность сплавов путем использования деформационного упрочнения при наклепе [1].

Растворимость азота в железе

Растворимость азота в железе подчиняется закону Сивертса (закону квадратного корня):

1/2N2 = [N]; [N] = KN (1.1)

где [N] - растворимость азота в железе при данном парциальном давлении PN2 ;

KN константа реакции, численное значение которой зависит от температуры и способов выражения концентрации.

Выполняемость закона Сивертса указывает на идеальность образующегося раствора [18].

Авторам работы [19] для определения растворимости азота в жидком железе до температуры 2650°С предлагается уравнение:

lg[N] = (-850/T) - 0,905 +0,5 lg PN2 (1.2)

Из которого следует, что при Т = 1873 °К и PN2 = 1 атм [N] = 0,044%.

Анализ результатов многих исследований, выполненных различными авторами [18-25] методом отбора проб, показал хорошую согласованность данных, уровень отклонения которых от расчетной величины составляет 0,002%.

На рис.1.1 представлена температурная зависимость растворимости азота в жидком железе. Диаграмма состояния системы железо-азот приведена на рис. 1.2

Рис. 1. 1. Температурная зависимость растворимости азота в жидком железе

Рис.1.2. Диаграмма состояния Fe-N [26]

Концентрация азота, находящегося в равновесии с газообразным азотом растет с увеличением температуры. В точке перехода б>г (906 °С) скачкообразно изменяется, при дальнейшем росте температуры до перехода г> д (1402 °С) она уменьшается.

Азот может образовывать с железом два соединения Fe4N (9,9% N) и Fe2N (11,5% N). Fe2N начинает разлагается при температуре ~550 °С. При дальнейшем повышении температуры начинает диссоциировать и Fe4N.

Энтальпия растворения азота в жидком железе ДHN представляет собой разность двух противоположных по знаку величин: энтальпии диссоциации молекулярного азота на атомы (ДHдис) и энтальпии растворения атомарного азота в жидком железе (ДHP). Первый процесс является эндотермическим, а второй - экзотермическим. Так как ДHдис> ДHP, то процесс, описанный уравнением (1), протекает с поглощением тепла. Если данные по растворимости азота показывают хорошую согласованность у различных исследователей, то данные по энтальпии имеют значительный разброс.

Результаты статистической обработки большого массива экспериментальных данных позволили авторам работы [27] описать растворимость азота в жидком железе двумя уравнениями:

при Т < 1973K: lg [N] = -560/T - 1,06 (1.3)

при Т > 1973K: lg [N] = -1100/T - 0,79 (1.4)

Таким образом, энтальпия растворения азота в жидком железе до 1973 °K - 10700 Дж/моль, а выше 1973 °K - 21000 Дж/моль.

А.М. Самарин, первым обративший на это внимание, связывал изменение ДH при изменении температуры со структурными превращениями. Известно, что при растворении кислорода оксидная фаза проявляется при очень низком парциальном давлении кислорода в газовой фазе ( PO2= 10-8 атм). В отличие от этого, при растворении азота даже при PN2 > 1атм самостоятельная нитридная фаза не образуется. Образование нитридов типа Fe2N и Fe4N наблюдали лишь в твердом металле в температурном интервале существования аустенита.

Влияние парциального давления над расплавом железа на его растворимость в зависимости от времени выдержки при T = 1560 °C представлено на рис. 1.3.

Данные по кинетике азотирования свидетельствуют о том, что для выхода на стационарную концентрацию в чистом железе требуется около 40 мин., причем время практически не зависит от давления азота над расплавом.

Рис. 1.3. Изменение растворимости азота в железе в зависимости от его давления и времени выдержки при температуре 1560 °С [28].

Рис.1.4. Зависимость растворимости азота в жидком железе при температуре 1560 °С от парциального давления азота над расплавом

Присутствие примесей влияет на скорость растворения азота в металле. Так, при увеличении концентрации кислорода в металле от 0,067 до 0,144% время достижения равновесной концентрации увеличивается с 1,5 до 3,0 часов. Отмечено и аналогичное влияние серы: при ее концентрациях 0,49 и 0,87% и давлении азота 0,1МПа время достижения равновесной концентрации возрастает до 3,0 и 6,0 часов соответственно.

В работе [14] представлены данные, характеризующие изменение растворимости азота в жидком железе при температуре 1560 °С в зависимости от давления (до 4 атм.).

азот сталь дисперсионный растворимость

Список использованной литературы

1. Костина М.В. Развитие принципов легирования Сr- N сталей и создание коррозионно-стойких сталей нового поколения со структурой азотистого мартенсита и аустенита для высоконагруженных изделий современной техники. - Дис. … д-р тех. наук. - М.: ИМЕТ РАН, 2003.- 231 с.

2. Самарин А.М. Замена никеля азотом в жароупорной стали. // Известия АН СССР. ОТН - 1944.- № 1-2.

3. Просвирин В.И., Агапова Н.П. Влияние азота на свойства стали с высоким содержанием хрома. Сб. трудов /ЦНИИТМАШ "Азот в стали" -М.: Машгиз, № 1950.-№29.

4. Рашев Ц.В. Высокоазотистые стали. Металлургия под давлением.- София:- Издательство Болгарской академии наук "Проф. Марин Дринов",1995. -218с.

5. Poschitz I.N., Kolesov V.A. Use of High-Nitrogen non magnetic steel for production of steel-aluminum conductor. 5-th Int. Conf. High Nitrogen Steels. Espoo - Finland. may 27-28. 1998 (Далее HNS-98). Book of Abstracts. -Р. 19.

6. Банных О.А. Блинов В.М. Костина М.В., Лякишев Н.П., Ригина Л.Г., Горынин И.В., Рыбин В.В., Малышевский В.А., Калинин Г.Ю., Ямпольский В.Д., Буцкий Е.В., Римкевич В.С., Сидорина Т.Н. «Высокопрочная немагнитная коррозионно-стойкая свариваемая сталь». Патент РФ № 2205889, 2002.

7. Банных О.А. Блинов В.М. Костина М.В., Малышевский В.А., Рашев Ц.В., Ригина Л.Г., Дымов А.В., Устиновщиков Ю.И. «Высокопрочная коррозионно и износостойкая немагнитная сталь». Патент РФ № 2158319, 2000.

8. Чижевский Н.П. Железо и азот. Томск. -1914.

9. Банных О.А., Блинов В.М. Дисперсионно-твердеющие немагнитные ванадий содержащие стали. -М.: Наука. 1980. -192с.

10. Berns H. Alloy development and processing. Int. Conf. High Nitrogen Steels. HNS-2004. Book of abstracts. -P. 271-281.

11. -железа и перспективные направления разработки высокоазотистых сталей . Труды Iой Всесоюзной конференции "Высокоазотистые стали". Киев 18-20 апреля 1990. -С. 5-26. и Гаврилюк В.Г., Ефименко С.П. Влияние азота на структуру и свойства

12. Ефименко С.П., Пановко В.М., Лещинская Е.М., Сокол И.Я., Ригина Л.Г., Мишина Е.Г., Гаврилюк В.Г., Марков Б.П. «Коррозионно-стойкая немагнитная износостойкая сталь ». Патент РФ № 2116374, 1996.

13. Приданцев М.В., Талов Н.П., Левин Ф.М. Высокопрочные аустенитные стали. -М.: Металлургия, 1969.- 247с.

14. Рашев Ц. Производство легированной стали. -М.: Металлургия, 1981. - 246 с.

15. Костина М.В., Банных О.А., Блинов В.М. Особенности сталей легированных азотом. // Металловедение и термообработка.- 2000. -№12.- С. 3-6.

16. Nakamura N., Tsuchiyma T., Takaki S. Effect of structural factors of the mecanical properties of the high nitrogen austenitic steels. HNS-98. Book of Abstracts. -P. 209-214.

17. Блинов В.М., Елистратов А.В., Колесников А.Г. и др. Влияние термической обработки на структурные превращения и свойства высокоазотистых сталей. //Металловедение и термообработка.- 2000.- № 6. -С. 19-24.

18. Григорян В.А., Белянчиков Л.Н., Стомахин А.Я. Теоретические основы электросталеплавильных процессов. -М.: Металлургия, -1987.-136с.

19. Свяжин А.Г., Чурсин Г.М., Вишкарев А.Ф., Явойский В.И. //Металлы.- 1974.- № 5.- С.23-35.

20. Аверин В.В., Ревякин А.В., Федорченко В.И., Козина Л.Н. Азот в металлах. -М.: Металлургия,- 1976.- 221с.

21. Martin E. // Arhiv Eisenhuttenw. -1929/30.- Bd.3. -S.314.

22. Sieverts A. //Z. Phys. Chem. -1938.- Bd. A 155.- S. 229.

23. Sieverts A., Zapf G. // Z. Phys. Chem.- 1938. Bd. 178. -S. 314.

24. Pelke R.D.,Elliot I.F. The Solubiliny of Nitrogen in Liquid Iron Alloys.// Trаnsaction of the Metallurgical Society of AIMЕ. -1963.- V. 227. -№5. -P.849-855.

25. Морозов А.И. Водород и азот в стали.- М.: Металлургиздат, 1968. -280с.

26. Наnsen M., Anderko K. Constitution of binary alloys. -1959.- P. 539-541.

27. Юрин В.В., Котельников Г.И., Стомахин А.Я., Григорян В.А. Температурная зависимость растворимости азота в жидком железе. // Известия вузов. Черная металлургия. -1986.- № 11. -С.40-45.

28. Shenck H., Frohberg M.,Heineman H. Untersuchungen zur stickstoff aufnahme in flussigen Druckbericht lis zu vier Atmosfiran. // Eisenlegirungen in Archiv fur Eisenhuttenw. 1962.-B.33. №9. S. 503-602.

Размещено на Allbest.ru

...

Подобные документы

  • Типы электрохимических цепей и электродов. Сущность метода потенциометрии. Определение растворимости малорастворимой соли на примере хлорида серебра с использованием концентрационной цепи с переносом. Нормальный элемент Вестона, специфика его устройства.

    курсовая работа [3,0 M], добавлен 06.04.2015

  • Повышение стойкости металлических поверхностей к коррозионным процессам. Применение метода конденсации вещества в вакууме с ионной бомбардировкой. Конденсация веществ из плазмы в остаточной атмосфере азота при совмещении плазменных потоков металлов.

    реферат [2,0 M], добавлен 26.06.2010

  • Описание адиабатически изолированной системы. Изменения энтропия азота в изохорном процессе. Фазовые равновесия и фазовые переходы. Элементы технической термодинамики, понятие об идеальных и неидеальных растворах. Расчет КПД двигателя Стирлинга.

    контрольная работа [263,2 K], добавлен 24.05.2015

  • Электроснабжение ремонтно-механического цеха. Установка компрессии буферного азота. Расчет электрических нагрузок систем электроснабжения. Выбор числа и мощности трансформаторов. Расчет токов короткого замыкания и релейной защиты силового трансформатора.

    методичка [8,1 M], добавлен 15.01.2012

  • Изучение общих характеристик прочности, а также исследование структуры сталей. Рассмотрение основных методов определения магнитных и деформационных характеристик. Описание зависимости магнитных свойств от степени деформации сдвига металла при кручении.

    реферат [460,1 K], добавлен 20.04.2015

  • Методы биологической защиты. Вычисление стены лабиринта от рассеянного тормозного и рентгеновского излучения. Расчет концентрации озона в помещении ускорителя и рентгеновского симулятора. Объемная активность азота от тормозного излучения ускорителя.

    курсовая работа [962,3 K], добавлен 23.07.2014

  • Электродинамические явления в моделях климата: электрические заряды и электростатическое поле, механизмы их генерации и перераспределения в конвективном облаке. Возникновение грозовых разрядов как источника оксидов азота в атмосфере и пожароопасности.

    курсовая работа [915,5 K], добавлен 07.08.2013

  • Процесс трехступенчатого сжигания ни крупном огневом стенде. Изменение технологии топочного процесса. Сжигание мазута на полупромышленной топке. Конструкция полупромышленного котла. Сравнение методов трехступенчатого и двухступенчатого сжигания.

    реферат [181,4 K], добавлен 18.02.2011

  • Понятие фазового перехода и твердой растворимости. Типы фазовых диаграмм. Системы, их значение в микроэлектронике. Фазовые диаграммы, в которых в качестве одной из компонент фигурирует именно кремний. Двухфазная диаграмма и процесс отвердевания.

    реферат [1,1 M], добавлен 23.06.2010

  • Определение зависимости сопротивления сети от скорости потока, расчет сопротивления для определенного значения. Принцип работы и внутреннее устройство насосной установки, определение расхода воды в зависимости от перепада давления на дифманометре.

    курсовая работа [75,8 K], добавлен 21.02.2009

  • Общая характеристика и расчет основных параметров подогревателей высокого давления. Определение рабочих моментов собственно подогревателя, охладителя пара и конденсата. Изучение схемы движения теплообменивающихся сред в исследуемом подогревателе.

    контрольная работа [41,1 K], добавлен 09.04.2012

  • Расчёт пропускной способности сложного газопровода. Построение зависимости давления в эквивалентном газопроводе от продольной координаты. Распределение давления по участкам трубопроводной системы. Определение диаметра участков распределительной сети.

    курсовая работа [2,4 M], добавлен 23.03.2014

  • Определение испытательных напряжений. Расчет основных размеров трансформатора. Выбор марки и толщины листов стали и типа изоляции, индукция в магнитной системе. Расчет обмоток низкого и высокого напряжения. Определение параметров короткого замыкания.

    курсовая работа [238,7 K], добавлен 14.01.2013

  • Определение силы гидростатического давления жидкости на плоские и криволинейные поверхности, в закрытом резервуаре. Специфические черты гидравлического расчета трубопроводов. Определение необходимого давления рабочей жидкости в цилиндре и ее подачу.

    контрольная работа [11,4 M], добавлен 26.10.2011

  • Физические свойства природного газа. Описание газопотребляющих приборов. Определение расчетных расходов газа. Гидравлический расчет газораспределительной сети низкого давления. Принцип работы газорегуляторных пунктов и регуляторов газового давления.

    курсовая работа [222,5 K], добавлен 04.07.2014

  • Компрессор наружного контура (вентилятор), низкого и высокого давления. Камера сгорания, турбина высокого и низкого давления. Удельные параметры двигателя и часовой расход топлива. Проектный расчет основных параметров компрессора высокого давления.

    курсовая работа [593,1 K], добавлен 24.12.2010

  • Краткая характеристика турбоустановки. Схема движения теплообменивающихся сред. График изменения температур в теплообменнике. Графоаналитическое определение плотности теплового потока в зависимости от температурного напора. Расчет охладителя пара.

    курсовая работа [181,6 K], добавлен 28.06.2011

  • Основные понятия и виды давления, его физические параметры и единицы измерения для жидкой и газообразной среды. Назначение манометров и измерительных преобразователей, особенности их эксплуатации. Характеристика основных методов преобразования давления.

    курсовая работа [457,5 K], добавлен 14.07.2012

  • Обработка и анализ результатов экспериментального исследования теплоотдачи конвекцией от вертикального цилиндра к закрученному потоку воздуха в циклонной камере. Оценка степени достоверности результатов обработки и погрешности полученных измерений.

    курсовая работа [126,0 K], добавлен 12.09.2010

  • Определение основных параметров восстановительных и рафинировочных электропечей, служащих для получения различных ферросплавов, применяемых при производстве стали для улучшения ее свойств. Расчет мощности трансформатора и геометрических размеров печей.

    контрольная работа [206,9 K], добавлен 19.05.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.