Классификация систем отопления. Теплоносители

Анализ теплоносителей, характеристика систем отопления и их классификация. Условия, от которых зависит выбор теплоносителя. Разводка труб к радиаторам. Взаимное расположение основных элементов. Использование продуктов сгорания в качестве греющей среды.

Рубрика Физика и энергетика
Вид отчет по практике
Язык русский
Дата добавления 02.12.2018
Размер файла 31,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации казанский государственный архитектурно-строительный университет

Кафедра теплоэнергетики,

газоснабжения и вентиляции

Отчет по первой производственной практике

на тему: Классификация систем отопления. Теплоносители

Выполнил: ст. группы 6ТВ04

Лавилина А.А.

Проверил: Кареева Ю.Р.

Казань 2018

Содержание

Введение

1. Теплоносители

2. Характеристика систем отопления

3. Классификация систем отопления

4. Разводка труб к радиаторам

5. Взаимное расположение основных элементов

Заключение

Использованная литература

Введение

теплоноситель отопление радиатор сгорание

Каким бы ни было здание, большим или маленьким, чтобы в нем было уютно и тепло круглый год, необходимо надежное и удобное отопление. С развитием строительства в последние годы, наряду с поиском архитектурно - планировочных решений строений, на первый план выходят требования по обеспечению комфорта находящихся в них людей.

Одной из основных задач в этой области являются системы отопления, отвечающие современным требованиям.

Под современными требованиями подразумевается:

1. Высокая эффективность системы.

2. Экономичность.

3. Возможность автоматического регулирования и создания максимально комфортных условий проживания.

4. Возможность получения необходимого количества горячей воды.

Отопительные системы разрешают одну из задач по созданию искусственного климата в помещениях. Они служат для поддержания заданной температуры воздуха во внутренних помещениях зданий в холодное время года. [5]

Системы отопления могут различаться в зависимости от разных критериев. Существуют такие основные виды систем отопления, как: воздушное отопление, электрическое отопление, водяное отопление, паровое, и другие. Классификация систем отопления включает множество видов. Рассмотрим основные из них, а также проведем сравнение видов топлива для отопления.

1. Теплоносители

Рабочие среды, которые нагреваются или охлаждаются в процессе теплообмена, называются теплоносителями. Интенсивность передачи теплоты от одного теплоносителя к другому, устойчивость процесса нагревания, кипения или охлаждения и конденсации, а также надежность работы теплообменника зависят как от конструктивных особенностей аппарата, так и от параметров, физических и химических свойств теплоносителей. Физические и химические свойства теплоносителей часто предопределяют выбор типа и конструкцию теплообменника.

Важнейшими условиями, от которых зависит выбор теплоносителя, являются:

? допускаемая температура нагревания или охлаждения теплоносителя и возможность ее регулирования;

? упругость пара при принятой температуре и термическая устойчивость;

? физические свойства, влияющие на теплообмен;

? токсичность и химическая активность;

? доступность и стоимость;

? безопасность при нагревании.

В каждом конкретном случае исходя из условий процесса нагревания или охлаждения среды и конструктивных особенностей аппарата необходимо обосновать выбор теплоносителя, максимально удовлетворяющего предъявляемым к нему требованиям.

К наиболее распространенным теплоносителям относятся водяной насыщенный пар, вода, продукты сгорания топлива, воздух, дисперсные среды, высокотемпературные жидкости и их пары, жидкие металлы.

Насыщенный водяной пар часто применяется как греющая среда в стационарно установленных аппаратах различного назначения. Его можно транспортировать по трубопроводам на расстояние до нескольких сот метров. При нагревании паром в широких пределах и с достаточной степенью точности можно регулировать температурный режим путем изменения давления пара методом дросселирования без увлажнения или с увлажнением. Пар доступен, нетоксичен, относительно дешев, особенно если в теплообменных аппаратах используется пар, уже частично отработавший в каких-либо энергетических установках (в паровых турбинах, молотах, прессах, поршневых двигателях).

В большинстве случаев конденсация пара в теплообменнике происходит при постоянном давлении, постоянной температуре и высоком коэффициенте теплообмена, что часто является решающим фактором при выборе теплоносителя. В то же время с увеличением температуры нагрева необходимо повышать давление пара как греющей среды. Так, например, при температуре пара 300°С давление должно быть 90·105 Па. С увеличением давления возрастает металлоемкость и стоимость теплообменника, поэтому в промышленности и на предприятиях железнодорожного транспорта пар как теплоноситель применяется для нагревания других сред до умеренных температур 60-150 °С и сравнительно редко до 200 °С.

Горячая вода как греющий теплоноситель получила большое распространение в системах теплоснабжения, а также для технологических потребителей предприятий железнодорожного транспорта и промышленности. Предварительно вода нагревается в водогрейных котлах, в теплофикационных установках ТЭЦ, в паровых котельных, на центральных тепловых пунктах или в теплообменных аппаратах непосредственно у потребителя. В первом случае для подогрева воды используется натуральное топливо, во втором - пар из отборов паровых турбин и непосредственно от парогенераторов. В последнее время широко внедряются методы подогрева воды при прямом или косвенном использовании вторичных энергетических ресурсов, например отходящих газов промышленных печей, парогенераторов, отработавшего пара молотов, прессов, воды из системы охлаждения металлических конструкций печей, двигателей, компрессоров. [3]

Вода доступна, дешева, не токсична, может транспортироваться на далекие расстояния. В хорошо изолированных и соответствующим образом проложенных трубопроводах температура воды будет понижаться приблизительно на 1 °С при протяженности сети в 1 км. К достоинствам воды можно отнести и сравнительно высокий коэффициент теплообмена. К недостаткам воды, по сравнению с паром, можно отнести более сложную схему приготовления ее как теплоносителя и наличие целого ряда перекачивающих устройств (насосов); усложняется способ регулирования температурного режима теплообменного аппарата и выбор схемы движения теплоносителей, устанавливаются более жесткие ограничения по начальной и конечной ее температуре. [4]

Для надежной работы теплообменного аппарата и всего контура, в который он включен, необходимо, чтобы в любой точке системы трубопроводов и теплообменника температура воды была ниже температуры ее кипения при давлении, поддерживаемом в этом сечении. Это условие в настоящее время ограничивает возможность применения воды как теплоносителя только до температуры 150 °С с увеличением верхнего предела в будущем до 200 °С.

Вода как жидкая среда часто используется для охлаждения и конденсации других теплоносителей, осушки, увлажнения и очистки газа и воздуха, охлаждения технологических продуктов, машин, двигателей и других устройств. Особые теплофизические свойства воды и в этих случаях используются достаточно эффективно. Процессы охлаждения обычно происходят при умеренной температуре воды, близкой к температуре окружающей среды. Следовательно, ограничения на температурный режим в

этих случаях исключаются. Избыточное давление в системе должно выбираться из условий преодоления сопротивления контура, по которому перекачивается вода.

Продукты сгорания топлива используются как первичный теплоноситель в парогенераторах, водогрейных котлах, теплогенераторах для нагревания высокотемпературных теплоносителей, в сушильных установках, промышленных печах разного назначения и других теплообменных устройствах. Во многих отраслях промышленности и стационарной транспортной энергетике в качестве теплоносителя могут служить уходящие газы высокотемпературных технологических процессов, например промышленных печей, газотурбинных и поршневых двигателей.

Использование продуктов сгорания в качестве греющей среды дает возможность нагреть другой теплоноситель до высокой температуры или создать большой температурный напор между греющей и нагреваемой средами. В то же время следует иметь в виду, что верхний температурный предел теплоносителей и температурный напор ограничиваются допускаемыми температурами поверхности теплообмена. Регулирование температурного уровня продуктов сгорания топлива осуществляется методом рециркуляции (возврата) отработавших газов или разбавлением атмосферным воздухом. Последний способ снижения температуры газа экономически невыгоден.

Продукты сгорания топлива имеют существенные недостатки. В процессе нагрева другого теплоносителя участвуют большие объемы газов, транспортирование которых даже на расстояние нескольких десятков метров связано с большими затратами энергии, поэтому, как правило,

теплообменники устанавливают вблизи источника получения продуктов сгорания (топки, высокотемпературного технологического агрегата). Общий коэффициент теплоотдачи (конвекцией и излучением) от газов к поверхности теплообмена значительно меньше, чем для других теплоносителей, особенно при tг<500°С. Теплообменники получаются громоздкими. Если в газах содержится пыль (зола), то возможны интенсивный износ и засорение поверхности теплообмена. При некоторых соотношениях температур теплоносителей и концентрации SO2 в газах наблюдается коррозия трубопроводов. Возможен локальный перегрев поверхности теплообмена и теплоносителя.

Воздух как теплоноситель обладает большинством недостатков, свойственных продуктам сгорания топлива. При высоких температурах и одинаковых условиях движения у воздуха меньше коэффициент теплообмена с поверхностью, чем у газовой излучающе-поглощающей среды. В то же время воздух доступен, не токсичен, не взрывоопасен, не горит, но кислород воздуха является компонентом горения в топках парогенераторов, газотурбинных установок, в поршневых двигателях, промышленных печах. Воздух используется в системах отопления, вентиляции и кондиционирования, в рефрижераторных и стационарных холодильных установках. [3]

Сравнение основных теплоносителейдля отопления

параметры

вода

пар

воздух

Температура, разность температуры,С

150-70=80

130

60-15=45

Плотность кг\м3

917

1,5

1,03

Удельная массовая теплоемкость кДж\кг

4,31

1,84

1,0

Удельная теплота конденсации, кДж\кг

-

2175

-

Количество теплоты для отопления в объеме 1 м3 теплоносителя , кДж

316370

3263

46,4

Скорость движения, м\с

1,5

80

15

Дисперсные теплоносители - это проточные запыленные газовые теплоносители, которые способствуют интенсификации тепло- и массообменных процессов. Запыление газового потока позволяет лучепрозрачные теплоносители превратить в теплопоглощающие и излучающие среды. Дисперсные потоки обычно классифицируются по объемной концентрации в них зернистого вещества. Количественной объемной концентрацией принято считать отношение объема твердых частиц к общему объему всей системы. Для теплообменных устройств наибольший интерес представляют дисперсные потоки с концентрацией твердого вещества от 0,004 до 0,03 м3/м3 газа (система «Газовзвесь») и промежуточная система с концентрацией от 0,03 до 0,35 м3/м3 газа (псевдоожиженный слой). В условиях эксплуатации можно регулировать теплофизические свойства и интенсивность теплообмена дисперсных теплоносителей с поверхностью путем изменения концентрации твердого зернистого вещества в потоке от нуля до предельной величины. С применением дисперсных теплоносителей могут быть созданы более компактные теплообменные аппараты по сравнению с аппаратами, работающими на обычных газовых теплоносителях.

Высокотемпературные теплоносители могут применяться в жидком и парообразном состоянии при температуре от 200 до 500°С и выше и умеренном давлении (1ч6) 105 Па, то есть при значениях термодинамических параметров состояния, далеких от их критических значений. Высокотемпературные теплоносители делятся на три основные группы:

? теплоносители с металлической связью, или жидкометаллические;

? теплоносители с ионной связью, или ионные;

? теплоносители с остаточной связью, или органические.

Наибольшее распространение получили металлические теплоносители в жидком и парообразном состоянии: литий, калий и другие, а также большая группа кремнийорганических теплоносителей; органические теплоносители (ВОТ) - в жидком и парообразном состоянии: глицерин, этиленгликоль, нафталин, дифинил, дифинилбензол, дифиниловый эфир, эвтектические смеси дифинила, минеральные масла.

Электроэнергия как теплоноситель используется в электронагревательных установках. Этот способ нагрева отличается от других способов целым рядом преимуществ: быстротой включения в работу и доведения режима нагрева до необходимого уровня температур, простотой регулирования температурного режима и равномерностью нагрева, возможностью герметизации рабочей зоны, лучшими условиями труда,

компактностью электрических нагревателей. При разных способах электрического нагрева в рабочем пространстве аппарата можно создать и поддерживать как низкий (50-100°С), так и высокий (3000 °С) уровень температур. По технико-экономическим показателям аппараты с электрическим обогревом пока уступают теплообменникам, работающим на обычных теплоносителях. Однако в перспективе, по-видимому, электрообогрев найдет более широкое применение в стационарных условиях и на транспорте. [2]

2. Характеристика систем отопления

В зависимости от преобладающего способа теплопередачи отопление помещений может быть конвективным или лучистым.

К ковективному относиться отопление, при котором температура внутреннего воздуха поддерживается на более высоком уровне, чем радиационная температура помещения ,понимая под радиационной , усредненную температуру поверхностей , обращенных в помещение, вычисленную относительно человека, находящегося в середине этого помещения.

Лучистым называют отопление при котором радиационная температура помещения превышает температуру воздуха. Лучистое отопление при несколько пониженной температуре в помещении, более благоприятно для самочувствия человека (например, до 18-20 С вместо 20-22 С в помещениях гражданских зданий).

Система отопления - это совокупность конструктивных элементов со связями между ними, предназначенных для получения, переноса и передачи теплоты в обогреваемые помещения здания.

Система отопления предназначена для возмещения теплопотерь отапливаемых помещений. Основные конструктивные элементы системы отопления:теплоисточник- элемент для получения теплоты; теплопроводы- элемент для переноса теплоты от теплоисточника к отопительным приборам; отопительные приборы- элемент для передачи теплоты в помещение.

К системе отопления предъявляются требования:

? санитарно-гигиенические: поддержание заданной температуры воздуха и внутренних поверхностей ограждений помещения во времени, в плане и по высоте при допустимой подвижности воздуха, ограничение температуры на поверхности отопительных приборов;

? экономические: оптимальные капитальные вложения, экономный расход тепловой энергии при эксплуатации;

? архитектурно-строительные: соответствие интерьеру помещения, компактность, увязка со строительными конструкциями, согласование со сроком строительства здания;

? производственно-монтажные: минимальное число унифицированных узлов и деталей, механизация их изготовления, сокращение трудовых затрат и ручного труда при монтаже;

? эксплуатационные: эффективность действия в течении всего периода работы, надежность и техническое совершенство, безопасность и бесшумность действия. [5]

3. Классификация систем отопления

Из чего же состоит система отопления? "Сердцем" отопительной системы является котел. От него нагретый теплоноситель (вода или антифриз) с помощью циркуляционного насоса (если система с принудительной циркуляцией) или без него (естественная циркуляция) движется по трубам и отдает тепло вашему дому через отопительные приборы. Кроме вышеназванных основных элементов в систему отопления входит еще масса других более мелких, но необходимых для нормальной работы вещей: расширительный бак -- компенсирующий температурное расширение воды, фитинги -- для соединения труб, воздушные клапаны и многое другое. [1]

Системы отопления бывают с принудительной и естественной циркуляцией. В чем же их отличие? В системе с принудительной циркуляцией движение теплоносителя осуществляется с помощью циркуляционного насоса. Плюсами такой системы являются: комфорт (есть возможность поддерживать заданную температуру в каждой комнате), более высокое качество, небольшой диаметр труб, меньшая разница температур выходящей из котла нагретой воды и возвращающейся в котел остывшей (увеличивает срок службы котла). Основной и, пожалуй, единственный минус таких систем -- насос требует наличия электричества. В системе с естественной циркуляцией насоса нет. Роль насоса в ней выполняет гравитационная сила, возникающая за счет разности плотности (удельного веса) теплоносителя в подающей и обратной трубах (плотность горячей воды меньше, т. е. она легче, чем холодная). Для такой системы требуются трубы большого диаметра (чтобы снизить сопротивление), она практически не поддается регулированию, и при ее использовании вы получаете меньший комфорт при больших затратах топлива.

4. Разводка труб к радиаторам

Существует два способа разводки труб к отопительным приборам -- однотрубная и двухтрубная. При двухтрубной к каждому радиатору подведено две трубы -- "прямая" и "обратная". Эта разводка позволяет иметь одинаковую температуру теплоносителя на входе во все приборы. Двухтрубная разводка может быть двух типов: а) с параллельным подключением радиаторов (см. рис. 2), б) лучевая (коллекторная), когда от коллектора "лучами" к каждому отопительному прибору подводятся две трубы -- прямая и обратная. Минус лучевой системы -- большие затраты труб. Плюс -- легкая регулировка отопительных приборов и балансировка системы. При однотрубной разводке (см. рис. 1) теплоноситель переходит последовательно от одного радиатора к другому, при этом остывая. Таким образом, последний радиатор в цепочке может быть значительно холоднее первого. Если вы заботитесь о качестве системы отопления -- выбирайте двухтрубную систему, позволяющую регулировать температуру в каждой комнате. Единственный плюс однотрубной системы -- более низкая цена. [3]

Рисунок 1. Однотрубная разводка

Рисунок 2. Двухтрубная разводка с параллельным подключением радиаторов. ОП -- отопительный прибор 1 -- прямая 2 -- обратная

5. Взаимное расположение основных элементов

Центральными называют системы отопления Предназначенные для отопления нескольких помещений из одного теплового пункта, где находиться теплогенератор (котельная,ТЭЦ)

Местными системами отопления называют такой вид отопления , при котором все три основных элемента конструктивно объединены в одном устройстве, установленном в обогреваемом помещении. (пример печь, газовые и электрические приборы, воздушно-отопительные агрегаты).

по виду теплоносителя: паровые водяные воздушные комбинированные

по способу циркуляции теплоносителя: системы с естественной циркуляцией (гравитационные) системы с искусственной циркуляцией ( насосные)

по месту расположения подающих и обратных магистралей: с верхним расположением подающих магистралей ( по чердаку или под потолком верхнего этажа) с нижним расположением обеих магистралей ( по подвалу, над полом первого этажа или в подпольных каналах)

по месту расположения подающих и обратных магистралей: с верхним расположением подающих магистралей ( по чердаку или под потолком верхнего этажа) с нижним расположением обеих магистралей ( по подвалу, над полом первого этажа или в подпольных каналах)

по схеме включения отопительных приборов: Двухтрубные ( в которых горячая вода поступает в приборы по одним стоякам ,а охлажденная вода отводиться по другим) Однотрубные ( в которых горячая вода подается в приборы и охлажденная вода отводиться из них по одному стояку). [4]

Заключение

Система отопления представляет собой комплекс элементов, необходимых для обогрева помещений. Основными элементами являются генераторы теплоты, теплопроводы, отопительные приборы. Передача теплоты осуществляется с помощью теплоносителей - нагретой воды, пара или воздуха. Различают местные и центральные системы отопления. К местным относят системы, в которых все элементы объединены в одном устройстве и которые предназначены для обогрева одного помещения. К местным системам относят печное отопление, газовое (при сжигании топлива в местном устройстве) и электрическое. В водяных и паровых системах теплоноситель - вода или пар - нагревается в генераторе теплоты и передается по трубопроводам к нагревательным приборам. Прокладка трубопроводов систем отопления недопускается: а) на чердаках зданий (кроме теплых чердаков) и в проветриваемых подпольях в районах с расчетной температурой минус 40 °С и ниже (параметры Б); б) транзитных - через помещения убежищ, электротехнические помещения, шахты с электрокабелями, пешеходные галереи и тоннели. На чердаках допускается установка расширительных баков с тепловой изоляцией из негорючих материалов.[3] В заключение перечислим преимущества и недостатки основных теплоносителей для отопления. При использовании воды обеспечивается довольно равномерная температура помещений, можно ограничить температуру поверхности отопительных приборов, сокращается по сравнению с другими теплоносителями площадь поперечного сечения труб, достигается бесшумность движения в трубах. Недостатками применения воды являются значительный расход металла и большое гидростатическое давление в системах; тепловая инерция воды замедляет регулирование теплопередачи приборов. При использовании пара сравнительно сокращается расход металла за счет уменьшения площади приборов и поперечного сечения конденсатопроводов, достигается быстрое прогревание приборов. Гидростатическое давление пара в вертикальных трубах по сравнению с водой минимально. Однако пар как теплоноситель не отвечает санитарно-гигиеническим требованиям, его температура высока и постоянна при данном давлении, что не обеспечивает регулирования теплопередачи приборов, движение его в трубах сопровождается шумом.

При использовании воздуха можно обеспечить быстрое изменение или равномерность температуры помещений, избежать установки отопительных приборов, совмещать отопление с вентиляцией помещений, достигать бесшумности его движения в каналах. Недостатками являются его малая теплоаккумулирующая способность, значительные площадь поперечного сечения и расход металла на воздуховоды, относительно большое понижение температуры по длине воздуховодов. И так при выборе видов отопления по теплоносителю - водяного, воздушного, парового следует учесть все факторы, влияющие на окружающую среду, на приборы, на саму систему. [4]

Использованная литература

1. А.Н. Сканави, В.Г Богословский. ; СНиП 41-01-2003; «Отопление, вентиляция и кондиционирование», 2003г - 156 с.

2. А.Н. Сканави, Л.М. Махов ; CОтопление». Стройиздат. Москва 1991г. - 97с ; «Отопление». Издательство Ассоциации строительных вузов. 2002г. - 136с.

3. В. Н. Карпов ; Отопление // Краткая энциклопедия домашнего хозяйства. - М.: Государственное Научное издательство 1959.-336с.

4. НП «АВОК» ; «Система водяного отопления зданий».2007г.- 162с.

5. http://vse-lekcii.ru/ «статья Характеристика теплоносителей» 31.08.2018г.

Размещено на Allbest.ru

...

Подобные документы

  • Классификация видов отопления помещений в зависимости от преобладающего способа теплопередачи. Особенности конвективной и лучистой систем отопления. Характеристика огневоздушного, водяного, парового, инфракрасного и динамического вида отопления.

    курсовая работа [1,2 M], добавлен 02.04.2015

  • Выявление наиболее экономичного вида отопления жилых помещений. Расчет количества теплоты, которое необходимо для отопления. Сравнительный анализ различных систем отопления. Формула для внутренней энергии для идеального газа. Отопление тепловыми сетями.

    реферат [53,9 K], добавлен 21.11.2010

  • Виды систем горячего водоснабжения. Устройство внутренних водостоков. Классификация схем систем центрального горячего водоснабжения. Расчет внутренней водосточной сети. Принцип действия водяной системы отопления с естественной циркуляцией теплоносителя.

    контрольная работа [376,7 K], добавлен 14.12.2011

  • Выбор материала труб и его обоснование. Технология монтажных работ: заготовительные, транспортные, пусконаладочные. Спецификация элементов системы отопления и ее испытание. Расчет строительных, заготовительных и монтажных длин деталей, сметная стоимость.

    курсовая работа [149,2 K], добавлен 18.06.2015

  • Теплотехнический расчет воздухообмена, мощности систем отопления, калориферов воздушного отопления, систем вентиляции; выбор вентиляторов для приточной вентиляции. Составление и расчет тепловой схемы котельной, расхода теплоты на горячее водоснабжение.

    курсовая работа [195,8 K], добавлен 05.10.2010

  • Определение диаметров подающих трубопроводов и потерь напора - задача гидравлического расчета. Устройство систем отопления, их инерционность и принципы проектирования. Способы подключения отопительных приборов. Однотрубная система водяного отопления.

    реферат [154,9 K], добавлен 22.12.2012

  • Технология монтажа систем отопления и работы, проводимые во время монтирования. Техника безопасности и испытания, проводимые для проверки надежности системы нагрева помещения. Составление спецификации элементов конструкции и комплектовочной ведомости.

    курсовая работа [30,5 K], добавлен 19.12.2010

  • Теплотехнический расчет наружных стен, пола, расположенного на грунте, световых проёмов, дверей. Определение тепловой мощности системы отопления. Расчет отопительных приборов. Гидравлический расчет системы водяного отопления. Расчет и подбор калорифера.

    курсовая работа [422,1 K], добавлен 14.11.2017

  • Теплотехнический расчет системы. Определение теплопотерь через ограждающие конструкции, на инфильтрацию наружного воздуха. Расчет параметров системы отопления здания, основного циркуляционного кольца системы водяного отопления и системы вентиляции.

    курсовая работа [151,7 K], добавлен 11.03.2013

  • Определение коэффициента и сопротивления теплопередаче, ограждающих конструкций, мощности системы отопления. Расчет и организация воздухообмена, параметров систем воздухораспределения. Конструирование систем вентиляции. Автоматизация приточной камеры.

    дипломная работа [285,1 K], добавлен 19.09.2014

  • Определение сопротивлений теплопередачи наружных ограждающих конструкций. Выбор расчетных параметров теплоносителя. Расчёт циркуляционного напора в системе водяного отопления, площади отопительных приборов. Автоматизация индивидуального теплового пункта.

    дипломная работа [264,3 K], добавлен 20.03.2017

  • Определение тепловых нагрузок помещений на систему отопления. Подбор приборов к системе отопления основной части здания и для четвертой секции, балансировка системы отопления. Гидравлический расчет системы отопления двухтрубной поквартирной системы.

    курсовая работа [101,6 K], добавлен 23.07.2011

  • Снабжение теплом жилых, общественных и промышленных зданий (сооружений) для обеспечения коммунально-бытовых и технологических нужд потребителей. Характеристика труб, опор, компенсаторов. Схемы присоединений систем отопления и вентиляции к тепловым сетям.

    реферат [61,4 K], добавлен 07.01.2011

  • Гидравлический расчет и конструирование системы отопления жилого здания. Характеристика отопительных приборов. Определение количества типоразмеров конвекторов. Прокладка магистральных труб. Установка отопительных стояков. Расчет отопительных приборов.

    курсовая работа [35,2 K], добавлен 11.06.2013

  • Понятие и назначение теплоносителей, их классификация и типы, предъявляемые требования к выбору. Горячая вода, водяной пар, дымовые газы и воздух как теплоносители: преимущества и недостатки. Оценка основных экологических эффектов энергосбережения.

    контрольная работа [37,3 K], добавлен 13.02.2013

  • Тепловой баланс, характеристика системы теплоснабжения предприятия. Расчет и подбор водоподогревателей систем отопления и горячего водоснабжения. Расчет установки по использованию теплоты пароконденсатной смеси для нужд горячего водоснабжения и отопления.

    курсовая работа [194,9 K], добавлен 18.04.2012

  • Физические свойства теплоносителя: диапазон температур, теплоемкость, вязкость. Санитарно-гигиенические, экономические, архитектурно-строительные, производственно-монтажные теплоносители. Состояния влажного воздуха. Требования к хлад- и криоагентам.

    контрольная работа [617,8 K], добавлен 11.11.2013

  • Определение тепловой мощности системы отопления. Выбор и обоснование схемного решения системы отопления. Выбор компрессора. Компоновка теплонасосной установки. Предохранительный клапан в контуре теплового насоса. Виброизоляция оборудования установки.

    дипломная работа [2,2 M], добавлен 25.12.2015

  • Обоснование схем и компоновка систем отопления, гидравлический расчет. Определение основных параметров основного циркуляционного кольца. Тепловой расчет поверхности отопительных приборов. Число элементов в секционном приборе, поправочные коэффициенты.

    контрольная работа [134,1 K], добавлен 01.07.2014

  • Система отопления в древние времена. Принципы и механизмы обогрева помещений в древнем Риме. Печное отопление: русская печь, камин, оценка их эффективности, влияние на быт человека. Современные системы отопления: паровое, водяное, а также лучистое.

    курсовая работа [173,9 K], добавлен 15.05.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.