Алгоритмическая база для математического моделирования систем электроснабжения произвольной конфигурации

Основные характеристики разработанной алгоритмической базы, содержащей алгоритмический аппарат для математического моделирования электроэнергетических систем произвольной конфигурации. Создание программных моделирующих комплексов различного назначения.

Рубрика Физика и энергетика
Вид статья
Язык русский
Дата добавления 31.01.2019
Размер файла 35,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

УДК 621.311.001.57

Алгоритмическая база для математического моделирования систем электроснабжения произвольной конфигурации

Винокур В. М., Кавалеров Б. В., Шигапов А. А., г. Пермь

Аннотация

алгоритмический электроэнергетический программный

Представлены основные характеристики разработанной алгоритмической базы, содержащей алгоритмический аппарат для математического моделирования электроэнергетических систем произвольной конфигурации. Алгоритмическая база может быть использована для создания программных моделирующих комплексов различного назначения.

Задачи математического моделирования

В настоящее время значительно актуализировались задачи исследования систем электроснабжения в связи с необходимостью обеспечения их надежности, устойчивости, для оперативного диспетчерского управления в нештатных ситуациях, с целью поиска оптимальной топологии систем электроснабжения, разработки систем автоматического управления энергетическими модулями и всей системой в целом. Особое внимание следует уделить мини-энергосистемам, формируемым на основе автономных мини-электростанций: газотурбинных, газопоршневых, дизельных и др. Формируемые в этом случае мини-энергосистемы должны обеспечивать требуемые показатели в различных режимах: автономная и параллельная работа, работа на мощную сеть, установившиеся, переходные и несимметричные режимы работы. Решение перечисленных задач возможно только при использовании соответствующих компьютерных программ. С этой целью в Пермском государственном техническом университете была создана универсальная алгоритмическая база для формирования математических моделей систем электроснабжения произвольной конфигурации и состава структурных элементов.

В зависимости от потребностей исследователей, требований заказчика алгоритмическая база позволяет создавать компьютерные программы различного назначения. Перечислим лишь некоторые из них:

· расчет установившегося режима (узловые напряжения и токи ветвей);

· расчет переходных процессов (в генераторах, линиях связи, нагрузках);

· расчет несимметричных режимов работы;

· автоматизация управления системой электроснабжения в нормальных эксплутационных и аварийных режимах работы;

· синтез САУ энергоблоков, генераторов и первичных двигателей;

· расчет ввода резерва и вывода электрооборудования в ремонт;

· решение задачи оперативного диспетчерского управления в нештатных ситуациях;

· расчет различных оптимизационных задач.

Алгоритмическая база предоставляет разработчику весь необходимый арсенал методов и средств, реализованный в соответствии с форматом заказчика и основанный на строго обоснованных критериях практической эксплуатации в условиях промышленного производства. Алгоритмическая база «МЭЭС» формирует гибкую систему, которая может автоматически настраиваться на конкретные потребности заказчика и модифицировать свою структуру в соответствии с текущими ситуациями. Сегодня мы имеем несколько форматов, которые предложили заказчики, данные форматы легли в основу поля возможностей, формируемого при создании инструментальных средств и расширяемого по мере развития алгоритмической базы. Одним из главных требований являются адаптируемость и возможность к дальнейшему развитию, к расширению класса используемых методов и их свободному включению в инструментарий.

Разработка алгоритмической базы потребовала серьезной научно-исследовательской работы. В результате на сегодняшний день мы имеем необходимый арсенал методов и алгоритмов для компьютерного моделирования произвольных электросистем. Охарактеризуем объект исследования.

Основные принципы построения алгоритмической базы

Среди особенностей, присущих электроэнергетическим объектам, в первую очередь следует отметить значительную сложность большинства из них, которая проявляется в многоэлементности и иерархичности структуры, обилии степеней свободы, разнообразии параметров, характеризующих состояние [1]. Наличие у электроэнергетических объектов указанных признаков позволяет причислить их к объектам кибернетического типа [2]. Кроме того, необходимо отметить, что стандартные технические решения, обычно применяемые для электростанций больших и средних мощностей, оказываются неприемлемыми для малых (мини-энергосистем). В то же время каких-либо специальных норм технологического проектирования для них не существует, что требует от проектировщика творческого подхода к решению возникающих технических проблем [3]. В связи с этим задачи, которые необходимо решать при эксплуатации существующих, а также при создании новых образцов, оказываются весьма сложными. Решение таких задач на интуитивном уровне недопустимо.

В связи с этим принятие оптимальных решений возможно только при наличии полной информации о свойствах объекта, получаемой путем всестороннего его анализа. Проведение такого анализа с помощью прямого экспериментирования в энергосистемах практически полностью исключено.

Изучение свойств сложных электроэнергетических объектов возможно либо с помощью регистрации процессов, либо с помощью математических моделей, на которых расчетным путем моделируются различные процессы, возникающие в электроэнергетических объектах. Очевидно, что первый путь не всегда бывает удовлетворительным, а в ряде случаев, например, при создании нового, уникального объекта (электростанции), он полностью исключен.

На основании вышеизложенного можно сделать вывод, что путь исследования, состоящий в изучении свойств имитационных моделей, является наиболее перспективным, а подчас и единственно возможным.

Энергосистема является сложной системой. Основными отличительными признаками сложной системы являются следующие признаки [4].

1. Наличие большого количества взаимно связанных и взаимодействующих между собой элементов.

2. Сложность функций, выполняемых системой и направленных на достижение заданной цели функционирования.

3. Возможность разбиения системы на подсистемы, цели функционирования которых подчинены общей цели функционирования всей системы.

4. Наличие управления.

Процесс функционирования сложной системы можно представить как совокупность действий и элементов, подчиненных единой цели.

Математическая модель сложной системы состоит из математических моделей элементов и математической модели взаимодействия между элементами [4].

Исходя из этого, процесс создания математической модели системы электроснабжения должен рассматриваться как последовательность двух этапов: создание моделей отдельных элементов и создание модели их взаимодействия.

Под элементами будем понимать подсистемы, не подлежащие дальнейшему расчленению, внутренние процессы в которых не рассматриваются.

Была решена задача структурной декомпозиции. Выбор уровня декомпозиции осуществлялся, исходя из следующих соображений. Целесообразно, как уже отмечалось, получить по возможности наиболее универсальную математическую модель, ориентированную на широкий класс электроэнергетических объектов. Возможность получения такой модели обусловлена тем, что электроэнергетические объекты состоят в основном из ограниченного набора типовых элементов. К их числу относятся вращающиеся электрические машины, трансформаторы, линии электропередачи, реакторы, батареи конденсаторов и т.п. Таким образом, наиболее целесообразным и естественным представляется выбрать в качестве структурных элементов мини-энергосистем вышеперечисленные наиболее распространенные типовые элементы электрических систем и сетей.

Главным условием, которое необходимо выполнить при разработке математических моделей элементов, является следующее условие: математические модели структурных элементов должны быть получены в такой форме, которая должна допускать их непосредственное включение в модель мини-энергосистемы. Следовательно, математические модели всех элементов должны быть представлены в единой универсальной форме записи.

Обобщенные модели структурных элементов

Рассмотрим общую форму записи уравнений электрически взаимодействующих элементов (электрических машин, статической нагрузки, линий связи). Уравнения моментов для вращающихся машин здесь не рассматриваются, механическое взаимодействие рассматривается отдельно. Взаимодействие электрически связанных элементов наиболее естественно организовать посредством таких электрических параметров режима как токи и напряжения. С учетом сказанного система уравнений структурного элемента мини-энергосистемы относительно внешних переменных представлена следующим векторным уравнением:

(1)

где I, pI - вектор статорных токов и вектор производных статорных токов элемента; U - вектор напряжений, приложенных между внешними зажимами элемента; A, B - матрицы, размерность которых зависит от системы координат в которых моделируется структурный элемент (d,q или a,b,c), а также от того, полные это уравнения или упрощенные; H - вектор, определяющий воздействие на элемент со стороны средств регулирования электрических параметров; знак «-» в уравнении (1) означает, что структурный элемент является источником электрической мощности (генератором), знак «+» - потребителем; компоненты вектора H для пассивных элементов электрической системы - нулевые, для синхронных машин при отсутствии РВ (регулирования возбуждения) - постоянные, при наличии РВ - меняются на каждом шаге расчета.

Уравнения (1) решаются на каждом шаге расчета методом численного интегрирования относительно внешних токов структурного элемента. При этом следует отметить, что для пассивных элементов выражение (1) содержит всю систему дифференциальных уравнений элемента. Для электрических машин уравнения (1) следует интегрировать совместно с уравнениями роторных контуров и уравнениями, описывающими механическое состояние элемента. Таким образом, для электрических машин вектора I и pI не совпадают по размерности: вектор Iсодержит не только внешние, но и внутренние (роторные) токи, расчет которых производится на каждом шаге численного интегрирования полной системы дифференциальных уравнений электрической машины. Знаки при слагаемых уравнения (1) соответствуют нормальному направлению токов в электрических машинах (от генератора к узлу).

Взаимодействие структурных элементов

После приведения математических моделей всех элементов к единой обобщенной форме записи (1) строится математическая модель взаимодействия структурных элементов.

Электрическая система изображается в виде совокупности соединенных между собой двухполюсников (ветвей), то есть элементов с двумя зажимами. Наиболее общим понятием, соответствующим представлению системы в виде соединения ветвей, является понятие графа [5]. Представление системы электроснабжения в виде схемы является полным, то есть дает достаточную информацию для решения задачи моделирования, если оно содержит как соединения входящих в нее элементов, так и характеристики этих элементов:

· характеристики элементов записываются в форме (1);

· способ соединения элементов в систему изображается в виде графа.

На основании анализа возможных методов моделирования взаимодействия элементов [7] выбор был сделан в пользу методов, основанных на решении уравнений связи.

Для построения алгоритма решения уравнений связи и автоматизации построения расчетных схем электрических систем используется матрично-топологическое направление теории цепей.

Проиллюстрируем получение уравнений связи электрически взаимодействующих элементов. Принцип формирования систем уравнений связи, как отмечается в [2], базируется на условии инвариантности граничных переменных, согласно которому в общем для элементов узле в произвольный момент времени каждая скалярная граничная переменная, определяемая в одном элементе, тождественно равна себе самой, определенной в любом другом из этих элементов, а алгебраическая сумма векторных граничных переменных при тех же условиях равна нулю. При этом скалярной является переменная, не имеющая направления (в нашем случае - потенциал), а векторной - граничная переменная, характеризующаяся направлением (в нашем случае - электрический ток). Уравнения связи могут быть составлены как баланс активной и реактивной мощностей в узловой точке [6]:

, , (2)

что равноценно уравнению 1-го закона Кирхгофа для узловой точки.

Для системы, представленной на рисунке, уравнения связи в соответствии со сказанным будут иметь следующий вид:

(3)

Аналогично составляются уравнения связи и для более сложных структурных схем.

На основании системы уравнений (3) формируется векторно-матричное уравнение для расчета узловых напряжений на каждом шаге расчета:

, (4)

где - клеточная матрица инцидентности, клетками матрицы являются единичные, нулевые матрицы или матрицы преобразований координат (5); - транспонированная матрица инцидентности; Y - блочная матрица проводимостей ветвей (элементов), образующих систему; HY - вектор, полученный из правых частей уравнений элементов в форме (1); - матрица, содержащая производные элементов матриц преобразования координат (5); U - вектор искомых потенциалов узлов.

У каждого генератора система d, q координат (Парка-Горева) связана с его ротором и поэтому при их согласовании необходимо использовать следующие матрицы преобразований. Матрица преобразования:

, (5)

где д ij - угол между осями Парка-Горева двух различных генераторов.

Из структуры матрицы инцидентности и структуры матрицы видно, что их элементы определяются конфигурацией системы и выбором систем координат, к которым выполняется приведение. Вектор НY и матрица Y определяются составом элементов системы.

Таким образом, разработанный алгоритм позволяет явно учесть состав и конфигурацию структурных элементов, составляющих систему и, по этой причине, используется для автоматизированной подготовке модели энергосистемы, а также при управлении имитационной моделью (оперативные переключения, изменения состава и конфигурации и т.д.).

В разработанном алгоритме решения уравнений связи (4) матрица инцидентности выделяется явно. При этом становится возможно, непосредственно изменяя блоки матрицы, вносить изменения в схему расчета. При изменении состава элементов необходимо также изменять матрицу проводимостей элементов Y и вектор Hy.

Основные вычислительные трудности при реализации алгоритма (1) связаны с обращением матрицы , размер которой равен 2n, где n - число узлов моделируемой системы электроснабжения.

Использование матричных операций позволяет создать алгоритмы цифрового моделирования сложных переходов в любой их последовательности для самых различных эквивалентных схем мини-энергосистем.

Таким образом, использование матрично-топологического подхода для моделирования взаимодействия структурных элементов дает возможность организовать эффективное управление моделью мини-энергосистемы и ее последовательную коррекцию при расчетах сложных переходов в системе.

Созданная алгоритмическая база «МЭЭС» обеспечивает формирование различных вариантов компьютерных программ для моделирования мини-энергосистем произвольной конфигурации и состава структурных элементов. Реализуется моделирование всех основных режимов работы, в том числе, статических, динамических, несимметричных.

Пермский государственный технических университет предлагает потенциальным заказчикам различные варианты компоновки программных комплексов в зависимости от характера решаемых задач.

Литература

1. Коротков Б.А., Попков Е.Н. Алгоритмы имитационного моделирования переходных процессов в электрических системах. - Л.: Изд-во Ленинградского университета, 1987. - 280 с.

2. Веников В.А. Кибернетические модели электрических систем. - М.: Энергоатомиздат, 1982. - 328 c .

3. Бут Д.А. Синтез автономных электроэнергетических систем // Электричество. - 1994. - № 1. - С. 1-17.

4. Бусленко Н.П. Моделирование сложных систем. - М.: Наука, 1978. - 440 с.

5. Оре О. Теория графов. - М.: Наука, 1980. - 336 с.

6. Веретенников Л.П. Исследование процессов в судовых электроэнергетических системах. Теория и методы. - Л.: Судостроение, 1975. - 376 с.

7. Кавалеров Б.В. Выбор способа моделирования взаимодействия структурных элементов системы электроснабжения // Наука, техника, инновации: Материалы докладов региональной научной конференции 05 - 08 декабря 2002 г., ч.2 - Новосибирск, 2002. - С. 137-138.

Размещено на Allbest.ru

...

Подобные документы

  • Эффективность создания и объединения электроэнергетических систем. Эффект масштаба. Основные эффекты, достигаемые при объединении электроэнергетических систем. Межгосударственные электрические связи и объединения. Разновидности межгосударственных связей.

    презентация [3,3 M], добавлен 26.10.2013

  • Проектирование системы электроснабжения сельского населенного пункта. Выбор конфигурации распределительной сети. Определение мощности и подбор трансформаторов подстанции. Построение таблицы отклонений напряжения. Электрический расчет воздушной линии.

    курсовая работа [482,2 K], добавлен 04.09.2014

  • Ионизация в идеальном газе и плазмозоле. Система идентичных частиц в буферном газе. Учет ионизации атомов легкоионизируемой присадки. Дебаевский подход моделирования гетерогенных кулоновских систем. Ячеечные модели плазмы, содержащей частицы.

    курсовая работа [466,7 K], добавлен 14.03.2008

  • Первый, второй и третий законы Ньютона. Инерциальные системы, масса и импульс тела. Принцип суперпозиции, импульс произвольной системы тел. Основное уравнение динамики поступательного движения произвольной системы тел. Закон сохранения импульса.

    лекция [3,6 M], добавлен 13.02.2016

  • Разработка проекта модернизации районной котельной г. Волковыска. Выполнение расчёта тепловой схемы с применением методов математического моделирования. Создание программы для ЭВМ по расчету основных энергоносителей, КПД котлов и котельной в целом.

    дипломная работа [1,1 M], добавлен 03.04.2012

  • Базовые сведения о необычном эффекте туннельной интерференции полей волн произвольной физической природы, проявление которой необходимо при изучении и физико-математическом моделировании условий распространения указанных волн в поглощающих средах.

    реферат [43,6 K], добавлен 30.01.2008

  • Три основных закона динамики Исаака Ньютона. Масса и импульс тела. Инерциальные системы, принцип суперпозиции. Импульс произвольной системы тел. Основное уравнение динамики поступательного движения произвольной системы тел. Закон сохранения импульса.

    лекция [524,3 K], добавлен 26.10.2016

  • Анализ уравнения движения математического маятника. Постановка прямого вычислительного эксперимента. Применение теории размерностей для поиска аналитического вида функции. Разработка программы с целью нахождения периода колебаний математического маятника.

    реферат [125,4 K], добавлен 24.08.2015

  • Изучение теорий каустик, оптических свойств кривых и поверхностей на примере моделирования оптических систем в СКM Maple. Понятие каустики в рамках геометрической оптики, ее образования. Построение модели каустики, написание программных процедур.

    дипломная работа [1,6 M], добавлен 16.06.2017

  • Способы построения программы в программной среде MatLab. Формулы, необходимые для математического моделирования физической модели. Построение графической модели колебания струны с жестко закрепленными концами. Создание физической модели колебания.

    лабораторная работа [307,7 K], добавлен 05.01.2013

  • Проектирование сети для электроснабжения промышленного района. Выбор наиболее экономически целесообразного варианта, отвечающего современным требованиям. Определение параметров сети, конфигурации и схемы, номинального напряжения, мощности трансформаторов.

    курсовая работа [1,1 M], добавлен 15.05.2014

  • Формулировка математической модели для описания процессов тепло- и массообмена в теплообменниках-испарителях в условиях теплопритока с учетом реальных свойств рабочего тела, листинг программного комплекса для математического моделирования этих процессов.

    отчет по практике [41,8 K], добавлен 15.09.2015

  • Особенности развития современных электроэнергетических систем. Знакомство со способами предотвращения коротких замыканий и уменьшения их последствий. Этапы разработки схемы выдачи электрической энергии. Проблемы выбора коммутационно-защитных аппаратов.

    контрольная работа [604,8 K], добавлен 07.10.2014

  • Эволюция развития представлений о роли и месте оперативных комплексов. Средства диспетчерского и технологического управления. Реализация CIM-моделей в задачах автоматизации энергетических объектов. Концептуальная модель системы с шиной интеграции.

    реферат [130,4 K], добавлен 27.10.2011

  • Автоматическая защита воздушных кабельных линий и систем электроснабжения от многофазных и однофазных замыканий, устройства сигнализации. Расчет токов КЗ, схема электроснабжения. Дифференциальная и газовая защита трансформатора, АД от замыканий на землю.

    курсовая работа [6,6 M], добавлен 23.08.2012

  • Перечень электроприемников первой категории городских электрических сетей. Выбор схемы электроснабжающей сети. Схема сети 110-330 кВ кольцевой конфигурации для электроснабжения крупного города. Схемы присоединения городских подстанций к сети 110 кВ.

    контрольная работа [892,8 K], добавлен 02.06.2014

  • Разработка сети для электроснабжения потребителей промышленного района. Составление баланса мощностей. Выбор конфигурации сети, схем подстанций потребителей, трансформаторов. Расчет потоков мощности режима наибольших нагрузок и послеаварийного режима.

    курсовая работа [1018,2 K], добавлен 06.12.2015

  • Краткая характеристика технологического процесса и определение расчетных электрических нагрузок. Выбор систем питания электроснабжения и распределения, основного оборудования, проверка систем по условиям короткого замыкания. Релейная защита и автоматика.

    дипломная работа [1,6 M], добавлен 03.09.2010

  • Расчеты токов короткого замыкания, необходимые для выбора электрооборудования различных участков разработанной схемы. Выбор систем электроснабжения. Электрические нагрузки и потребление электроэнергии приемниками. Номинальная мощность приемника.

    курсовая работа [796,4 K], добавлен 13.01.2011

  • Основные типы конфигурации электрических сетей и схем присоединения к сети понижающих подстанций. Схемы внешнего электроснабжения магистральных нефтепроводов и газопроводов. Нефтеперекачивающие и компрессорные станции. Электроснабжающие сети городов.

    презентация [1,4 M], добавлен 10.07.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.