Energetic charge of an information process

The results of the comparison of peculiarities of irreversible informational and thermodynamic processes. A more precise definition of "infopy" as an energetic charge. The basic laws of informology for a closed information space, or an isolated system.

Рубрика Физика и энергетика
Вид статья
Язык английский
Дата добавления 02.02.2019
Размер файла 18,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Energetic charge of an information process

Tamara Popova

Abstract

УДК 621.1.016:004

ENERGETIC CHARGE OF AN INFORMATION PROCESS

Tamara Popova,

Odessa National Polytechnic University.

Main laws of technical thermodynamics are universal and could be applied to processes other than thermodynamic ones. The results of the comparison of peculiarities of irreversible informational and thermodynamic processes are presented in the article and a new term "Infopy" is used. A more precise definition of "infopy" as an energetic charge is given in the article.

Keywords: information; infopy; entropy; energy; thermodynamics.

Rezumat

ОNCГRCARE ENERGETICГ A PROCESULUI INFORMAЮIONAL

Popova T.M.,

Universitatea Naюionalг Politehnicг din Odesa.

Legile principale ale termodinamicii tehnice sunt universale єi pot fi aplicate єi оn alte procese, diferite de cele termodinamice. Оn articolul sunt prezentate rezultatele comparгrii particularitгюilor proceselor informaюionale єi termodinamice ireversibile єi se introduce un termen nou "infopie". Se dг o definiюie mai precisг a "infopiei" ca sarcinii energetice.

Cuvinte cheie: informaюie, infopie, entropie, energie, termodinamicг.

Аннотация

ЭНЕРГЕТИЧЕСКИЙ ЗАРЯД ИНФОРМАЦИОННОГО ПРОЦЕССА

Попова Т.М.,

Одесский национальный политехнический университет.

Основные законы технической термодинамики универсальны и могут быть применены и к другим процессам, отличным от термодинамических. В статье приводятся результаты сравнения особенностей необратимых информационных и термодинамических процессов и вводится новый термин "инфопия". Даётся более точное определение "инфопии" как энергетического заряда.

Ключевые слова: информация, инфопия, энтропия, энергия, термодинамика.

Introduction

In the scientific literature and everyday life there is certain confusion in using the term "Information", similar to how, in many textbooks on technical thermodynamics, the elementary quantity of heat in an indefinitely small process is incorrectly named "heat change" [1] or [2]. It would be more correct to consider information (which includes heat and a unit of work as well as matter, space and time) as a particular form of energy and consider it an energetic function of the information process.

Information cannot increase or decrease. It is positive when it is directed to the subject or negative, when it is directed from one.

The phenomenon of information transfer from a more informed subject to a less informed one must be named a new term, for example "Infopy", a special case of which in the heat-exchange processes is entropy [3].

Infopy, like entropy, increases during inversion and decreases during diversion and does not change during the isoinfopy process, which is a process of vacuum, when information is neither inverted nor diverted from the subject, for example a blind-deaf-mute person at a point of rest. Obstacles, information noise, errors, misunderstandings, dispersion and dissipation of the information accompany the change of infopy in irreversible processes. Based on [4], an elementary measure of any form of energy exchange can be presented as:

(1)

where:

дЭ - the quantitative measure of a particular form of heat exchange,

Y - energetic potential (moving force) of a process,

dX - energetic charge (coordinate of a state) of a process,

дШ - elementary the limits of dissipation - an internal transfer within the same body from an orderly form of motion to a random form (dissipation of energy, friction and vortex state).

Analogous to [4], the elementary quantity of information:

дJ = cdS - дШ, (2)

where:

c - an energetic potential, a degree to which the subject is informed, an intensive value [Bite],

dS - an indefinitely small change of infopy of a separate individual, the energetic charge and an extensive value [Joule/Bites],

дШ -elementary information interference (noise) andd inadequate perception of the information [Joule],

dS = (дJ+дШ)/c. (3)

Informative processes, in contrast to thermodynamic ones, are always irreversible. The ability of a human brain or a computer to accumulate information is truly limitless. However, it is difficult to find two subjects who are informed to the same degree and have the same knowledge. Therefore, change of infopy of an isolated information system is always positive:

dSc = ?Sі > 0. (4)

Furthermore, information is always transferred from the more informed subject to the less informed and never the other way around [3].

Infopy and laws of informology

In a closed information space, or in an isolated information system, irreversible (natural) processes are subordinated to two basic laws of informology.

The first law of informology is a reflection of the universal law of eternity (preservation) and transmission of the information.

It conveys quantitative reciprocal connection between the characteristics of an information state and characteristics of information processes. The first law is universal. The sum of information that streams in the universe does not change, only transforms from one form to another.

Indeed, the informational basis of all changes resulting from circular information exchange does not change [5].

The second law of informology states that: infopy of an isolated system during irreversible information processes always increases (strives to the maximum); or in other words: transmission of the information from a less informed subject (an object) to a more informed subject (an object) requires spending additional resources, such as work and finances. It also creates emotional pressure. In reality, informative processes are accompanied by losses of exergy of the information. Exergy is a part of energy, which can be transformed into unit of work during the reciprocal interconnection with a milieu of unlimited capacity. The total loss of information is not possible, yet the loss of the useful part of the information, and its quality, is possible. The idea was developed in [6, 7, 8].

Conclusion

1. The thermodynamic method based on combination of the first and the second laws of technical thermodynamics is universal and could be used for analysis of many natural unidirectional processes including informative ones.

2. Information as a quantitative measure of energetic interconnection between subjects cannot be lost. infopy informology thermodynamic energetic

3. An increase of infopy of an isolated informational system is a common sign of its irreversibility while an increase of entropy in chemical and thermodynamic systems represents a particular case of increase of infopy.

References

1. Кириллин В.А., Сычев В.В., Шейндлин А.Е. Техническая термодинамика: Учебник для теплоэнергетических спец. Вузов, 4 издание. - М. Энергоатомиздат. - 1983. - 416 с.

2. Владимиров Ю.А. и др. Биофизика. - М.: Медицина, 1983. - 272 с.

3. Tamara M. Popova. Cxu vere la naturaj procezoj tendencas flui senreturne en unu flankon// Scienco kaj kulturo.-2003.-Vol. 47. №3.-P. 42-43 (in Esperanto).

4. Андреев Л.П., Никульшин В.Р., Максимов М.В. Технічна термодинаміка та теплопередача. - Навч. посібник для студ. вищих навчальних закладів.-Одеса: Видавн."ТЕС" 2001.-106 с.

5. Rukosujrv G.N. Informologio-scienco de III-a miljaro. //Scienco kai kulturo. 2000.-Vol. 27, №1. P. 38-41. (in Esperanto).

6. Попова Т.М. Инфопия в информационных, химических и термодинамических необратимых процессах. Вестник Одесского национального университета. Том 10, выпуск 1, 2005, с. 80-83.

7. Попова Т.М. На стыке энергетики и информатики. Materialy V Miкdzynarodowej naukowi-praktycznej konferensji "Strategiczne pytania њiatowej nauki-2009". Vol.11. Techniczne nauki. Nauka I studia. - str. 48-50.

8. Попова Т.М., Мельник С.И. Особенности информационных процессов в

свете основных законов технической термодинамики. Materiбly v mezinбrodni vйdecko-praktickб konference "Efektivni nastroje modernich vмd - 2009". Dil 14. Matematika.Moderni informaиni technologie Praga. Publishing House "Education and Science" s.r.o. 2009, c. 37-39.

Сведения об авторе

Попова Тамара Моисеевна. В 1957 году окончила Одесский политехнический институт.

Квалификация: инженер-теплоэнергетик. В 1969 году защитила кандидатскую диссертацию на тему "Энергетические характеристики многокорпусных выпарных установок". Т. Попова около 50 лет работает в Одесском Национальном Политехническом Университете. С 1975 года - в должности доцента кафедры теоретической, общей и нетрадиционной энергетики. Основное направление научной деятельности: Применение основных законов технической термодинамики для анализа эффективности термодинамических и информационных процессов. Т. Попова - автор более сотни научных и научно-методических работ. Среди них - несколько мультимедийных учебников для дистанционного обучения студентов. Область научных интересов: энергетика, информатика, педагогика и психология высшей школы, этикет, эсперанто.

Размещено на Allbest.ru

...

Подобные документы

  • The basic principles and the protection of power lines patterns used in this process methods. Physical basics of high-power transformers in substations. Justification of the information received. Diagram illustrating the operation of the protection.

    презентация [628,0 K], добавлен 18.02.2016

  • The principles of nonlinear multi-mode coupling. Consider a natural quasi-linear mechanical system with distributed parameters. Parametric approach, the theory of normal forms, according to a method of normal forms. Resonance in multi-frequency systems.

    реферат [234,3 K], добавлен 14.02.2010

  • The photoelectric effect. The maximum kinetic energy. Putting it all together. Can we use this idea in a circuit. The results of the photoelectric effect allowed us to look at light completely different. The electron microscope. Wave-particle duality.

    презентация [2,3 M], добавлен 06.04.2016

  • Determination of wave-length laser during the leadthrough of experiment in laboratory terms by means of diagnostics of laser ray through the unique diffraction of cut. Analysis of results: length of fringe, areas and interrelation between factors.

    лабораторная работа [228,4 K], добавлен 29.12.2010

  • Completing of the equivalent circuit. The permeance of the air-gaps determination. Determination of the steel magnetic potential drops, initial estimate magnetic flux through the air-gap. Results of the computation of electromagnet subcircuit parameters.

    курсовая работа [467,8 K], добавлен 04.09.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.