Еще раз о мифическом Большом взрыве

Приведен анализ реликтового излучения, который убедительно доказывает принадлежность этого излучения спектру атома и молекуле водорода – самого распространенного (73%) химического элемента Вселенной. Представлена схема кольцевых магнитных полей фотон.

Рубрика Физика и энергетика
Вид статья
Язык русский
Дата добавления 04.02.2019
Размер файла 399,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Еще раз о мифическом Большом взрыве

Ф.М. Канарев

kanarevfm@mail.ru

Новая теория микромира дает новую интерпретацию спектру излучения Вселенной, из которой однозначно следует физическая суть реликтового излучения и мифическая суть Большого взрыва. Однако, не владеющие этой информацией, продолжают обсуждать проблему Большого взрыва, которой уже давно нет в науке ХХI века [1].

Излучение Вселенной, названное реликтовым, впервые было открыто американскими физиками Пензиасом и Вильсоном в 1965 г. за что им была присуждена Нобелевская премия в 1978 г. Анализ спектра этого излучения показал, что его зависимость от длины волны похожа на экспериментальную зависимость излучения охлаждающегося черного тела, которая описывается формулой Планка. Поэтому принадлежность реликтового излучения процессу охлаждения Вселенной после так называемого Большого взрыва была признана доказанным фактом.

Однако в 2004 г. этот факт был опровергнут. Новый анализ спектра реликтового излучения показал, что его источником является процесс синтеза и охлаждения атомов водорода, который идет во Вселенной непрерывно и не имеет никакого отношения к Большому взрыву [1], [2], [3], [4].

В 2006 г. Нобелевский комитет выдал вторую премию за дополнительную экспериментальную информацию о реликтовом излучении, оставив в силе ошибочную интерпретацию природы этого излучения. Это побудило нас обратить внимание на публиковавшуюся ранее экспериментальную зависимость спектра реликтового излучения, в которой увеличение длины волны излучения представлялось направленным к началу координат (рис. 1), то есть, образно говоря - шиворот на выворот, который следует из научного мышления на английском языке, изобилующем мыслимыми и немыслимыми исключениями из правил. Нетрудно видеть, что такое представление функциональной зависимости плотности реликтового излучения от длины его волны значительно затрудняет его анализ и - формирование правильных представлений о его физической сути.

Рис. 1. Спектр реликтового излучения в англоязычном представлении

Представив увеличение длины волны от начала координат (рис. 2), мы перевели экспериментальную зависимость реликтового излучения из нелогичного англоязычного представления (рис. 1) в рамки русскоязычного научного логичного представления (рис. 2) и добавили к ней теоретическую зависимость. В результате получились логичные: теоретическая (рис. 2, тонкая линия) и экспериментальная (рис. 2, жирная линия) зависимости - графические функции интенсивности реликтового излучения в логарифмическом масштабе от его длины волны .

Раньше считалось, что экстремум в точке А сформирован излучением при Большом взрыве, а два других экстремума, в точках В и С, - неизвестными источниками инфракрасного излучения (рис. 2).

Логичное представление реликтового излучения и новый его анализ выявляют истинные источники излучения не только главного экстремума в точке А, но и в точках В и С. Экстремумы излучения в указанных точках (рис. 2) формируются процессами синтеза атомов водорода, которого 73% во Вселенной, последующим синтезом молекул водорода и следующим за ним процессом сжижения молекул водорода [4]. В результате теория большого Взрыва автоматически оказывается в разделе теорий, позорящих человеческий научный интеллект. Этой публикацией мы освобождаем от этого позора будущие поколения ученых, главным образом - астрофизиков.

Рис. 2. Спектр реликтового излучения в русскоязычно представлении.

Зависимость плотности реликтового излучения Вселенной от длины волны: теоретическая - тонкая линия; экспериментальная - жирная линия

Реликтовое излучение. Считалось, что реликтовое излучение (рис. 2, максимум в точке А) родилось более 10 миллиардов лет назад в результате «Большого взрыва». Интенсивность реликтового излучения выше среднего фона не обнаружена. Уменьшение плотности реликтового излучения от фоновой величины фиксируется и называется анизотропией реликтового излучения. Она обнаружена на уровне 0,001% и объясняется существованием эпохи рекомбинации водорода, спустя 300 тысяч лет после «Большого взрыва». Эта эпоха, как считают астрофизики, «заморозила» неоднородность в спектре излучения, которая сохранилась до наших дней.

Известно, что наблюдаемая нами Вселенная состоит из 73 процентов водорода, 24 процентов гелия и 3 процентов более тяжелых элементов. Это значит, что фоновую температуру формируют фотоны, излучаемые рождающимися атомами водорода. Известно также, что рождение атомов водорода сопровождается процессом сближения электрона с протоном, в результате которого электрон, излучая фотоны, формирует спектр атома водорода, характеристики которого представлены в Приложении-1.

Теоретическая зависимость плотности излучения Вселенной (рис. 2 - тонкая линия) подобна зависимости плотности излучения абсолютно черного тела описываемого формулой Планка.

С учетом физического смысла составляющих формулы Планка, физический смысл всей формулы - статистическое распределение количества фотонов разных энергий в полости черного тела с температурой .

Максимум излучения Вселенной зафиксирован при температуре (рис. 2, точка А). В соответствии с законом Вина (1), длина волны фотонов, формирующих эту температуру, равна

(1)

Близость теоретической величины длины волны (1) (рис. 2, точка А) с ее экспериментальным значением (рис. 2, точка А), доказывает корректность использования формулы Вина (1) для анализа спектра излучения Вселенной.

Фотоны с длиной волны , обладают энергией

. (2)

Энергия соответствует энергии связи электрона атома водорода с протоном в момент пребывания его на 108 энергетическом уровне (Приложение-1). Она равна энергии фотона, излученного электроном в момент установления контакта с протоном и начала формирования атома водорода [5].

Процесс сближения электрона с протоном протекает при их совместном переходе из среды с высокой температурой в среду с меньшей температурой или, проще говоря, при удалении от звезды. Сближение электрона с протоном идет ступенчато. Количество пропускаемых ступеней в этом переходе зависит от градиента температуры среды, в которой движется родившийся атом водорода (рис. 3). Чем больше градиент температуры, тем больше ступеней может пропустить электрон, сближаясь с протоном [5].

Рис. 3. Теоретическая модель атома водорода и его размеры в невозбужденном состоянии

Для уменьшения погрешностей измерений фонового излучения рабочий элемент прибора (болометр) охлаждают. Предел этого охлаждения определяет границу максимально возможной длины волны излучения, при которой можно измерить его интенсивность. Экспериментаторы отмечают, что им удалось вывести в космос приборы, болометр которых был охлажден до температуры . Длина волны фотонов, формирующих эту температуру, равна

. (3)

На рис. 2 длина волны соответствует точке N. Это - предел возможностей экспериментаторов измерять зависимость интенсивности излучения с большей длиной волны. В интервале от точки N до точки у авторов нет экспериментальных данных (но они показали их), так как для их получения необходимо охлаждать болометры до температуры, меньшей 0,10К. Например, чтобы зафиксировать зависимость плотности излучения при длине волны (рис. 2), необходимо охладить болометр до температуры

. (4)

Для фиксации излучения с длиной волны (рис. 2) потребуется охлаждение болометра до температуры

. (5)

В табл. 1 представлены длины волн и энергии фотонов, формирующих разную температуру среды.

Таблица 1. Длины волн и энергии фотонов, формирующих определенную температуру

Температура, / град. К

Длина волны фотонов

Энергия фотона, eV

2000/2273,16

0,973

1000/1273,16

0,545

100/373,16

0,160

10/283,16

0,121

1/274,16

0,117

0,0/273,16

0,117

-1/272,16

0,116

-10/263,16

0,113

-100/173,16

0,074

-200/73,16

0,031

-270/3,16

0,001

-272/1,16

0,0005

-273/0,16

0,00007

-273,06/0,10

0,00004

-273,10 /0,050

0,000024

Экспериментально доказано существование минимальной температуры . В соответствии с законом Вина, длина волны фотонов, формирующих эту температуру, равна (табл. 1).

Из изложенной информации следует, что максимально возможная длина волны фотона близка к 0,05м. Фотонов со значительно большей длиной волны в Природе не существует, так как плотность магнитных полей фотона (рис. 4) оказывается недостаточной, чтобы противостоять центробежным силам инерции, равенство которых с магнитными силами, сжимающими фотон, локализует его в пространстве [5].

Экспериментальная часть зависимости в интервале DE (рис. 2) соответствует радиодиапазону. Она получается стандартными методами, но физическую суть этого излучения еще предстоит уточнять.

Для установления максимально возможной длины волны фотона (рис. 4), которая равна его радиусу , соответствующей реликтовому излучению, найдем разность энергий связи электрона атома водорода, соответствующую 108-му и 107-му энергетическим уровням (Приложение-1) [5].

Рис. 4. Схема кольцевых магнитных полей фотон

(6)

Длина волны фотонов с энергией будет равна

(7)

Фотоны с такой длиной волны и энергией способны сформировать температуру

. (8)

Величина этой температуры близка к ее минимальному значению, полученному в лабораторных условиях . Это означает, что точка L на рис. 2 близка к пределу существующих возможностей измерения максимальной длины волны реликтового излучения.

Таким образом, можно утверждать, что в Природе нет фотонов, для формирования температуры (4), чтобы зафиксировать плотность реликтового излучения при длине его волны более 0,056 м (4), (рис. 2). Мы уже отмечали в прежних публикациях, что уточнение закономерности изменения плотности реликтового излучения с длиной волны более 0,05м должно быть главной целью будущих экспериментов.

А теперь опишем статистический процесс формирования максимума реликтового излучения. Максимуму плотности реликтового излучения соответствует длина волны излучения, примерно, равная 0,001063 м (рис. 2, точка 3, А). Фотоны с такой длиной волны рождаются не только в момент встречи электрона с протоном (рис. 3), но и при последующих переходах электрона на более низкие энергетические уровни. Например, при переходе электрона со 108 энергетического уровня на 76 он излучит фотон с энергией (Приложение - 1)

(9)

Длина волны этого фотона будет близка к длине волны максимума реликтового излучения

(10)

Фотон с аналогичной длиной волны излучится при переходе электрона, например, с 98 на 73 энергетический уровень.

(11)

(12)

При переходе электрона с 70 на 59 энергетический уровень излучится фотон с аналогичной длиной волны.

(13)

(14)

Приведем еще один пример. Пусть электрон переходит с 49 на 45 энергетический уровень. Энергия фотона, который он излучит при этом, равна

(15)

Длина волны также близка к максимуму реликтового излучения (рис. 2, точка 3, А).

(16)

Мы описали статистику формирования закономерности реликтового излучения и его максимума и видим, что форма этого излучения не имеет никаких признаков «замороженности» после так называемой эпохи рекомбинации водорода, которую придумали астрофизики.

Пойдем дальше. Если электрон перейдет со 105 энергетического уровня на 60 уровень, то он излучит фотон с энергией и длиной волны , что соответствует интервалу между точками 1 и 2 на рис. 2. При переходе электрона с 15 энергетического уровня на 14 он излучит фотон с энергией и длиной волны , что соответствует точке 1 на рис. 2, которая отстоит от соответствующей теоретической точки тонкой кривой на много порядков. Это вызывает серьезные сомнения в корректности заключения о том, что формула Планка описывает всю форму экспериментальной зависимости реликтового излучения.

Поскольку от 15 до, примерно, 2 энергетического уровня (Приложение-1) количество уровней значительно меньше количества уровней от 108 до 15, то количество фотонов, излученных при переходе с 15 уровня и ниже будет значительно меньше количества (а значит и их плотность в пространстве) фотонов, излученных при переходе со 108 до 15 энергетического уровня. Это - главная причина существования максимума реликтового излучения (рис. 2, т. А) и уменьшения его интенсивности с уменьшением длины волны излучения. К этому следует добавить, что в момент перехода электрона с 15-го уровня и ниже излучаются фотоны светового диапазона. Например, при переходе электрона с 15-го на 2-ой энергетический уровень излучается фотон с энергией и длиной волны, соответствующей световому диапазону (Приложение-1)

. (17)

Естественно, что после формирования атомов водорода, удаляющихся от звезды, наступает фаза формирования молекул водорода, которая также должна иметь максимум излучения. Поиск этого максимума - наша следующая задача.

Известно, что атомарный водород переходит в молекулярный в интервале температур . Длины волн фотонов, излучаемых электронами атомов водорода при формировании его молекулы, будут изменяться в интервале

; (18)

. (19)

Таким образом, у нас есть основания полагать, что максимум излучения Вселенной, соответствующий точке С (рис. 2), формируется фотонами, излучаемыми электронами при синтезе молекул водорода.

Однако на этом не заканчиваются процессы фазовых переходов водорода. Его молекулы, удаляясь от звезд, проходят зону последовательного понижения температуры, минимальная величина которой равна Т=2,726 К. Из этого следует, что молекулы водорода проходят зону температур, при которой они сжижаются. Она известна и равна . Поэтому есть основания полагать, что должен существовать еще один максимум излучения Вселенной, соответствующий этой температуре. Длина волны фотонов, формирующих этот максимум, равна

. (20)

большой взрыв реликтовый излучение

Этот результат почти полностью совпадает с максимумом в точке на рис. 2. Таким образом, спектр фонового излучения Вселенной формируется процессами синтеза атомов и молекул водорода, а также процессом сжижения молекул водорода. Эти процессы идут непрерывно и не имеют никакого отношения к вымышленному Большому взрыву.

Заключение

Приведенный анализ реликтового излучения убедительно доказывает принадлежность этого излучения спектру атома и молекуле водорода - самого распространенного (73%) химического элемента Вселенной. Таким образом, спектр излучения Вселенной не имеет никакого отношения к вымышленному Большому взрыву. Астрофизикам пора освобождаться от позора этого вымысла [4], [5], [6].

Литература

1. Канарев Ф.М. Article 34. Новая интерпретация реликтового излучения. http://Kanarev.innoplaza.net

2. Канарев Ф.М. Article 97. Спектр Вселенной. http://Kanarev.innoplaza.net

3.Kanarev Ph. M. The Spectrum of the Universe. Galilean Electrodinamics. Vol. 20. SI No.1 2009. page 13-17. USA.

4. Канарев Ф.М. Спектр излучения Вселенной.

http://www.sciteclibrary.ru/rus/catalog/pages/9952.html

5. Канарев Ф.М. Начала физхимии микромира. 15-е издание. Том I.

http://www.micro-world.su/

6. Канарев Ф.М. Ответы на вопросы по астрономии и астрофизике. http://www.micro-world.su/

Папка «Астрофизика».

Приложение № 1

Спектр атома водорода

Номер энергетического

уровня

Энергия возбуждения (eV)

Энергия связи электрона с ядром (eV)

1

-0.00000000000000075

13.59800000000000000

2

10.19849999999999872

3.39950000000000000

3

12.08711111111111168

1.51088888888888896

4

12.74812500000000000

0.84987500000000000

5

13.05408000000000000

0.54391999999999992

6

13.22027777777777664

0.37772222222222224

7

13.32048979591836672

0.27751020408163264

8

13.38553125000000000

0.21246875000000000

9

13.43012345679012352

0.16787654320987654

10

13.46202000000000000

0.13597999999999998

11

13.48561983471074304

0.11238016528925620

12

13.50356944444444416

0.09443055555555556

13

13.51753846153846016

0.08046153846153846

14

13.52862244897959168

0.06937755102040816

15

13.53756444444444416

0.06043555555555555

16

13.54488281249999872

0.05311718750000000

17

13.55094809688581376

0.04705190311418685

18

13.55603086419753216

0.04196913580246914

19

13.56033240997229824

0.03766759002770083

20

13.56400500000000000

0.03399500000000000

21

13.56716553287981824

0.03083446712018140

22

13.56990495867768576

0.02809504132231405

23

13.57229489603024384

0.02570510396975426

24

13.57439236111110912

0.02360763888888889

25

13.57624320000000000

0.02175680000000000

26

13.57788461538461440

0.02011538461538462

27

13.57934705075445760

0.01865294924554184

28

13.58065561224489728

0.01734438775510204

29

13.58183115338882304

0.01616884661117717

30

13.58289111111111168

0.01510888888888889

31

13.58385015608740864

0.01414984391259105

32

13.58472070312499968

0.01327929687500000

33

13.58551331496785920

0.01248668503213958

34

13.58623702422145280

0.01176297577854671

35

13.58689959183673600

0.01110040816326531

36

13.58750771604938240

0.01049228395061728

37

13.58806720233747200

0.00993279766252739

38

13.58858310249307648

0.00941689750692521

39

13.58905982905982976

0.00894017094017094

40

13.58950125000000000

0.00849875000000000

41

1 3.58991 076740035584

0.00808923259964307

42

13.59029138321995520

0.00770861678004535

43

13.59064575446187008

0.00735424553812872

44

13.59097623966942208

0.00702376033057851

45

13.59128493827160320

0.00671506172839506

46

13.59157372400756224

0.00642627599243856

47

13.59184427342689024

0.00615572657311000

48

13.59209809027777792

0.00590190972222222

49

13.59233652644731392

0.00566347355268638

50

13.59256080000000000

0.00543920000000000

51

13.59277201076508928

0.00522798923490965

52

13.59297115384615424

0.00502884615384615

53

13.59315913136347392

0.00484086863652545

54

13.59333676268861440

0.00466323731138546

55

13.59350479338842880

0.00449520661157025

56

13.59366390306122496

0.00433609693877551

57

13.59381471221914368

0.00418528778085565

58

13.59395778834720512

0.00404221165279429

59

13.59409365124964096

0.00390634875035909

60

13.59422277777777920

0.00377722222222222

61

13.59434560601988608

0.00365439398011287

62

13.59446253902185216

0.00353746097814776

63

13.59457394809775616

0.00342605190224238

64

13.59468017578125056

0.00331982421875000

65

13.59478153846153728

0.00321846153846154

66

13.59487832874196480

0.00312167125803489

67

13.59497081755401984

0.00302918244597906

68

13.59505925605536256

0.00294074394463668

69

13.59514387733669376

0.00285612266330603

70

13.59522489795918336

0.00277510204081633

71

13.59530251934140160

0.00269748065859948

72

13.59537692901234688

0.00262307098765432

73

13.59544830174516736

0.00255169825483205

74

13.59551680058436864

0.00248319941563185

75

13.59558257777777664

0.00241742222222222

76

13.59564577562326784

0.00235422437673130

77

13.59570652723899648

0.00229347276100523

78

13.59576495726495744

0.00223504273504274

79

13.59582118250280448

0.00217881749719596

80

13.59587531250000128

0.00212468750000000

81

13.59592745008382976

0.00207254991617132

82

13.59597769185008896

0.00202230814991077

83

13.59602612861082880

0.00197387138917114

84

13.59607284580498944

0.00192715419501134

85

13.59611792387543296

0.00188207612456747

86

13.59616143861546752

0.00183856138453218

87

13.59620346148764672

0.00179653851235302

88

13.59624405991735552

0.00175594008264463

89

13.59628329756343808

0.00171670243656104

90

13.59632123456790016

0.00167876543209877

91

13.59635792778649856

0.00164207221350078

92

13.59639343100189184

0.00160656899810964

93

13.59642779512082176

0.00157220487917678

94

13.59646106835672320

0.00153893164327750

95

13.59649329639889152

0.00150670360110803

96

13.59652452256944384

0.00147547743055556

97

13.59655478796896512

0.00144521203103412

98

13.59658413161182976

0.00141586838817160

99

13.59661259055198464

0.00138740944801551

100

13.59664020000000000

0.00135980000000000

101

13.59666699343201536

0.00133300656798353

102

13.59669300269127424

0.00130699730872741

103

13.59671825808275968

0.00128174191724008

104

13.59674278846153984

0.00125721153846154

105

13.59676662131519232

0.00123337868480726

106

13.59678978284086784

0.00121021715913136

107

13.59681229801729536

0.00118770198270591

108

13.59683419067215360

0.00116580932784636

109

13.59685548354515456

0.00114451645484387

110

13.59687619834710784

0.00112380165289256

111

13.59689635581527552

0.00110364418472527

112

13.59691597576530688

0.00108402423469388

113

13.59693507713994752

0.00106492286005169

114

13.59695367805478656

0.00104632194521391

115

13.59697179584121088

0.00102820415879017

Размещено на Allbest.ru

...

Подобные документы

  • Фотон как основная частица электромагнитного излучения, его свойства и схема движения. Характеристика спектров испускания. Взаимодействие фотонов электромагнитного излучения с веществом, поглощение света. Особенности человеческого цветовосприятия.

    контрольная работа [740,3 K], добавлен 25.01.2011

  • Поля и излучения низкой частоты. Влияние электромагнитного поля и излучения на живые организмы. Защита от электромагнитных полей и излучений. Поля и излучения высокой частоты. Опасность сотовых телефонов. Исследование излучения видеотерминалов.

    реферат [11,9 K], добавлен 28.12.2005

  • Экспериментальное наблюдение характеристического излучения атома натрия в возбуждённом состоянии - в процессе горения; определение длины волны и энергетического уровня перехода наружного электрона, которым обусловлен характеристический цвет излучения.

    практическая работа [13,7 K], добавлен 07.12.2010

  • Особенности механизма излучения. Электролюминесценция, катодолюминесценция, хемилюминесценция и фотолюминесценция. Распределение энергии в спектре. Спектральная плотность интенсивности излучения. Количественный анализ состава вещества по его спектру.

    контрольная работа [22,3 K], добавлен 11.07.2012

  • Доза, поглощенная объектом. Виды дозиметрии, а так же физико-химические процессы, используемые дозиметрией. Термолюминесцентная дозиметрия. Определение термолюминесценции и фосфора. Критерии по выбору фосфора. Измерение полей рентгеновского излучения.

    реферат [6,5 M], добавлен 19.04.2017

  • Научная деятельность Йоханнеса Штарка. Эффект, названный именем ученного, - расщепление спектральных линий испускания при воздействии сильного электрического поля на источник излучения. Его техническая реализация, обоснование и количественный анализ.

    курсовая работа [662,7 K], добавлен 16.09.2011

  • Основные термины, используемые при рентгенологическом исследовании. Устройство рентгеновской трубки. Свойства рентгеновского излучения. Характеристика структуры атома и ядра вещества. Виды радиоактивного распада: альфа-распад. Система обозначений ядер.

    реферат [667,7 K], добавлен 16.01.2013

  • Расчет параметров воздействия отраженного или рассеянного лазерного излучения на органы зрения персонала, который обслуживает лазерные установки. Применение лазерного излучения в медицине. Параметры лазерного пучка, преобразованного оптической сиcтемой.

    дипломная работа [1,5 M], добавлен 20.07.2015

  • Закон Био-Савара-Лапласа и его применение. Магнитные моменты электронов. Затухающие и вынужденные колебания в контуре. Волновая и квантовая природа света. Характеристики теплового излучения. Методы оптической пирометрии. Строение атома водорода по Бору.

    методичка [1,6 M], добавлен 02.06.2011

  • Процессы взаимодействия излучения. Схема реализации зондового устройства. Метод просвечивания узким пучком y-излучения. Анализ ядерно-геофизических методов разведки, использование в них излучений естественных и искусственных радиоактивных элементов.

    курсовая работа [1,3 M], добавлен 24.12.2014

  • Диапазоны инфракрасного и ультрафиолетового излучения. Изучение влияния рентгеновского излучения на организм человека. Использование микроволн в современной технике, в междугородней и международной телефонной связи, передачи телевизионных программ.

    презентация [2,1 M], добавлен 06.01.2015

  • Получение рентгеновского излучения. Обнаружение рентгеновского излучения. Рентгеновская и гамма-дефектоскопия. Дифракция рентгеновского излучения. Методы дифракционного анализа. Спектрохимический рентгеновский анализ. Медицинская рентгенодиагностика.

    реферат [1,1 M], добавлен 09.04.2003

  • Источники и свойства инфракрасного, ультрафиолетового и рентгеновского излучений. Характеристики границ видимого излучения. Положительные и отрицательные воздействия ультрафиолетового излучения. Функции и применение рентгеновских лучей в медицине.

    презентация [398,7 K], добавлен 03.03.2014

  • Примеры расчета магнитных полей на оси кругового тока. Поток вектора магнитной индукции. Теорема Гаусса-Остроградского для вектора: основное содержание, принципы. Теорема о циркуляции вектора. Примеры расчета магнитных полей: соленоида и тороида.

    презентация [522,0 K], добавлен 24.09.2013

  • Электромагнитное излучение как распространяющееся в пространстве возмущение (изменение состояния) электромагнитного поля, его виды. Применение радиоволн, инфракрасного излучения. Распространение и краткая характеристика электромагнитного излучения.

    презентация [2,6 M], добавлен 31.03.2015

  • Типы источников излучения, принципы их классификации. Источники излучения симметричные и несимметричные, газоразрядные, тепловые, с различным спектральным распределением энергии, на основе явления люминесценции. Оптические квантовые генераторы (лазеры).

    реферат [1,8 M], добавлен 19.11.2010

  • Радиоактивные излучения, их сущность, свойства, единицы измерения, физическая доза и мощность. Газоразрядные счётчики ионизирующих частиц. Конструкция и принципы работы счётчиков Гейгера с высоковольтным питанием, СТС-5 и слабого бета-излучения СТБ-13.

    курсовая работа [3,8 M], добавлен 05.11.2009

  • Изучение возникновения и применения гамма-излучения. Особенности использования в качестве детекторов в дозиметрических приборах газоразрядных счетчиков, работа которых основана на ионизирующем действии ядерного излучения; их достоинства и недостатки.

    курсовая работа [696,4 K], добавлен 24.11.2013

  • Понятие об оптическом волокне. Прохождение светового излучения через границу раздела сред, а также в оптических волокнах, определение окон прозрачности. Стабильность мощности лазерного излучения. Принципы измерения мощности на разных длинах волн.

    курсовая работа [832,5 K], добавлен 07.01.2014

  • История открытия инфракрасного излучения, источники, основное применение. Влияние инфракрасного излучения на человека. Особенности применения ИК-излучения в пищевой промышленности, в приборах для проверки денег. Эффект теплового воздействия на организм.

    презентация [373,2 K], добавлен 21.05.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.