Квантовая физика уже переродилась в классическую физику

физическая суть размерности константы Планка. Корпускулярные математические модели поведения фотона. Волновая теория фотона. Формирование ньютоновских сил при небольшой плотности базового кольца фотона. Закон сохранения кинетического момента в микромире.

Рубрика Физика и энергетика
Вид статья
Язык русский
Дата добавления 04.02.2019
Размер файла 3,7 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

КВАНТОВАЯ ФИЗИКА УЖЕ ПЕРЕРОДИЛАСЬ В КЛАССИЧЕСКУЮ ФИЗИКУ

Канарёв Ф.М.

Анонс

Представим детальное описание процесса перерождения бывшей Квантовой физики в Классическую физику. Рождение Квантовой физики в начале XX века связано с введением Максом Планком странного названия его знаменитой константе - квант наименьшего действия. Впоследствии было установлено, что она имеет явную механическую размерность, соответствующую закону сохранения кинетического момента, которую не учёл Планк. Тщательный анализ показывает, что реальная физическая суть этой размерности скрыта так глубоко, что её не смог увидеть не только Планк, но и все его последователи. Раскроем глубинные тайны размерности этой константы и увидим, как она управляет классическими процессами формирования и поведения обитателей микро и макро миров и, таким образом, незаметно для всех уже похоронила Квантовую физику, просуществовавшую около 100 лет.

1. Анализ физической сути размерности константы Планка

Темы многих статей нам подсказывают читатели нашего сайта http://www.micro-world.su/ Длительное присутствие поисковой фразы “Закон излучения чёрного тела” в разделе статистики нашего сайта http://metrika.yandex.ru/stat/?id=3626905&from=informer свидетельствует о том, что читатели находят ответы на вопросы, возникающие у них при анализе законов излучения абсолютно-чёрного тела, которые, как считалось, похоронили классическую физику микромира и родили новую физику, названную “Квантовой”, в основу названия которой было положено понятие “квант наименьшего действия”, введённое Максом Планком для названия своей знаменитой константы . Однако, истинный физический смысл этой константы остался скрытым так глубоко, что все последователи Макса Планка не могли обнаружить его более 100 лет и поэтому удовлетворялись кратким и красивым названием “Квантовая физика”.

.Тайну реального физического смысла постоянной Планка выявил человек, которого спасла судьба от процесса университетской дебилизации. Она непрерывно внушала ему - искать научные истины путём самообразования. Этот процесс длится уже около 40 лет. Судьба привела автора, занимавшегося физическим самообразованием, на должность заведующего кафедрой “Теоретическая механика” Кубанского сельскохозяйственного института в 1982г. Автор обратил внимание тогда на то, что производная по времени от главного момента количества движения механической системы (от момента импульса), находящейся под действием суммы моментов сил, равной нулю - величина постоянная и имеет такую же размерность , как и постоянная Планка

. (0)

Однако, присутствие в постоянной Планка (1) длины волны излучения сразу противоречило физической сути закона сохранения механического момента импульса . Это явное противоречие вращательного процесса, описываемого законом сохранения момента импульса, и волнового процесса, описываемого постоянной Планка (1), содержащей длину волны . Сразу возникла задача - найти физическую суть этого противоречия. Решалась она несколько лет. Представим последовательность её решения, лишившую Квантовую физику права на жизнь и возвратившего физику в русло классического развития [1].

Анализируя закон излучения абсолютно чёрного тела с позиций волнового характера этого излучения, Планк установил, что экспериментальная зависимость излучения этого тела описывается лишь при условии, если допустить, что излучение формируется не непрерывно, а порциями. Вполне естественно, что он предположил, что каждая из этих порций представляет собой волну и, поэтому энергию этой порции записал с учётом частоты синусоидальной волны, которая связана с её периодом зависимостью

, (1)

единицу измерения которой назвали Герц. Тогда скорость синусоидальной волны длиною определяется элементарной зависимостью с чёткой размерностью, соответствующей физическому смыслу скорости.

. (2)

Если учесть, что энергия порции излучения определяется по формуле [1]

, (3)

то из этого соотношения следует, что константа Планка равна [1]

. (4)

При строгом подходе её физический смысл не соответствует моменту количества движения (кинетическому моменту или моменту импульса), так как эти понятия отражают вращение тела и им соответствует размерность

(5)

Так что Планк не случайно затруднялся дать название своей константе, которое соответствовало бы её размерности, так как эта размерность (4) явно абсурдна и не имеет связи с понятием кинетический момент или момент импульса.

Последователи Планка вместо того, чтобы разобраться со сложностями в формировании размерности константы Планка, приняли соглашение, которое сделало размерность константы Планка более абсурдной. Поскольку во многих математических соотношениях константа Планка присутствует совместно с величиной в знаменателе, то они приняли соглашение обозначить

. (6)

В результате новая величина , которую они назвали аш со штрихом, получила размерность ещё более далёкую от размерности кинетического момента и не имела никакого физического смыла. Но это не настораживало последователей Планка. Они с невероятной лёгкостью начали использовать новое обозначение его константы и плодить новые бессмыслицы, которые усиливались ещё одним соглашением: опускать понятие радиан в размерности кинетического момента (5) и записывать её так [1]

(7)

В этом случае размерности константы Планка (4) и кинетического момента (7) совпадают. На основании этого стали считать, что константа Планка имеет механическую размерность кинетического момента. Однако, при строгом подходе надо учитывать, что длина волны синусоидального колебания, присутствующая в константе Планка , лишает нас права считать соответствие её размерности (4) физическому смыслу кинетического момента или момента импульса и делает абсурдным физический смысл её размерности. Эта абсурдность усиливается отсутствием связи между частотой и угловой скоростью вращения, характеризующей вращательный процесс, с физическим смыслом кинетического момента [1].

Выход из совокупности этих противоречий один - изменить физический смысл длины волны . Поскольку константа Планка родилась в результате анализа процесса излучения абсолютно-чёрного тела и реализуется только в условиях, когда излучение совершается порциями, то это сразу указывает на локализацию в пространстве носителя излучения, которому давно присвоено название фотон. Отсюда автоматически следует постулат: длина волны фотона равна его радиусу и сразу проясняется физический смысл составляющей константы Планка. Величина - момент инерции кольца. Это даёт нам основание представить фотон в первом приближении в виде вращающегося кольца (рис. 1, а). Однако, частота характеризует не вращательный процесс, а процесс прямолинейного распространения синусоидальной волны. Чтобы совместить прямолинейное движение фотона с вращательным, надо предположить, что он является не кольцом, а многогранником. Из равенства [1]

(8)

автоматически следует, что это - шестигранный многоугольник (рис. 1, b) и проясняется физическая суть линейной частоты : вращающийся шестигранник генерирует импульсы моментов инерции в интервале каждой длины волны фотона или в интервале поворота шестигранника на каждый угол .

Изложенное даёт нам веские основания считать, что угловая скорость вращения (обозначим её символом ) фотона, имеющего шестигранную структуру, равна (рис, 1)

. (9)

Рис. 1. К выявлению структуры фотона

Из этого следует, что центр масс фотона совершает одно полное колебание при повороте фотона, как шестигранника, на угол . Вполне естественно, что полное колебание, соответствует повороту на угол . Тогда период одного колебания центра масс фотона запишется так [1]

, (10)

где - угловая скорость вращения, как мы увидим дальше, характеризует вращение центра масс фотона относительно его геометрического центра , который движется прямолинейно со скоростью С (рис. 1, b).

Поскольку время поворота фотона на угол и время поворота его центра масс относительно его геометрического центра на угол одно и тоже, то период колебаний фотона запишется так [1]:

. (11)

Отсюда имеем

. (12)

Несовпадение центра масс фотона с его геометрическим центром (рис. 1, b) обусловлено тем, что фотон, как мы увидим дальше, состоит из шести кольцевых магнитных полей, каждое из которых имеет центр масс (рис. 1, с). При совмещении поступательного движения такой структуры с вращательным скорости центров масс всех шести магнитных полей будут разные. Например, поступательная скорость центра масс поля (рис. 1, с) будет складываться с его окружной скоростью вращения, а у поля окружная скорость будет вычитаться из поступательной скорости. В результате общая масса фотона будет неравномерно распределена между шестью его полями в каждый данный момент времени, то есть она будет циркулировать между полями, меняя их плотность. Это приведет к несовпадению центра масс фотона с его геометрическим центром .

Сложное получается движение и всего фотона, и его центра масс. Но у нас нет возможности упростить это движение и мы вынуждены искать метод описания его движения. Сложность нашего поиска усиливается необходимостью, найти такие уравнения движения центра масс фотона и каждого из шести центров масс его магнитных полей, из которых автоматически следовали бы все уже полученные соотношения (1 - 12) и четко сохранялся бы физический смысл, заложенный в них [1].

Обратим внимание на то, что в формуле (4) нет и намёка на вращательный процесс. Величина - длина волны, величина частота колебаний, равная количеству колебаний в секунду. В этой формуле нет параметра, характеризующего вращательный процесс, поэтому у нас нет никаких оснований утверждать, что размерность константы Планка, в первозданном виде (4), соответствует кинетическому моменту или моменту импульса. Планк был прав, присвоив своей константе название, не содержащее смысла кинетического момента.

Если упрощённая модель фотона (рис. 1, с) близка к реальности, то какие силы локализуют её, когда она движется прямолинейно с постоянной скоростью света и вращается? Анализ показывает, что эту функцию могут выполнять электромагнитные или магнитные силы, сжимающие фотон и центробежные силы инерции, действующие на центры масс этих полей. Пока приоритет за кольцевыми магнитными полями, подобными тем, что возникают вокруг параллельных проводов с током и сближают их (рис. 2) [1], [2].

Рис. 2. Схема формирования кольцевых магнитных полей, вокруг провода с постоянным током

Обратим внимание на то (рис. 2), что магнитные силовые линии, вокруг проводников сближают их лишь в том случае, если они направлены навстречу друг () другу. Если материальную субстанцию фотона формируют аналогичные магнитные поля, то из рис. 1, с следует такая модель фотона (рис. 3) [1].

Рис. 3. Схема модели фотона

Таким образом, константа Планка в первозданном виде может описывать лишь синусоидальный процесс и не имеет никакого отношения к вращательному процессу. Не случайно физики ХХ века использовали её только для описания волновых процессов. Тем не менее, как мы уже показали, физический смысл кинетического момента присутствует в формуле (4) косвенно и нам надо увидеть его явное проявление. Это возможно лишь при условии аналитического вывода всех соотношений (1-12) из процесса движения модели фотона (рис. 3). Представим такой вывод [1].

2. Вывод корпускулярных математических моделей, описывающих поведение фотона

Для этого мы должны проследить за волновым движением центра масс всего фотона (рис, 3 и 4) и центров масс отдельных его магнитных полей (рис. 1, с). На рис. 4 показана схема перемещения центра масс фотона и центра масс одного его магнитного поля в интервале длины одной волны [1].

Рис. 4. Схема движения центра масс М фотона и центра масс одного его электромагнитного поля

Движение центра масс фотона моделирует точка , расположенная на расстоянии от геометрического центра фотона (рис. 4). Движение центра масс одного магнитного поля фотона моделирует точка , расположенная на расстоянии от его центра масс (рис. 4) [1].

Некоторые исследователи отмечали, что фотон имеет скрытые параметры. Если бы удалось найти их, то корпускулярные математические соотношения (1-12), описывающие его поведение, вывелись бы аналитически. Попытаемся установить эти параметры.

Конечно, сложность модели фотона (рис. 1, с и 4) затрудняет реализацию описанного плана. Однако если учесть, что фотон имеет плоскость поляризации, то движение его центра масс в этой плоскости и движение центров масс шести его магнитных полей можно сопровождать качением условных окружностей, кинематические и энергетические параметры которых будут эквивалентны соответствующим параметрам фотона. Центр масс фотона совершает полное колебание в интервале длины его волны (рис. 4), поэтому радиус (первый скрытый параметр) условной окружности, описывающей движение этого центра в интервале длины одной волны, определится по формуле (рис. 4) [1]

. (13)

Кинематическим эквивалентом группового движения центров масс шести электромагнитных полей фотона будет вторая условная окружность. Её радиус (второй скрытый параметр) определяется из условия поворота центра масс каждого магнитного поля фотона на угол в интервале каждой длины его волны (рис. 4) [1].

(14)

Особо отметим, что время, в течение которого эти две условные окружности поворачиваются на разные углы и , одно и то же, что соответствует Аксиоме Единства.

Мы уже обозначили угловую скорость условной окружности, описывающей движение центра масс фотона относительно его геометрического центра символом (это - третий скрытый параметр), а угловую скорость условной окружности, описывающей движение центра масс каждого электромагнитного поля , - через (четвертый скрытый параметр), и линейную частоту - через , поэтому период колебаний центра масс фотона определится по формулам (рис. 4) [1]:

, (1511)

которые полностью совпадают с формулами (11). Из соотношений (15) имеем:

(1612)

(179)

Соотношение связи между длиной волны , которую описывает центр масс фотона, и радиусом имеет простой вид (рис. 4)

(185)

Кинематическая эквивалентность между движением сложной магнитной структуры фотона и движением условных окружностей с радиусами и позволяет вывести постулированные раннее математические соотношения, описывающие его поведение. Сейчас мы увидим, как скрытые, ненаблюдаемые параметры фотона участвуют лишь в промежуточных математических преобразованиях и исчезают в конечных формулах.

Поскольку малая условная окружность радиуса перемещается в плоскости вращения фотона (рис. 4) без скольжения, то скорость любой её точки будет равна скорости её центра и групповой скорости фотона. Используя соотношения (13) и (16), получим

(192)

что соответствует соотношению (2).

Аналогичный результат дают и соотношения (14) и (17) второй условной окружности радиуса .

(202)

Теперь видно, что вывод соотношений (19) и (20) не только согласуется с моделью фотона (рис. 1, с) и механикой её движения (рис. 2), но и объясняет корпускулярные и волновые свойства фотона.

При выводе соотношения (3) обратим внимание на то, что кинетическая энергия движения фотона с массой эквивалентна кинетической энергии качения условной окружности с той же массой , равномерно распределенной по её длине. Общая кинетическая энергия условной окружности будет равна сумме кинетической энергии её поступательного движения и энергии вращения относительно геометрического центра [1].

. (213)

Тот же самый результат получится и при использовании второй условной окружности радиуса .

. (223)

Приведем уравнение (22) к виду (3)

(233)

здесь

. (244)

Вот теперь у нас есть полное право утверждать, что постоянством константы (24) Планка управляет закон сохранения кинетического момента или момента импульса, который формулируется так: если сумма моментов внешних сил, действующих на вращающееся тело, равна нулю, то его кинетический момент (момент импульса) остаётся постоянным по величине и направлению.

С учетом соотношения (16) получаем

. (25)

Обратим внимание на то, что константа Планка, обозначенная символом , при умножении на угловую частоту даёт размерность энергии, но в изолированном виде (6) её размерность абсурдна.

Так как , то из автоматически следует ещё одна константа [1]

(26)

Из размерности константы (26) следует физический закон: произведение масс фотонов на длины их волн или радиусы - величина постоянная. В системе СИ нет названия константе с такой размерностью, поэтому назовем её константой локализации фотонов [1].

Легко представить реализацию константы локализации (26), если фотон - кольцо (рис. 1, а и 3) и невозможно это сделать, если фотон - волна.

Таким образом, мы вернули истинный смысл размерности константы Планка - кинетический момент или момент импульса. Линейная частота имеет четкую связь с угловой частотой вращения фотона (15, 17). Если угол альфа выразить через радианы, то эта связь получает численную величину в виде следующей константы

. (27)

Как видно, скрытые параметры позволяют вывести основные математические соотношения Квантовой механики, описывающие поведение фотона, из законов Классической механики [1].

3. Волновая теория фотона

Тут уместно обратить внимание на интересную особенность шестигранной механической модели (рис. 1, b). Если взять несколько шестигранников разных размеров и разместить их на наклонной плоскости, то все они будут скатываться вниз с одной и той же постоянной скоростью , но с разной частотой (табл. 1) [1].

Таблица 1. Кинематические параметры движения тел.

Форма тел

, м

t, с

V, м/с

Цилиндрические

0,008

0,010

0,0!3

2,43

2,30

2,05

0,83

0,89

0,99

-

-

-

Шестигранные

0,0065

0,0080

0,0130

5,68

5,67

5,67

0,18

0,18

0,18

27,69

22,50

13,85

Обратим внимание на то, что при увеличении радиуса шестигранника частота его движения уменьшается так же, как и у фотона. Конечно, у фотона нет плоскости, по которой он мог бы перемещаться, как тела, представленные в табл. 1. Однако, мы уже показали, что центр масс электромагнитной модели фотона описывает укороченную циклоиду, осью симметрии которой является прямолинейная ось ОХ, лежащая в плоскости его поляризации.

Начнем с вывода уравнений движения центра масс фотона. Поскольку центр масс фотона движется в плоскости поляризации и в рамках аксиомы Единства пространства - материи - времени, то для описания его движения по волновой траектории необходимо иметь два параметрических уравнения [1].

Так как центр масс фотона движется относительно наблюдателя и относительно геометрического центра , который движется прямолинейно со скоростью , то для полного описания такого движения необходимо иметь две системы отсчета (рис. 4): неподвижную и подвижную .

Амплитуда колебаний центра масс фотона будет равна радиусу его вращения относительно геометрического центра фотона. Из рис. 4 имеем

. (28)

Обратим внимание на небольшую величину амплитуды колебаний центра масс фотона в долях длины его волны или радиуса вращения.

Уравнения движения центра масс фотона относительно подвижной системы имеют вид параметрических уравнений окружности (рис. 4):

; (29)

. (30)

Если фотон движется относительно неподвижной системы отсчета ХОУ со скоростью , то уравнения такого движения становятся уравнениями циклоиды [1]:

; (31)

. (32)

Обратим внимание на то, что в уравнениях (31) и (32) и .

Это значит, что они описывают движение центра масс фотона по волновой траектории в рамках аксиомы Единства пространства - материи - времени. Такого раньше не бывало [1].

(33)

(34)

где .

Результаты табл. 1 требуют, чтобы математическая модель, описывающая скорость центра масс шестигранника, а значит и фотона, не зависела бы от его радиуса вращения. Уравнения (33) и (34) автоматически дают такой результат [1]

(35)

Как видно (рис. 5, а), скорость (35) центра масс фотона действительно изменяется в интервале длины волны или периода колебаний таким образом, что её средняя величина остается постоянной и равной [1].

Рис. 5. а) - график скорости центра масс фотона;

b) - зависимость изменения силы инерции, действующей на центр масс светового фотона с радиусом , в интервале одного колебания

Поскольку сила инерции направлена противоположно ускорению, то касательная сила инерции , действующая на центр масс фотона, запишется так [1]

(36)

Несмотря на сложность переменной составляющей математической модели (36), касательная сила инерции, действующая на центр масс фотона, изменяется синусоидально (рис 5, b). Обратим внимание и на то, как связь между линейной и угловой частотами (17) в формулах (35 и 36) чётко реализует смысл кинетического момента константы Планка, отражённый на графиках (рис. 5, а и b).

Поскольку основные математические модели, описывающие главные характеристики фотона, выведены аналитически из анализа движения его модели (рис. 3), то это является веским основанием для использования этой модели при интерпретации результатов всех экспериментов, в которых участвуют фотоны. Количество таких экспериментов неисчислимо, поэтому мы будем рассматривать лишь те из них, которые носят обобщающий характер. Самая большая совокупность экспериментальных данных, в которых зафиксировано поведение фотонов - шкала электромагнитных излучений, представленная в таблице 2 [1].

Как видно (табл. 2), с увеличением массы (энергии) фотона длина его волны уменьшается. Эта закономерность однозначно следует и из константы локализации фотона . Это же следует и из закона сохранения кинетического момента

C увеличением массы фотона растет плотность его магнитных (рис. 3) полей и за счет этого увеличиваются магнитные силы, сжимающие фотон, которые все время уравновешиваются центробежными силами инерции, действующими на центры масс этих полей (рис. 1, с). Это приводит к уменьшению радиуса вращения фотона, который всегда равен длине его волны . Но поскольку радиус в выражении постоянной Планка возводится в квадрат, то для сохранения постоянства постоянной Планка частота колебаний фотона должна при этом увеличиться. В силу этого незначительное изменение массы фотона автоматически изменяет его радиус и частоту так, что кинетический момент (константа Планка) остается постоянным.

Таблица 2. Параметры различных участков спектра фотонных излучений

Область спектра

Частота, Гц

Длина волны, м

Масса, кг

Энергия, эВ

1. Низкочастотн.

101…104

3•107…3•104

0,7·10-48…0,7·10-46

4·10-13…4•10-11

2. Радио

104…109

3•104…3•10-1

0,7•10-46…0,7•10-41

4•10-11…4•10-6

3. Реликт (макс.)

3•1011

1•10-3

2,2•10-39

1,2•10-3

4. Инфракрасные

1012…3,9•1014

3•10-4 …7,7•10-7

0,7•10-38…0,3•10-35

4•10-1…1,60

5. Видимый свет

3,9•1014…7,9•1014

7,7•10-7…3,8•10-7

0,3•10-35…0,6•10-35

1,60…3,27

6. Ультрафиолет

7,9•1014…1•1017

3,8•10-7…3•10-9

0,6•10-35…0,7•10-33

3,27…4•102

7. R-излучение

1017…1020

3•10-9…3•10-12

0,7•10-33…0,7•10-30

4•102…4•105

8. г-излучение

1020…1024

3•10-12…3•10-18

0,7•10-30…0,7•10-24

4•105…1011

Таким образом, фотоны всех частот, сохраняя свою магнитную структуру, меняют массу, частоту и радиус вращения так, чтобы , то есть принципом этого изменения управляют законы сохранения кинетического момента и локализации фотонов [1].

Такой же четкий и ясный ответ мы получаем и на следующий фундаментальный вопрос: почему фотоны всех частот движутся в вакууме с одинаковой скоростью?

Потому, что изменением массы фотона и его радиуса управляет закон локализации фотона. Из него следует, что при увеличении массы фотона его радиус уменьшается пропорционально и наоборот. Тогда для сохранения постоянства постоянной Планка при величина также должна быть постоянной. В результате - [1].

Мы будем обращаться к таблицам 2, 3 и 4 при интерпретации почти всей совокупности экспериментов с участием фотонов, а сейчас определим лишь интервал изменения длины волны фотонов.

Длина волны электромагнитного излучения изменяется в диапазоне (табл. 2).

Наименьшая длина волны , соответствует гамма диапазону и её можно считать равной радиусу гамма фотона. Наибольшая длина волны неприемлема для отождествления с радиусом фотона. Поэтому возникает проблема определения максимальной длины волны фотона. Согласно закона Вина температуру формирует совокупность фотонов определённой длины волны.

С уменьшением температуры длина волны фотонов, совокупность которых формирует температуру, увеличивается. Поскольку существует предел минимальной температуры, то длины волн фотонов, формирующих эту температуру, также имеют предел. Его определяет формула Вина. Учитывая примерную экспериментальную величину минимальной температуры , найдём максимальную длину волны фотонов, формирующих эту температуру [1]

, (37)

где - постоянная Вина - четвёртая константа, контролирующая поведение фотонов. Фотоны с такой длиной волны соответствуют реликтовому диапазону (табл. 2). Материальная плотность базового кольца фотона, соответствующего минимальной длине волны (табл. 3), равна [1]

. (38)

Материальная плотность базового кольца фотона, соответствующего максимальной длине волны электромагнитного излучения (табл. 2), равна

(39)

Теперь ясно, что максимальную проницаемость гамма фотона обеспечивает его минимальный размер (радиус ) и максимальная масса (табл. 3). Что же касается фотона с максимальной длиной волны и минимальной массой (табл. 3), то тут - полная неясность. Трудно представить фотон с базовым радиусом , движущийся со скоростью света, имея материальную плотность кольца (39) [1].

Вряд ли возможно формирование ньютоновских и электромагнитных сил при такой небольшой материальной плотности базового кольца фотона (39). Поэтому должен существовать предел максимальной длины волны или максимального радиуса и минимальной массы фотона.

Из константы локализации фотона (26) можно извлечь информацию о минимальной материальной плотности субстанции (эфира) кольца фотона. Она будет равна:

. (40)

планк фотон сила кинетический

Итак, фотонная шкала электромагнитных излучений (табл. 2, 3, 4) начинается с реликтового диапазона. Минимальную энергию , минимальную массу и минимальную частоту , но максимальную длину волны (или радиус вращения) имеет инфракрасный фотон в реликтовом диапазоне [1]:

; (41)

; (42)

(43)

(44)

Максимальную энергию , максимальную массу и максимальную частоту , но минимальную длину волны (или радиус вращения), имеет гамма-фотон [1]:

; (45)

; (46)

(47)

(48)

Как видно, самый маленький фотон - гамма-фотон, а самый большой фотон - инфракрасный фотон реликтового диапазона.

Таким образом, максимальная длина волны единичных фотонов соответствует реликтовому диапазону, а минимальная - гамма диапазону (табл. 2, 3, 4). От реликтового диапазона до гамма диапазона длина волны фотона уменьшается, примерно, на 15 порядков, а частота увеличивается настолько же.

Сразу возникает вопрос: какое электромагнитное образование формирует электромагнитное излучение с длиной волны, больше длины волны реликтового диапазона?

Ответ на этот вопрос, как мы уже показали, следует из гипотез индийского ученого Бозе и английского физика Алана Холдена, представленных на рис. 6.

Рис. 6. Схема фотонной волны длиною

Как видно (рис. 6), электромагнитную волну формируют импульсы единичных фотонов, которые представлены в виде совокупности шариков. Шарики - это фотоны. Расстояние между импульсами фотонов (шариков) равно длине волны электромагнитного излучения, а длина волны каждого отдельного фотона значительно меньше. Она, как мы уже показали, определяет область его локализации в пространстве.

Так как фотоны всех диапазонов движутся с одной и той же скоростью и так как они же формируют и волны электромагнитного излучения (рис. 6), то скорость электромагнитного излучения всех диапазонов одна и та же [1]. Сразу обратим внимание на то, что понятие “шкала электромагнитных излучений” не соответствует физическому содержанию её структуры (рис. 6), поэтому у нас есть все основания заменить название “шкала электромагнитных излучений” названием “шкала фотонных излучений” или просто “фотонная шкала”.

Полученная информация делит фотонную шкалу на два класса: фотонный и волновой. Фотоны - единичные электромагнитные образования, излучаются электронами атомов и протонами ядер. Совокупность фотонов, излученных электронами атомов или протонами ядер, формирует фотонное поле. Оно может быть непрерывным или импульсным, то есть волновым (рис. 6). Мы живём в этом поле, как рыбы в воде и не замечаем этого.

Итак, мы установили истинный физический смысл константы Планка и её размерности - кинетического момента или момента импульса. Суть сложности заключалась в установлении связи между линейной и угловой частотами фотона. Теперь эти связи установлены (15, 16, 17) и возникает вопрос о наличии этой проблемы при описании поведения других элементарных частиц: электронов, протонов, нейтронов. Сразу отмечаем, что отсутствие у этих частиц состояния движения со скоростью света исключает присутствие в математическом выражении константы Планка линейной частоты. Для указанных элементарных частиц, постоянная Планка сразу записывается так [1]

. (49)

Обычно понятие радиан опускают и записывают так

, (50)

не забывая, что присутствие понятия радиан в этом случае автоматически обеспечивает соответствие такой размерности кинетическому моменту или моменту импульса [1], [2].

Закон сохранения кинетического момента - один из главных законов не только неживой, но и живой Природы. Его реализация в Природе является началом всех начал. Чтобы составить более четкое представление о сути действия этого закона, обратимся к легко наблюдаемому явлению, в котором видно, как он работает.

Если Вы смотрели по телевидению соревнования по фигурному катанию, то легко вспомните, как фигурист изменяет скорость своего вращения относительно оси, проходящей вдоль его тела. Вначале он вращается при разведенных в стороны руках с небольшой угловой скоростью. Потом он прижимает руки к груди или поднимает их вертикально вверх и вращение его резко ускоряется. Затем, если он разведёт руки в стороны, то угловая скорость вращения его вновь уменьшается. Явление это управляется одним из самых фундаментальных законов Природы - законом сохранения кинетического момента. Он гласит, что если сумма моментов внешних сил, действующих на вращающееся тело, равна нулю, то кинетический момент остается постоянным.

Итак, как проявляется сущность закона сохранения кинетического момента? Посмотрите, как выражается этот закон математически: Вы сразу узнали постоянную Планка. В эту константу Природа и заложила этот закон. Он работает в условиях отсутствия внешнего воздействия на вращающееся тело. Если рассматривать вращение фигуриста, то он, конечно, испытывает внешнее воздействие. Оно проявляется в виде сопротивления, создаваемого воздухом, а также в виде сил трения, действующих на коньки фигуриста. Так что закон этот проявляется здесь не в чистом виде. Но, тем не менее, небольшое сопротивление воздуха и льда дают нам возможность увидеть проявление этого закона [1].

А теперь посмотрите на выражение постоянной Планка Масса фигуриста в момент вращения не изменяется. Однако распределение этой массы изменяется. Когда он разводит руки, то они удаляются от оси его вращения и момент инерции фигуриста увеличивается, так как величина, равная массе рук, умноженной на квадрат расстояний их центров масс от оси вращения, растет. Сразу видно: чтобы постоянная Планка осталась постоянной, скорость вращения фигуриста должна уменьшиться. Когда же он (или она) приближает руки к оси своего вращения, то Вы сами видите, что произойдет со скоростью вращения при Когда фигурист приближает руки к оси своего вращения, то величина уменьшается, так как уменьшается расстояние . Чтобы величина осталась постоянной, скорость вращения фигуриста должна возрасти. Что мы и наблюдаем. Конечно, если бы не было никакого сопротивления, то фигурист мог бы вращаться вечно.

Действие закона сохранения кинетического момента можно наблюдать и при изменении угловой скорости человека на вращающемся стуле. Если он держит в руках гири, то при разведении рук в стороны скорость его вращения уменьшается, а при приближении их к оси вращения увеличивается так, чтобы сохранялся момент количества его движения

Рис. 7. Наглядная работа закона сохранения момента количества движения

Нас поражает постоянство константы Планка. Оно подтверждено многими ее расчетами и многими экспериментальными данными. Это указывает на то, что постоянством постоянной Планка управляет какой-то фундаментальный закон Природы. И вот теперь мы видим, что этим законом является закон сохранения кинетического момента.

Мы уже увидели, как проявляется этот закон в поведении фотонов всех частот, в поведении электронов при их энергетических переходах в атомах и при формировании молекул [1], [2], а сейчас покажем ряд примеров проявления этого закона в Природе [1]. Конечно, некоторые из этих примеров являются пока чисто гипотетическими, требуется их основательная проверка. Тем не менее, их надо привести, чтобы привлечь внимание исследователей к глобальной роли закона сохранения кинетического момента.

a)

b)

Рис. 8. Схема к определению направления вектора кинетического момента:

а) - схема винта, b) - схема модели электрона

На рис. 8, а направление вектора кинетического момента, смоделировано вращением и продольным перемещением винта, и рядом показано направление вектора постоянной Планка и совпадающего с ним по направлению вектора магнитного момента электрона (рис. 8, b) [1], [2].

Направления векторов постоянной Планка и магнитных моментов электрона и протона показаны на рис. 9. Протон и электрон атома водорода сближают их разноименные электрические поля, а их одноименные магнитные полюса ограничивают это сближение.Обратим внимание на то, что векторы кинетических моментов (спинов) и электронов, и протонов в атоме (рис. 9) и молекулах водорода (рис. 10) совпадают по направлению. В аналогичном направлении закручена и молекула ДНК (рис. 11, а). Атомы, формирующие эту молекулу, действительно закручивают её в левую сторону. Чешуйки шишки, которая растёт строго вертикально (рис. 11, b), также закручены против хода часовой стрелки.

а) - электрон, - протон

b)

Рис. 9. a) схема атома водорода; b) визуализация атома водорода

Рис. 10. Схемы молекул: а) ортоводорода; b) пароводорода

а)

b)

Рис. 11. Схема молекулы ДНК и фото шишки

Итак, формированием электронов, протонов, атомов и молекул водорода управляет закон сохранения кинетического момента. Если этот закон работает на молекулярном уровне, то его действие должно проявляться и при формировании организмов. Наиболее ярко это отражено в форме улиток и морских раковин. Абсолютное большинство их закручено влево, против хода часовой стрелки (рис. 12) [1], [2].

Рис. 12. Абсолютное большинство морских раковин и земных улиток закручено против хода часовой стрелки

Видимо, по этой же причине у большинства животных правая передняя конечность развита сильнее левой. У нас появляются основания полагать, что у большинства людей правая рука развита больше левой именно по этой же причине.

Японский исследователь Hideo Haysaka экспериментально доказал, что ускорение свободного падения у падающего гироскопа с правым вращением меньше, чем с левым (рис. 13) [1].

Изложенное провоцирует нас предположить, что у поверхности нашей планеты существует слабое левовращающееся ротационное поле. Векторы кинетических моментов всех атомов и молекул нашей планеты направлены беспорядочно и компенсируют друг друга везде, кроме приповерхностного слоя. В силу этого они и формируют слабое левозакрученное (против часовой стрелки) ротационное поле (рис. 13, а).

Вращающиеся гироскопы тоже формируют вокруг себя вращающиеся ротационные поля, которые должны взаимодействовать с левовращающимся ротационным полем Земли.

Российские инженер Плотников С.В. установил, что вес вращающегося гироскопа зависит от направления его вращения. На рис. 13, b представлены результаты его эксперимента. Как видно, вес левовращающегося гироскопа 1 увеличивается, а правовращающегося - 2 уменьшается. Сравнивая направления векторов кинетических моментов у атома (рис. 9) и молекулы (рис. 10) водорода, у молекулы ДНК (рис. 11), у раковин (рис. 12) с направлением вектора кинетического момента гироскопа 1 (рис. 13, а), видим их аналогию [1], [2].

Она заключается в том, что направления векторов суммарных кинетических моментов атомов поверхности Земли и вектора левовращающегося (против часовой стрелки) гироскопа 1 совпадают и, сближаясь, увеличивают его вес (рис. 13, b). А вектор правовращающегося (по часовой стрелке) гироскопа 2 направлен противоположно вектору . В результате формируются силы, которые отталкивают этот гироскоп от Земли и уменьшают его вес (рис. 13, b). Нетрудно видеть, что оба эти явления аналогичны явлениям взаимодействия фотонов с разной циркулярной поляризацией (рис. 14) [1].

Рис. 13. а) схема формирования левовращающегося ротационного поля у поверхности Земли и взаимодействия с ним левовращающегося гироскопа 1 и правовращающегося гироскопа 2; b) изменение веса гироскопов: левовращающегося 1 и правовращающегося 2

Рис. 14. Схема взаимодействия лучей фотонов:

а) с одинаковой циркулярной поляризацией;

b) с противоположной циркулярной поляризацией

Невольно возникает вопрос: если Солнечная система и наша Галактика вращаются в одну сторону, то этот процесс должен генерировать космическое ротационное поле? Это оказалось действительно так. Ю.А. Бауров экспериментально доказал существование космического ротационного поля и вектор, характеризующий это поле, назвал Векторным потенциалом [3], [4].

Существуют результаты наблюдений, показывающие, что Векторный потенциал влияет на формирование солнечных протуберанцев [4].

Из изложенного следует однозначная достоверность интерпретации некогда суперсекретных американских летающих тарелок, основанных на эффекте “Бифельда-Брауна”, но мы воздержимся от изложения этой интерпретации по известной причине.

Итак, мы увидели работу закона сохранения кинетического момента в микромире, а теперь посмотрим, как он работает в макромире. Начнём с анализа ошибочного первого закона динамики Ньютона, который гласит, что если тело движется прямолинейно и равномерно или вращается равномерно, ту сумма сил, действующих на такое тело, равна нулю. В качестве тела возьмём нашу матушку Землю и попытаемся ответить на вопрос: почему мы до сих пор не знаем величину силы, которая движет её по орбите вокруг Солнца?

Ответ элементарен: потому что Земля движется (вращается) вокруг Солнца равномерно. В соответствии с первым законом Ньютона сумма сил, действующих на Землю, равна нулю и в силу этого отсутствует математическая модель для расчёта такой силы. Её нет, она равна нулю. Но матушка Земля, наверное, хихикает над нашим убогим научным интеллектом и вращается вокруг Солнца 4,5 млрд. лет под действием касательной силы.

Рис. 15. Схема движения планет вокруг Солнца

Новая классическая физика позволяет нам элементарно рассчитать эту силу. Учитывая массу Земли и среднюю орбитальную скорость её движения вокруг Солнца, определяем кинетическую энергию орбитального движения Земли

. (51)

Поскольку мощность - это величина энергии, реализуемой за одну секунду, то кинетическая энергия орбитального движения Земли вокруг Солнца численно рана мощности , реализуемой орбитальным движением Земли. Если считать угловую скорость орбитального вращения Земли постоянной, то при среднем орбитальном радиусе Земли, равном , находим её среднюю орбитальную угловую скорость . Мощность, реализуемая орбитальным движением Земли, вычисляется по формуле , где - орбитальный момент, вращающий Землю по орбите вокруг Солнца. Он равен орбитальной касательной силе , действующей на Землю, умноженной на орбитальный радиус Земли. В результате получаем численную величину касательной орбитальной силы, движущей нашу матушку Землю вокруг Солнца около 4,5 млрд. лет.

(52)

Конечно, природа этой силы инерциальна. Она родилась в момент формирования планет Солнечной системы. Итак, мы привели краткое описание цепи природных явлений, где проявляется влияние кинетического момента (момента импульса), управляемого главным законом материального микро и макро мира - законом сохранения момента импульса.

Заключение

Размерности физических величин - основа для понимания физических законов, входящих в математические модели, описывающие структуры и поведение обитателей макро - и микромира. Изложенная информация - шаг к разгадке тайны рождения материального мира из субстанции, которую мы называем эфиром. Анализ этой гипотезы - в статье [5].

Литература

1. Канарёв Ф.М. Монография микромира.

http://www.micro-world.su/index.php/2010-12-22-11-45-21/663-2012-08-19-17-07-36

2. Канарёв Ф.М. Ответы на вопросы о микромире.

http://www.micro-world.su/index.php/2010-12-22-11-45-21/260-------iii-

3. Yu. A. Baurov. On Physical Space Structure and New Interaction in Nature. New Ideas in Natural Sciences. Part 1. Physics. St. -Perrsburg 1996. Pag. 45 - 60.

4. A.A. Shpitalnaya, Yu. A. Zakoldaev, A.A. Efremov. Astronomic and geological aspect of the new interaction. Problems of space, time, gravitation. Polotekhnika. St. Petersburg, 1997. P. 382…393

5. Канарёв Ф.М. Новая гипотеза рождения материального мира.

http://www.micro-world.su/index.php/2011-02-23-19-03-19/236-2011-02-24-03-19-03

Размещено на Allbest.ru

...

Подобные документы

  • Построение графика скорости центра масс фотона. Методы получения волнового уравнения Луи Де Бройля: выведение процесса описания движения центра масс фотона за рамки аксиомы. Основные математические модели, которые описывают главные характеристики фотона.

    контрольная работа [628,3 K], добавлен 13.10.2010

  • Вопрос о среде. Масса. Строение вещества. Химические связи. Некоторые следствия. Электропроводность. Захват, излучение фотона. Эффект антигравитации. Красное смещение, постоянная Хаббла. Нейтронные звёзды, чёрные дыры. Тёмная материя. Время, Вселенная.

    статья [368,0 K], добавлен 21.09.2008

  • Электромагнитное взаимодействие между заряжёнными частицами. Масса и импульс фотона, его отличие от элементарных частиц. Суть эффекта Комптона, сопровождающегося изменением частоты фотонов, часть энергии которых после рассеяния передается электронам.

    реферат [230,9 K], добавлен 26.05.2013

  • Виды фотоэлектрического эффекта. Внутренний и вентильный фотоэффект. Вольт-амперная его характеристика. Закон Столетова. Уравнение Эйнштейна для внешнего фотоэффекта. Экспериментальное подтверждение квантовых свойств света. Масса и импульс фотона.

    реферат [53,2 K], добавлен 24.06.2015

  • Физические принципы познания окружающей действительности; движители на принципе фундаментальных физических постоянных. "Старение" кванта (фотона), основанное на энергетической взаимосвязи гравитации и электромагнитного поля; самоорганизация в природе.

    книга [1,5 M], добавлен 28.03.2012

  • Законы внешнего фотоэффекта. Фотонная теория света. Масса, энергия и импульс фотона. Эффект Комптона. Тормозное рентгеновское излучение. Двойственная природа и давление света. Изучение основного постулата корпускулярной теории электромагнитного излучения.

    презентация [2,3 M], добавлен 07.03.2016

  • Движение несвободной частицы. Силы реакции и динамика частиц. Движение центра масс, закон сохранения импульса системы. Закон сохранения кинетического момента системы. Закон сохранения и превращения механической энергии системы частиц. Теорема Кёнига.

    доклад [32,7 K], добавлен 30.04.2009

  • Тепловое излучение, квантовая гипотеза Планка. Квантовые свойства электромагнитного излучения. Формула Эйнштейна для фотоэффекта. Корпускулярно-волновой дуализм материи. Соотношения неопределенностей Гейзенберга. Стационарное уравнение Шредингера.

    учебное пособие [1,4 M], добавлен 06.05.2013

  • Макс Планк как основоположник квантовой физики. Исследование фотоэффекта Столетовым. Максимальная кинетическая энергия фотоэлектронов. Определение массы фотона. Применение явления фотоэффекта в автоматизации станков на заводах, солнечных батареях.

    презентация [159,8 K], добавлен 02.04.2012

  • Закон Био-Савара-Лапласа и его применение. Магнитные моменты электронов. Затухающие и вынужденные колебания в контуре. Волновая и квантовая природа света. Характеристики теплового излучения. Методы оптической пирометрии. Строение атома водорода по Бору.

    методичка [1,6 M], добавлен 02.06.2011

  • Визначення кінетичної та потенціальної енергії точки. Вирішення рівняння коливання математичного маятника. Визначення сили світла прожектора, відстані предмета і зображення від лінзи. Вираження енергії розсіяного фотона, а також швидкості протона.

    контрольная работа [299,7 K], добавлен 22.04.2015

  • Измерение силы тока, проходящего через резистор. Закон сохранения импульса. Трение в природе и технике. Закон сохранения механической энергии. Модели строения газов, жидкостей и твердых тел. Связь температуры со скоростью хаотического движения частиц.

    шпаргалка [126,6 K], добавлен 06.06.2010

  • Закон сохранения импульса. Ускорение свободного падения. Объяснение устройства и принципа действия динамометра. Закон сохранения механической энергии. Основные модели строения газов, жидкостей и твердых тел. Примеры теплопередачи в природе и технике.

    шпаргалка [168,0 K], добавлен 15.12.2009

  • Гидроаэромеханика. Законы механики сплошной среды. Закон сохранения импульса. Закон сохранения момента импульса. Закон сохранения энергии. Гидростатика. Равновесие жидкостей и газов. Прогнозирование характеристик течения. Уравнение неразрывности.

    курсовая работа [56,6 K], добавлен 22.02.2004

  • Предпосылки возникновения квантовой теории. Квантовая механика (волновая механика, матричная механика) как раздел теоретической физики, описывающий квантовые законы движения. Современная интерпретация квантовой теории, взаимосвязь с классической физикой.

    реферат [44,0 K], добавлен 17.02.2010

  • Характеристика світла як потоку фотонів. Основні положення фотонної теорія світла. Визначення енергії та імпульсу фотона. Досліди С.І. Вавилова, вимірювання тиску світла. Досліди П.М. Лебєдева. Ефект Компотна. Корпускулярно-хвильовий дуалізм світла.

    лекция [201,6 K], добавлен 23.11.2010

  • Измерение полного импульса замкнутой системы. Строение и свойства лазерного наноманипулятора. Направление момента силы относительно оси. Закон изменения и сохранения момента импульса. Уравнение движения центра масс. Системы отсчета, связанные с Землей.

    презентация [264,6 K], добавлен 29.09.2013

  • Випромінювання Вавілова-Черенкова. Ефект Доплера, фотонна теорія світла. Маса та імпульс фотона. Досліди Боте та Вавилова. Тиск світла. Досліди Лебедєва. Ефект Комптока. Вивчення фундаментальних дослідів з квантової оптики в профільних класах.

    дипломная работа [661,8 K], добавлен 12.11.2010

  • История развития квантовой теории. Квантово-полевая картина мира. Основные принципы квантово-механического описания. Принцип наблюдаемости, наглядность квантово-механических явлений. Соотношение неопределенностей. Принцип дополнительности Н. Бора.

    реферат [654,4 K], добавлен 22.06.2013

  • "Планетарная модель" атома Бора в основе квантовой механики, ее основные принципы, идеи и значение. Попытки объяснить корпускулярные и волновые свойства вещества в квантовой (волновой) механике. Анализ волновой функции и ее вероятностного смысла.

    реферат [90,7 K], добавлен 21.11.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.