Новая гипотеза рождения материального мира
Схема теоретической модели электрона. Спектр излучения родившейся звезды и главные спектральные линиями этого спектра. Процессы превращения части протонов в нейтроны. Формирование ядер дейтерия, трития, гелия. Появление кальция при охлаждении звезд.
Рубрика | Физика и энергетика |
Вид | статья |
Язык | русский |
Дата добавления | 04.02.2019 |
Размер файла | 368,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Новая гипотеза рождения материального мира
Канарёв Ф.М.
Аннотация
Гипотеза о рождении материального мира в результате, так называемого «Большого взрыва» уже сошла со сцены научных интересов, так как она базировалась на научных идеях А. Эйнштейна, который понимал их противоречивость и выразил это следующим образом: "Я считаю вполне вероятным, что физика может и не основываться на концепции поля, т.е. на непрерывных структурах. Тогда ничего не останется от моего воздушного замка, включая теорию тяготения, как, впрочем, и от всей современной физики" [1].
электрон спектр нейтрон ядро
Прежде чем излагать новую гипотезу о рождении материального мира, надо убедиться, что возможности доказать достоверность старой гипотезы уже исчерпаны. Для этого достаточно сформулировать ключевые вопросы, ответы на которые должны следовать из старой гипотезы. Первый и главный из них - природа и свойства первичного взорвавшегося объекта: масса и плотность? Мы уже знаем, что наибольшую материальную плотность () имеет сплошной тор протона. Плотность всего ядра меньше и составляет, примерно, . Разница эта естественна, так как ядро - не сплошное образование, а состоит из протонов и нейтронов, между которыми есть пустоты [1].
Какова же была плотность субстанции первичного объекта, следующего из Общей теории относительности А. Эйнштейна, размеры которого были близки к размерам горошины, из которой потом образовались все современные звезды и галактики? Здравый смысл сразу отвергает эту гипотезу и формирует представление о наивности автора гипотезы «Большого взрыва» и его последователей.
Новая научная информация о микромире даёт достаточные основания предполагать, что процесс рождения материального мира начался с процесса рождения элементарных частиц. Известен вихревой характер магнитного поля, возникающего вокруг проводника с током. Что является носителем этого поля? По-видимому, какая - то неизвестная нам субстанция, которую мы называем эфиром или тёмной материей. Вполне вероятно, что в пространстве могут существовать условия, при которых из подобной магнитной субстанции формируется микро вихрь с радиусом . Есть основания полагать, что существуют условия, когда высота цилиндрической части этого вихря ограничивается формированием второго вращения относительно кольцевой оси вихря. В результате образуется тор (рис. 1) [1].
Подобные образования иногда наблюдаются в виде торообразных колец дыма на выходе из труб двигателей внутреннего сгорания. Конечно, это гигантские образования по сравнению с размерами электронов или протонов. Тем не менее, есть основания полагать, существование условий при которых из эфира могут формироваться локализованные в пространстве тороидальные образования с постоянной массой - электрона, радиус оси тора которого составляет всего . Устойчивостью такой структуры управляет закон сохранения кинетического момента (момента импульса), закодированный в постоянной Планка и более 20 других констант [1].
Электрон имеет заряд и магнитное поле, подобное магнитному полю стержневого магнита. Это создаёт условия для формирования кластеров электронов путем соединения их разноименных магнитных полюсов. Одноимённые электрические заряды электронов ограничивают их сближение. Электронный кластер - уже экспериментальный факт.
а) b)
с) d)
Рис. 1. а) схема теоретической модели электрона (показана лишь часть магнитных силовых линий); b) схема электронного кластера; с)схема тора электрона; d) схема излучения электроном 6-ти магнитных кольцевых полей фотона
Процесс образования электронного кластера сопровождается излучением фотонов, которые мы наблюдаем при формировании электрической искры. Треск, сопровождающий этот процесс - следствие быстроты формирования электронного кластера и одновременного излучения фотонов всеми его электронами. Причина треска - превышение размеров фотонов, излучаемых электронами, на пять порядков размеры самих электронов.
В Природе электронно-ионные кластеры мощнее. При их формировании образуются молнии, а треск электрической искры превращается в мощные громовые раскаты.
Есть основания полагать, что существуют такие условия, при которых электроны кластера могут объединяться в одну структуру, называемую протоном, масса которого почти в 1800 раз больше массы электрона. Наличие электронов и протонов - достаточное условие для начала формирования всего материального мира [1].
Первыми рождаются атомы водорода и этот процесс сопровождается излучением фотонов. Два атома водорода, соединяясь, излучают фотоны и образуют молекулу водорода.
Если в момент установления связи между электроном и протоном их разноимённые магнитные полюса направлены навстречу друг другу, то протон поглощает такие электроны и превращается в нейтрон. Следующий шаг - рождение ядер дейтерия и трития, а потом - ядер гелия и его атома.
Астрономы и астрофизики считают, что звёзды рождаются из звёздного газа. Однако нам не удалось найти информацию о составе этого газа, поэтому введём понятие реликтового межзвёздного газа, под которым будем понимать совокупность двух первичных элементарных частиц электронов и протонов, которые формировали такой газ на заре рождения материального мира.
Конечно, взрывы Сверхновых в наше время значительно обогатили первичный реликтовый межзвёздный газ различными химическими элементами. Поэтому мы возвратимся к начальному периоду рождения материального мира, когда так называемый звёздный газ состоял лишь из электронов и возможно протонов.
Поскольку началом формирования материального мира являются процессы образования электронов и возможно протонов, то их скопление в межзвёздном пространстве приводит к взрыву и формированию звёзд.
В результате родившаяся звезда будет иметь только спектр излучения и главными спектральными линиями этого спектра будут лини атомарного водорода. Максимальная температура на поверхности такой звезды будет не самая большая. Её величину будет определять энергия ионизации атома водорода, равная 13,60 eV. Радиусы фотонов (длины волн), имеющих такую энергию, равны
(1)
Это фотоны начала невидимого ультрафиолетового диапазона. Совокупность этих фотонов, согласно закону Вина, формирует температуру
. (2)
После рождения звезды начинаются процессы превращения части протонов в нейтроны. Происходит это за счёт поглощения электронов протонами.
Поскольку и протоны, и электроны имеют разноимённые электрические заряды и линейно расположенные разноимённые магнитные полюса, то, если при их сближении, как частиц с разноимёнными электрическими зарядами, их одноимённые магнитные полюса направлены навстречу друг другу, то эти полюса ограничивают их сближение, в результате формируются атомы водорода. Если же разноимённые магнитные полюса электронов и протонов окажутся направленными навстречу друг другу, то после поглощения протоном, примерно, 2,51 электрона он превращается в нейтрон, а остаток третьего электрона, не оформившись ни в какую частицу (наивные физики называют её нейтрино), растворяется, превращаясь в эфир.
Наличие протонов и нейтронов приводит к формированию ядер дейтерия и трития и началу формирования ядер и атомов гелия. Этот процесс сопровождается не только излучением инфракрасных, световых и ультрафиолетовых фотонов электронами, формирующими атомы водорода и гелия, но и излучением протонами рентгеновских фотонов и гамма фотонов при формировании ядер гелия. Это - следующий важный этап в жизни звезды. В этот период у звезды повышается температура и она начинает интенсивно излучать рентгеновские фотоны и гамма фотоны. Температура звезды повышается за счёт излучения электронами фотонов при синтезе атомов гелия.
Вначале к протону ядра атома гелия приближается один электрон и формируется водородоподобный атом гелия. При этом излучается совокупность фотонов, среди которых могут быть фотоны с энергией, равной энергии ионизации атомов гелия 13,60х4=54,40 eV. Радиусы (длины волн) таких фотонов известны и равны
(3)
Это фотоны, примерно, середины ультрафиолетового диапазона. Совокупность таких фотонов формирует температуру . Это уже не мало. Физический смысл этой температуры означает, что она соответствует началу формирования атома гелия.
Известно, что электрон водородоподобного атома лития имеет энергию связи с ядром этого атома равную Е=13,60х9=122,40 eV. Это - энергии фотонов, которые излучают электроны в самый начальный момент формирования атомов лития. Радиусы (длины волн) этих фотонов равны
(4)
Их совокупность способна сформировать температуру . Это фотоны вблизи границы ультрафиолетового и рентгеновского диапазонов.
Мы уже знаем, что максимальная совокупность фотонов начала рентгеновского диапазона, согласно закону Вина, должна формировать температуру около миллиона градусов.
Астрофизики фиксируют максимальную температуру на поверхности голубой звезды, равную 80000 К. Так, что в этот период максимальная совокупность фотонов, формирующих температуру звезды, имеет радиусы (длины волн) равные . Это фотоны почти середины ультрафиолетового диапазона и рождаются они, как мы уже отметили, при синтезе атомов гелия.
Следующие этапы жизни звёзд закодированы в спектрах поглощения. Последовательность появления этих спектров должна соответствовать последовательности рождения химических элементов, представленных в таблице химических элементов Д.И. Менделеева. Наличие протонов и нейтронов должно приводить к последовательному формированию ядер, а потом и атомов постепенно усложняющихся химических элементов и выбросу их в атмосферу звезды. В результате в непрерывном спектре такой звезды должны появляться тёмные полосы - спектры поглощения этих химических элементов (рис. 2).
Однако, в спектрах звёзд, зафиксированных астрофизиками, нет той строгой последовательности рождения химических элементов, которая следует из таблицы химических элементов. В частности, почти во всех спектрах поглощения присутствуют яркие линии атомов кальция который распложен в таблице химических элементов на 20-м месте, поэтому, казалось бы, что спектральные линии атомов кальция должны появляться после линий: гелия, лития, бериллия, бора, углерода, азота, кислорода, фтора, неона, натрия, магния, алюминия, кремния, фосфора, серы, хлора, аргона и калия. Но они появляются после появления линий азота и кислорода.
Рис. 2. Спектр Солнца. Научный фонд США
Это свидетельствует о том, что ядро атома кальция не проходит процесс последовательного формирования, а рождается из совокупности ядер других, уже родившихся более простых химических элементов. Мы уже показали, что этот же процесс идёт и в некоторых живых организмах. При этом основой формирования ядер атомов кальция являются ядра атомов азота, гелия и лития. Ядра этих элементов начинают формироваться у звёзд с самой высокой температурой, равной 80000 К. Спектры ионов кальция появляются при охлаждении звёзд до 20000 К (рис. 3) [1].
Это явно противоречит существующим представлениям о формировании температуры плазмы. Ведь у атома кальция 20 протонов и если бы они все сразу участвовали в синтезе его ядра, то излучали такое большое количество гамма фотонов, которые, согласно закону Вина формировало бы температуру в сотни миллиардов градусов. Но этого не происходит. Кальций появляется не при нагреве звёзд, а при их охлаждении.
Рис. 3. Схемы: а) - ядро атома кальция Ca (20,20); b) - ядро атома азота
Из этого следует, что чем больше номер химического элемента, формирующего в спектре звезды свои спектральные линии поглощения, тем она холоднее и старее [1].
На фото (рис. 2) представлен спектр нашего Солнышка. Это спектр поглощения почти половины химических элементов периодической таблицы Д.И. Менделеева. Анализ его формирует грустные мысли. Наше Солнышко уже давно не в молодом возрасте и нам пора осознать это [1].
Чем больше накапливается знаний, собранных человеком для объяснения окружающего его мира, тем тяжелее переживать ошибочность некоторых из них.
Литература
1. Канарёв Ф.М. Начала физхимии микромира. Монография. 15-е издание.
Размещено на Allbest.ru
...Подобные документы
Кинетическая энергия электрона. Дейбролевская и комптоновская длина волны. Масса покоя электрона. Расстояние электрона от ядра в невозбужденном атоме водорода. Видимая область линий спектра атома водорода. Дефект массы и удельная энергия связи дейтерия.
контрольная работа [114,0 K], добавлен 12.06.2013Спектральный анализ, его достоинства и применение. Распределение энергии в спектре. Анализ общей структуры спектра атома гелия на основе принципа Паули. Определение собственных значений энергии системы из двух электронов, движущихся в поле атомного ядра.
контрольная работа [39,9 K], добавлен 30.07.2011Возбуждение ядер в магнитном поле. Условие магнитного резонанса и процессы релаксации ядер. Спин-спиновое взаимодействие частиц в молекуле. Схема устройства ЯМР-спектрометра. Применение спектроскопии ЯМР 1H и 13CРазличные методы развязки протонов.
реферат [4,1 M], добавлен 23.10.2012Электромагнитные волны, воспринимаемые человеческим глазом. Спектр видимого излучения. Основные спектральные цвета. Открытие ультрафиолетового и инфракрасного излучений. Характеристики границ видимого излучения. Диапазон длин волн спектральных цветов.
презентация [143,3 K], добавлен 05.09.2013Управляемый термоядерный синтез при синтезе ядер дейтерия и трития. Преодоление кулоновского барьера путем нагрева и сжатия вещества. Выполнение критерия Лоусона. Подходы к решению проблемы управляемого термоядерного синтеза. Пороговая энергия лазера.
презентация [49,7 K], добавлен 19.02.2014Подготовка монохроматора к работе. Градуировка монохроматора. Наблюдение сплошного спектра излучения и спектров поглощения. Измерение длины волны излучения лазера. Исследование неизвестного спектра.
лабораторная работа [191,0 K], добавлен 13.03.2007Оптический диапазон спектра. Теоретические основы оптических методов НК. Световые колебания. Классификация оптических методов НК. Дискретный спектр излучения газов и жидкостей. Непрерывный спектр собственного излучения твёрдых тел с разной температурой.
реферат [355,1 K], добавлен 15.01.2009Понятия теории линейных операторов. Дискретный (точечный), непрерывный и остаточный спектр. Основные свойства резольвенты. Связь резольвенты с остаточным, точечным и непрерывными частями спектра оператора. Применение спектральной теории в электронике.
реферат [133,5 K], добавлен 18.05.2010Основные свойства трития. Реакторы для наработки трития. Пути решения проблемы газовых выбросов. Оценка радиационной опасности трития от различных ядерных объектов. Химические и физические свойства бериллия. Вычисление плотности потока нейтронов.
дипломная работа [687,9 K], добавлен 20.01.2013Атомный и молекулярный спектральный анализ. Оптическая спектроскопия. Лазерное сканирование полупроводниковых пластин с последующим спектральным анализом люминесцентного излучения. Спектральные приборы и их принципиальная схема. Дифракционная решётка.
реферат [2,3 M], добавлен 15.01.2009Классическая модель строения атома. Понятие орбиты электрона. Набор возможных дискретных частот. Водородоподобные системы по Бору. Недостатки теории Бора. Значение квантовых чисел. Спектр излучения атомов. Ширина спектральных линий. Доплеровское уширение.
реферат [145,6 K], добавлен 14.01.2009Классификация квантоворазмерных гетероструктур на основе твердого раствора. Компьютерное моделирование физических процессов в кристаллах и квантоворазмерных структурах. Разработка программной модели энергетического спектра электрона в твердом теле.
дипломная работа [2,2 M], добавлен 21.01.2016Общие сведения о взаимодействии излучения с веществом. Характеристика спектрометра комбинационного рассеяния света. Анализ низкочастотной части спектра стронциево-боратного стекла. Обработка полученных экспериментальных спектров для улучшения их качества.
курсовая работа [925,3 K], добавлен 03.12.2012Сущность и способы получения спектра, особенности его формы в изолированных атомах и разреженных газах. Принцип работы и назначение спектрографов, их структура и компоненты. Методика возбуждения излучения неоновой и ртутной ламп и лампы накаливания.
лабораторная работа [402,2 K], добавлен 26.10.2009Принцип работы и особенности использования светофильтров, их назначение и основные функции. Методика выделения узкой части спектра при помощи комбинации фильтров Шотта. Порядок выделения одной или нескольких линий их спектра, различных цветов и оттенков.
реферат [247,0 K], добавлен 28.09.2009Понятие и общая характеристика, физическое обоснование динамики блоховского электрона. Его эффективная масса, зонная структура типичных полупроводников и плотность состояний. Принципы и описание главных этапов процесса заполнения электронных состояний.
презентация [271,4 K], добавлен 25.10.2015Электронное строение атомов переходных элементов. Физические свойства редкоземельных металлов, их применение. Решение уравнения Шредингера для кристалла. Современные методы расчета зонной структуры. Расчет электрона энергетического спектра неодима.
дипломная работа [1000,2 K], добавлен 27.08.2012Философская и физическая суть квантованности распределения энергии спектра на основе цветных солитонов; определение частотного фрактала, массы, энергии, температуры, импульса. Внутриприродная информационная система; феномен "спонтанного самовозгорания".
научная работа [232,6 K], добавлен 07.05.2012Основные виды взаимодействия в классической физике. Характеристика элементарных частиц, специфика их перемещения в пространстве и главные свойства. Анализ гравитационного притяжения электрона и протона. Осмысление равнозначности законов Ньютона и Кулона.
статья [40,9 K], добавлен 06.10.2017Модели строения атома. Формы атомных орбиталей. Энергетические уровни атома. Атомная орбиталь как область вокруг ядра атома, в которой наиболее вероятно нахождение электрона. Понятие протона, нейтрона и электрона. Суть планетарной модели строения атома.
презентация [1,1 M], добавлен 12.09.2013