Передача и приём электронной информации
Передача информации вдоль проводов. Схемы формирования магнитных полей вокруг провода с меняющейся полярностью. Излучение свободными электронами импульсов фотонов в пространство. Зависимость плотности реликтового излучения Вселенной от длины волны.
Рубрика | Физика и энергетика |
Вид | статья |
Язык | русский |
Дата добавления | 04.02.2019 |
Размер файла | 728,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Передача и приём электронной информации
Канарёв Ф.М.
1. Передача информации вдоль проводов
Используем известную нам информацию об электромагнитной структуре электрона (рис. 1), чтобы попытаться смоделировать в первом приближении процесс воздействия переменного напряжения на свободные электроны в проводе [1], [2].
Рис. 1. Схема модели электрона (показана лишь часть магнитных силовых линий): N - северный магнитный полюс, S - южный магнитный полюс
Известно, что если провод медный, то в каждом его кубическом сантиметре содержится свободных электронов. Мы уже показали, что под действием электрического потенциала, приложенного к проводу, его свободные электроны принимают упорядоченную ориентацию и суммарное магнитное поле, формируемое ими выходит за пределы провода (рис. 2).
На рис. 2 ориентация магнитного поля соответствует ориентации спинов электронов, то есть ориентации константы Планка, характеризующей направление вращения электрона. Нетрудно видеть, что направление суммарного магнитного поля всех свободных электронов формирует вокруг провода магнитное поле, направление которого меняется с изменением знака электрического потенциала (рис. 2, а и b). Это значит, что меняется и направление свободных электронов в проводе. Это твёрдо установленные экспериментальные факты [1], [2], [3].
Есть основания предполагать, что импульсное воздействие на электроны в начале провода передаётся всем электронам вдоль провода со скоростью близкой к скорости света. Вполне естественно, что с такой же скоростью передаётся и информация, закодированная в этом импульсе. На этом принципе основана работа всех систем, передающих информацию по проводам, в том числе и работа Интернета.
Рис. 2. Схемы формирования магнитных полей вокруг провода с меняющейся полярностью: а) электроны ориентированы электрическим потенциалом вверх; b) электроны ориентированы электрическим потенциалом вниз
Возникает вопрос: будет ли соответствовать частота изменения направления магнитного поля вокруг провода частоте изменения знака электрического потенциала? Ответ очевидный - будет. Следующий вопрос: будет ли магнитное поле, формируемое электронами вокруг провода, излучаться в пространство при смене знака электрического потенциала? Удивительным является то, что физики ХХ века до сих пор не имеют ответа на этот вопрос. Попытаемся найти его [1], [2], [3].
2. Передача информации в пространство
Можно, конечно, допустить, что при смене направления магнитного поля вокруг провода оно излучается в пространство (рис. 2, а и b). Тогда, у нас появляются основания назвать такой провод антенной, излучающей такое магнитное поле.
Если провод передающей антенны имеет радиус 0,01 м и на его поверхности генерируется магнитное поле напряженностью 0,001 Тл, то линейная удельная напряженность магнитного поля на поверхности провода составит . При удалении магнитного кольца (магнитного кольцевого импульса) от поверхности антенны со скоростью света его радиус будет увеличиваться. Представим, что такое расширяющееся магнитное поле удалилось от передающей антенны на миллион километров и встретилось с антенной приемника. Линейная плотность магнитного кольца, которое пересечет антенну приёмника, составит . Вряд ли такое слабое поле может возбудить электроны антенны приемника, чтобы передать им закодированную информацию [1], [2], [3].
Но ведь астрофизики принимают сигналы от звёзд, которые, как они полагают, расположены от нас на расстоянии световых лет. Если эту информацию несут магнитные кольца с увеличивающимися радиусами, то напряженность их магнитных полей, приходящих к нам, будет близка к нулевым значениям. Это даёт нам основание утверждать, что магнитное поле, формируемое электронами вокруг передающей антенны, никуда не излучается.
Однако, радиопередатчики убедительно доказывают нам, что их антенны передают информацию в пространство, закодированную в импульсах, передаваемых электронам антенны. Если меняющееся магнитное поле вокруг антенны, которое формируется импульсами электронов, не излучается в пространство то, что является носителем информации, передаваемой антенной в пространство?
Чтобы найти ответ на этот вопрос, надо включить в анализ другие чётко установленные функции электронов. Они не только формируют магнитные поля, но и излучают и поглощают фотоны. Это тоже твёрдо установленный экспериментальный факт. Поскольку мы рассматриваем процесс передачи информации антенной передатчика, то он может реализовываться процессом излучения фотонов электронами. Этот процесс инициируется малейшим воздействием на свободные электроны [1], [2], [3].
На рис. 2, а и b показаны свободные электроны в проводе, сориентированные под действием электрического поля. Вполне естественно, что импульсное воздействие на свободные электроны в проводе приводит к импульсному изменению их магнитных моментов , которое сопровождается излучением фотонов. Других излучений в этом процессе нет. Из этого следует, что носителями информации в пространстве являются импульсы фотонов, излучаемые свободными электронами антенны, при воздействии на них импульсов напряжения. Есть основания полагать, что в этом процессе принимают участие и валентные электроны, связывающие атомы в молекулы. Это предположение базируется на известном факте фонового шума, который генерируется фотонами, формирующими температуру антенны, равную температуре среды, окружающей её.
Известно, что с изменением температуры тела меняется его объём. Обусловлено это тем, что при поглощении и излучении фотонов валентными электронами у них изменяются энергии связи, а значит и расстояние между атомами в молекуле или между молекулами в их кластерах. Из этого следует, что если валентные электроны поглощают и излучают фотоны, формирующие температуру среды, то эти электроны вместе со свободными электронами принимают участие в формировании импульса фотонов при воздействии электрического потенциала на свободные электроны. Возникает вопрос: как велико расстояние между молекулами и достаточно ли оно для того, чтобы свободные электроны могли перемещаться в проводе и менять свою ориентацию? Ответ прост. Размер электрона , а размер молекул . Этого вполне достаточно, для движения и изменения ориентации свободных электронов в проводе или антенне.
Свободные электроны в проводе ориентируются под действием электрического поля так, что векторы их спинов и магнитных моментов направлены вдоль провода от плюса к минусу (рис. 3). Напряженность магнитного поля каждого электрона связана с его основными параметрами зависимостью [1], [2]
(1)
где - угловая скорость вращения электрона; - полная энергия электрона.
Самое главное в том, что напряженность магнитного поля электрона зависит от частоты его вращения. С изменением этой частоты изменяется магнитный момент . Импульс изменения магнитного момента передается вдоль провода, а импульс изменения угловой скорости сопровождается излучением фотонов (рис. 3) электронами перпендикулярно проводу (рис. 3). Таким образом, малейшее внешнее воздействие на свободные электроны приводит к передаче ими одной и той же информации в двух направлениях: вдоль провода и перпендикулярно ему [1], [2].
Мы уже отметили, что температуру окружающей среды формируют фотоны с определенной длиной волны. При этом электроны атомов и молекул всего, что находится в этой среде, в том числе и электронs анализируемой нами антенны, непрерывно поглощают и излучают эти фотоны, поддерживая необходимую температуру. Поэтому они являются передатчиками энергии и информации между всеми объектами среды. Это естественный процесс, благодаря которому существует все живое и неживое в Природе [1], [2]. Но он был полностью проигнорирован при интерпретации процессов передачи энергии и информации искусственными источниками, созданными человеком.
Рис. 3. Схема ориентации свободных электронов в проводе под действием электрического импульса и излучение ими импульсов фотонов в пространство
Фотон - локализованное в пространстве магнитное образование, которое движется в пространстве со скоростью света. При этом он имеет такую магнитную структуру (рис. 4), у которой длина волны , равная радиусу фотона . Все его параметры, в том числе и частота, изменяются в интервале 15 порядков [1], [2].
На рис. 3 импульсы излучаемых фотонов представлены в виде совокупности небольших эллипсов. Эллипсы это фотоны. Длина волны каждого фотона, входящего в состав импульса фотонов, на много порядков меньше расстояния между импульсами фотонов, называемого длиной волны излучения. У нас есть возможность определить длину волны или радиус каждого фотона, входящего в состав импульсов фотонов.
Длины волн единичных фотонов, излучаемых валентными электронами атомов антенны передатчика, зависят в обычных условиях от её температуры. Если она равна, например, , то электроны антенны непрерывно излучают и поглощают фотоны с длиной волны, примерно, равной [1], [2]
. (2)
Рис. 4. Схема кольцевых магнитных полей фотона
Это - фотоны инфракрасного диапазона. Мы уже описали, как они генерируют так называемый фоновый шум.. Чтобы выделить искусственную информацию, передаваемую фотонами, излучаемыми электронами, необходимо увеличить возбуждение электронов, чтобы они излучали фотоны с большей энергией, чем фотоны, формирующие температуру окружающей среды и антенны. Различие длин волн фотонов, формирующих фоновый шум от длин волн фотонов, передающих информацию, зависит от интенсивности искусственного воздействия на электроны антенны. Но в любом случае, длина волны импульсов фотонов будет значительно больше длин волн фотонов, формирующих эти импульсы.
Если передатчик излучает импульсы с длиной волны, например, 0,50 м, в виде фотонов с длинами волн несколько меньшими, тех, что формируют температуру среды вокруг антенны, например с длинами волн , то длина волны несущая информацию в пространстве (расстояние между импульсами фотонов (рис. 3), будет больше длин волн фотонов, несущих эту волну в раз [1], [2], [3].
3. Приём информации из пространства
Если на электроны приёмной антенны действуют, только фотоны, формирующие температуру среды, окружающей антенну, а значит и температуру самой антенны, то свободные электроны ориентированы в таком проводе или антенне произвольно. Конечно, на эту произвольность влияют валентные и другие электроны атомов и молекул. Мы уже знаем, что размеры свободных электронов, примерно, в 1000 раз меньше размеров молекул. Это значить, что электроны атомов слабо влияют на ориентацию свободных электронов и даже если это влияние есть, то беспорядочное расположение атомов провода или антенны должно формировать беспорядочную ориентацию свободных электронов в них (рис. 5) [1], [2], [3].
Рис. 5. Свободные электроны
Сразу возникает вопрос: как начнут вести себя свободные электроны антенны, если к ней придёт импульс фотонов? Примут ли они ориентированное положение или просто возбудятся и это возбуждение передадут вдоль антенны к устройствам, принимающим их возбуждение? Сложный вопрос. Попытаемся найти ответ на него. Для этого проанализируем принцип работы термопары [1], [2], [3].
Термопара представляет собой два провода из разных материалов, спаянные между собой. Известно, что если спаянные концы проводов будут иметь разную температуру, то на свободных концах термопары появится ЭДС, то есть по образовавшейся сети потечёт ток [1], [2], [3].
Так как температуру спаянных проводов формируют фотоны, то разную температуру формируют разные фотоны. Это значит, что свободные электроны в каждом проводе термопары возбуждаются с разной интенсивностью. Появление тока в цепи - свидетельство упорядоченной ориентации свободных электронов вдоль провода. Из этого следует, что воздействие импульса фотонов на свободные электроны антенны должно приводить их из хаотического расположения в проводе (рис. 5) в упорядоченное. В любом случае в цепи антенна - приёмное устройство пришедший импульс фотонов действует лишь на часть этой цепи. Благодаря этому в такой цепи возникает разность потенциалов, которая ориентирует электроны во всех элементах этой цепи и в ней возникает ток. Этот процесс можно усилить, если приёмной антенне, состоящей из стержней, придать элементы параболичности. Тогда фотонная волна будет возбуждать не все свободные электроны такой антенны одновременно, а возбудит вначале те, которые находятся в стержнях на периферии воображаемой параболической поверхности. В результате уже в самой такой антенне появиться разность потенциалов и по её электропроводящим элементам пойдёт импульс, ориентирующий свободные электроны и появится ток, который усилит приёмное устройство [1], [2], [3].
Поскольку фотоны - локализованные в пространстве образования, то мощность сигнала, который они формируют в антенне приемника, зависит от количества фотонов в каждом импульсе, дошедших до этой антенны (рис. 6) и их индивидуальной энергии, определяемой длиной волны каждого фотонов, входящего в импульс. В этом случае напряжённость магнитного поля каждого фотона (рис. 3, 4, 6) остаётся постоянной и не зависит от расстояния, которое он проходит от антенны передатчика до антенны приемника или от звезды к Земле (рис. 6) [1], [2], [3].
Если приёмная антенна имеет форму стержня, то эффективность приёма сигнала из пространства такой антенной невелика, так как импульсы фотонов (рис. 6) несут в себе небольшой потенциал, возбуждающий электроны приёмной антенны. Чтобы усилить действие импульсов фотонов, их принимают с помощью, так называемых параболических антенн, поверхность которых не поглощает, а отражает эти импульсы и направляет их в фокус параболы, где и располагается приёмная часть такой антенны.
Рис. 6. Схема фотонной волны длиною
Вполне естественно, что электроны приёмного элемента такой антенны, расположенного в её фокусе, будут подвергнуты мощному воздействию сфокусированным потоком фотонов, что способствует значительному усилению приёмного сигнала.
Тут уместно упомянуть, как принимается излучение Вселенной. Известно, что температура Вселенной равна . В соответствии с формулой Вина эту температуру формирует совокупность фотонов с длиной волны [1], [2].
(3)
Вполне естественно, что электроны приёмной антенны смогут принять такой сигнал лишь в том случае, когда элемент приёмной антенны, принимающий поток фотонов, формирующих температуру , будет охлаждён до температуры меньшей чем . И это действительно так. Приёмный элемент параболической антенны телескопа Хаббла, выведенного в космос, называется болометр. Чтобы устранить влияние фотонов, формирующих фоновый шум, болометр охлаждают до 0,1К. Вполне естественно, что при этом возникает вопрос об источнике излучения Вселенной [1], [2].
Поскольку экспериментальная зависимость спектра излучения Вселенной (рис. 7) близка к теоретической зависимости излучения абсолютно чёрного тела, то эквивалентность между черным телом и Вселенной была признана доказанным фактом. Если Вселенная находиться в стадии охлаждения, как и чёрное тело, то при рождении она была горячей. Причина исходного горячего состояния Вселенной - взрыв, который был назван «Большим взрывом». Это яркий пример того, как кажущаяся логичность последовательности явлений ведёт к ошибочным выводам. Теперь эта ошибочность описана детально и исправлена [1], [2], [3].
Поскольку количество водорода, заполняющего Вселенную, составляет 73%, то максимум излучения Вселенной должны формировать фотоны, излучаемые электронами при синтезе атомов водорода. И это действительно так. Наш анализ показал, что самый большой максимум излучения Вселенной (рис. 7, точка А) формируется фотонами, излучаемыми электронами при синтезе атомов водорода. Установлены и источники формирующие максимумы в точках В и С. Максимум в точке С формируют фотоны, излучаемые электронами при синтезе молекул водорода, а максимум в точке В формируют фотоны, излучаемые электронами молекул водорода в процессе их сжижения при удалении от звёзд [1], [2]
Рис. 7. Зависимость плотности реликтового излучения Вселенной от длины волны: теоретическая - тонкая линия; экспериментальная - жирная линия
Итак, выполненный нами анализ процессов передачи и приёма электронной информации убедительно доказывает, что информацию в пространстве переносят фотоны, излучаемые электронами. Изложенного достаточно для того, чтобы понимать, что информацию в пространстве переносят фотоны и импульсы фотонов. Однако специалистам по расчётам передающих и приёмных антенн трудно с этим согласиться, так как они более века считают, что информацию в пространстве переносят электромагнитные волны Максвелла (рис. 8). Поэтому есть необходимость проанализировать их заблуждения.
Рис. 8. Схема электромагнитной волны Максвелла
Опыты Майкла Фарадея показали в 1831 году, что магнитные и электрические поля меняются синхронно и всегда находятся в сопряжённом состоянии. Если эти изменения синусоидальны, то изменение напряженностей электрических и магнитных полей чаще всего представляют как две взаимно перпендикулярные синусоиды, изменяющиеся во времени (рис. 8) и описываемые уравнениями Максвелла [1], [3]..
(4)
, (5)
, (6)
. (7)
Здесь:
- напряженность электрического поля;
- напряженность магнитного поля;
- ток смещения;
- ток проводимости.
Как видно (4-7), это - уравнения в частных производных, поэтому они автоматически противоречат аксиоме Единства. Это противоречие усиливается независимостью и . В результате они не могут описывать корректно движение в пространстве каких-либо объектов. Поэтому у нас есть основание поставить под сомнение, соответствие реальности электромагнитной волны Максвелла (рис. 8) [1], [2], [3]..
В условиях, когда нет ни единого эксперимента, способного доказать формирование электромагнитных волн Максвелла (рис. 8) достоверность его уравнений тоже вызывает сомнение. Но физики ХХ полностью игнорировали это сомнение и делали всё, чтобы доказать, что уравнения Максвелла (4-7) описывают излучение антенной передатчика именно такой волны, какая показана на рис. 8 [1]. Возникает вопрос: на чём базируют физики свою убеждённость в том, что излучение формируют электромагнитные волны Максвелла? Прежде всего на опытах Герца, который якобы доказал существование таинственного тока смещения (), входящего в третье уравнение (6) Максвелла. Ошибочность этого доказательства трудно было проверить при отсутствии информации об участии фотонов в передаче информации в пространстве. Теперь такая информация имеется и мы можем проверить корректность интерпретации результатов опытов Герца, проведённых им в конце 19-го века. С тех пор не нашлось учёного, понявшего необходимость проверки достоверности интерпретации результатов этих опытов. Выполним её. На рис. 9 показана схема опыта Герца, на основании которого он сделал вывод о появлении тока смещения в диэлектриках, не проводящих ток [1], [2], [3]..
Герц использовал в качестве источника высокого переменного напряжения катушку Румкорфа, с помощью которой генерировал искры в искровом промежутке 1 вибратора. Для регистрации процесса излучения он использовал провод, концы которого завершались сферическими шариками. Он придавал этому проводу форму окружности, квадрата или прямоугольника с регулируемым зазором между шариками (рис. 9). Такое устройство он назвал резонатором. Искровой промежуток 3 резонатора регулировался специальным микрометрическим винтом.
Рис. 9. Схема опыта Герца: 1 - искровой промежуток вибратора; 2 - пластины; 3 - искровой промежуток резонатора; 4 - проводящее или изолирующее тело
Появление искры между шариками свидетельствовало о появлении тока в проводе резонатора. В некоторых опытах искра была такой слабой, что он наблюдал её в темноте при использовании увеличительного стекла или подзорной трубы. Резонатор располагался вблизи вибратора в плоскости, перпендикулярной плоскости пластин 2 параллельно стержню вибратора и симметрично относительно уровня пластин [1], [2], [3].
Когда искровой промежуток 3 резонатора располагался сбоку, как показано на рис. 9, то искр в нём не было в силу одинаковости условий для нижней и верхней половинок резонатора. Если к пластинам вибратора подносилось какое - либо проводящее тело, то, как считал Герц, оно деформировало поле вибратора, в результате резонатор оказывался не в нейтральном положении, и в его зазоре 3 появлялись искры. При этом искровой промежуток 3 резонатора надо было располагать с той стороны, с которой подносилось проводящее тело.
Герц обнаружил, что замена проводящего тела изолированным не меняет результат опыта. На основании этого он сделал вывод о том, что электромагнитное поле Максвелла генерирует ток смещения и в проводящих телах, и в диэлектриках [1], [2], [3].
Нам странно воспринимать такой вывод Герца. Прежде всего диэлектрик не проводит ток, поэтому его и назвали так, чтобы отличить от проводника, который проводит ток. Далее, остаются невыясненными вопросы о влиянии на результат эксперимента световых фотонов, излучаемых в зазоре 1 вибратора в момент образования искры. Ведь они отражаются от проводящих тел и диэлектриков одинаково. Попав на провод резонатора, они и формируют в нём электрический потенциал, который, разряжаясь, образует искру в искровом зазоре 3 [1], [2], [3].
Когда зазор 3 резонатора симметричен относительно концов вибратора, то симметричный поток фотонов, поглощаемых электронами провода резонатора, формируют в нём однополярный потенциал и искра отсутствует. Введение проводящего или изолирующего тела 4 в зону лишь нижней части резонатора приводит к тому, что фотоны, излучённые в искровом промежутке 1 вибратора, отражаются от боковой стенки введённого проводящего или изолирующего тела 4 и увеличивают общий поток фотонов на нижнюю часть резонатора. В результате формируется дисбаланс в возбуждении электронов нижней и верхней частей резонатора и возникает потенциал, который и разряжается в зазоре 3 резонатора, формируя искру, которую и наблюдал Герц [1], [2], [3].
У нас нет оснований упрекать Герца в ошибочности интерпретации этого эксперимента. В его время это была, пожалуй, единственно возможная интерпретация, так как понятие фотон ещё отсутствовало. Но у нас есть основания упрекнут всех его последователей, которые ничего не сделали для того, чтобы повторить его опыты на современном уровне и найти им правильную интерпретацию [1], [2], [3].
Конечно, приближённые методы решения уравнений Максвелла могут давать результат, совпадающий с экспериментом. Суть этого совпадения заключается в том, что приближённые методы решения уравнений Максвелла основаны на использовании рядов Фурье. Этот же метод используется и при обработке результатов экспериментальных данных. То есть физическая суть самой электромагнитной волны здесь никак не представлена. А ведь эта волна может иметь разное физическое наполнение, которое не отражают измерительные приборы. В таких условиях совпадение экспериментального результата с теоретическим может быть случайным, а его интерпретация - полностью ошибочной.
Правда, последующие поколения последователей Максвелла начали замечать противоречия в таких представлениях и указанная картинка (рис. 8) начала исчезать из некоторых учебников физики последних изданий. Чтобы усилить незаметность для других этого факта, математики начали распространять тезис: не нужны никакие представления, математика прекрасно обходится без каких - либо представлений в предсказании экспериментального результата [1], [2], [3].
Грустно становится от такой самоуверенности. Ведь результаты этой самоуверенности очень далеки от реальности. В моей библиотеке есть такие книги, как: А.С. Давыдов. Квантовая механика. «Наука». М. 1972 г. 700с.; Д.И. Блохинцев. Основы квантовой механики. «Наука». М. 1976 г. 664 с.; С.Р. Грот, Л.Г. Сатторп. Электродинамика. «Наука». 1982 г.560с.; Андре Анго. Математика для электро - и радиоинженеров. «Наука». М. 1967г. 770 с. и многие другие. Я покупал их когда - то, надеясь извлечь полезную информацию. Результат нулевой. Все мои многолетние попытки найти в этих книгах ответы на возникавщие вопросы оказались тщетными. Они содержать мизерную информацию о физической сути физических процессов и явлений, которая прикрыта плотным туманом математических крючков, поэтому легко предсказать судьбу этих и подобных им теоретических творений - быстрый уход из сферы научных интересов новых поколений исследователей [1], [2], [3].
Таким образом, импульсное изменение электрического поля передаётся всем свободным электронам, сориентированным вдоль провода, и одновременно сопровождается излучением фотонов в пространство. В результате формируются продольные волны электромагнитных импульсов вдоль провода и одновременно импульсы фотонов, излучаемых перпендикулярно проводу (рис. 3). Так одна и та же информация передаётся в двух направлениях: вдоль провода и перпендикулярно ему - в пространство [1], [2], [3].
Вполне естественно, что для описания фотонной волны (рис. 3, 6) нет нужды вводить в уравнение такой волны напряженности электрических и магнитных полей и не существующие токи смещения. Достаточно написать уравнения изменения напряжения и тока (50), (51), (52) и ввести в них необходимые параметры, характеризующие колебательный процесс, излучающий импульсы фотонов (рис. 3, 6).
Конечно, нам интересно знать детали опытов с радиоволнами, в которых отражена передача информации фотонными волнами (рис. 6). Восемнадцать таких опытов описано в учебном пособии для школьников: Н.М. Шахмаев, С.Е. Каменецкий. Демонстрационные опыты по электродинамике. М. «Просвещение» - 1973. Анализ этих опытов показывает, что в них отразился весь спектр поведения световых фотонов в опытах по оптике. Этого вполне достаточно для заключения о том, что носителями радиоволн являются фотонные (рис. 6) , но не электромагнитные волны Максвелла (рис. 8). Вполне естественно, что фотонные радиоволны формируют фотоны невидимых диапазонов [1], [2], [3].
Из этого следует необходимость повторения опытов Герца с использованием современных средств. И они уже проведены с помощью прибора ИГА-1 (рис. 10). Результаты этих опытов убедительно доказали ошибочность представлений о волновой природе электромагнитного излучения, подобному максвелловской электромагнитной волне (рис. 8).
Прибор ИГА-1 (рис. 10), имея чувствительность 100 пико вольт, принимает естественные излучения с частотой 5 кГц на антенну диаметром 30 мм. Длина волны такого излучения .
Если учесть, что уравнения Максвелла работают в условиях, когда длина электромагнитной волны соизмерима с длиной антенны, то эксперимент с прибором ИГА -1 - убедительное доказательство того, что носителями излучений являются фотоны (рис. 3, 4, 6), но не электромагнитные волны Максвелла (рис. 8). Это обусловлено тем, что размер антенны (круглый диск) у прибора ИГА - 1 на 6 порядков меньше длины максвелловской волны. Это значит, что он принимает не максвелловскую (рис. 8), а фотонную (рис. 6) волну [1], [2], [3].
Рис. 10. Прибор ИГА - 1. Разработчик: Кравченко Ю. П.
провод электрон излучение информация
Заключение
Импульсное изменение электрического поля передаётся всем свободным электронам, сориентированным вдоль провода, и одновременно сопровождается излучением ими фотонов в пространство. В результате формируются продольные волны электромагнитных импульсов вдоль провода и одновременно импульсы излученных фотонов. Так одна и та же информация передаётся в двух направлениях: вдоль провода и перпендикулярно ему - в пространство.
Уравнения Максвелла не имеют никакого отношения к описанию процессов формирования и передачи электронной информации [1], [2], [3].
На фоне изложенных фактов преподавание студентам современной электродинамики эквивалентно интеллектуальному насилию над ними.
Литература
1. Канарёв Ф.М. Начало физхимии микромира. Монография. 9-е издание. 1000 с.
2. Канарёв Ф.М. Теоретические основы физхимии нанотехнологий. 3-е издание. 755с.
3. Канарёв Ф.М. Введение в новую электродинамику. 3-е издание. 135 c.
Размещено на Allbest.ru
...Подобные документы
Формирование электромагнитных волн Максвелла, установление связи между уравнениями Максвелла и экспериментальными данными. Формирование импульсов электронов вдоль провода и излучение им фотонов в пространство. Напряженность магнитного поля электрона.
контрольная работа [343,6 K], добавлен 29.09.2010Понятие и назначение лазера, принцип его работы и структурные компоненты. Типы лазеров и их характеристика. Методика и основные этапы измерения длины волны излучения лазера, и порядок сравнения спектров его индуцированного и спонтанного излучений.
лабораторная работа [117,4 K], добавлен 26.10.2009Понятие об оптическом волокне. Прохождение светового излучения через границу раздела сред, а также в оптических волокнах, определение окон прозрачности. Стабильность мощности лазерного излучения. Принципы измерения мощности на разных длинах волн.
курсовая работа [832,5 K], добавлен 07.01.2014Взаимодействие лазерного излучения с разными веществами. Появление в спектре вещества новых линий. Использование методов голографии для хранения гигантских объемов информации на небольших носителях. Исследование солнечных орбитальных электростанций.
реферат [23,1 K], добавлен 19.04.2014Электромагнитное излучение как распространяющееся в пространстве возмущение (изменение состояния) электромагнитного поля, его виды. Применение радиоволн, инфракрасного излучения. Распространение и краткая характеристика электромагнитного излучения.
презентация [2,6 M], добавлен 31.03.2015Природа и виды ионизирующих излучений. Взаимодействие электронов с веществом. Торможение атомных ядер. Зависимость линейного коэффициента ослабления гамма-излучения в свинце от энергии фотонов. Диффузия в структуре полупроводник-металл-диэлектрик.
курсовая работа [1,2 M], добавлен 12.04.2012Расчёт механики проводов воздушной линии электропередач, исходного режима работы провода. Подбор изоляторов и длины подвесной гирлянды. Проектирование механического привода. Расчет конической передачи. Определение усилий, действующих в зацеплении.
дипломная работа [836,1 K], добавлен 20.05.20111 квантово-механическая гипотеза Планка о квантованности излучения (поглощения) и вывод формулы для спектральной плотности энергетической светимости черного тела - теоретическое обоснование экспериментально наблюдавшихся законов излучения черного тела.
реферат [71,4 K], добавлен 08.01.2009Экспериментальное наблюдение характеристического излучения атома натрия в возбуждённом состоянии - в процессе горения; определение длины волны и энергетического уровня перехода наружного электрона, которым обусловлен характеристический цвет излучения.
практическая работа [13,7 K], добавлен 07.12.2010Свойства, длина волны, спектр, источники, применение невидимого глазом электромагнитного ультрафиолетового излучения. Положительное и негативное воздействие УФ-излучения на человека. Действие облучения на кожу во время высокой солнечной активности.
презентация [64,7 K], добавлен 12.04.2015Понятие об электрическом токе. Изменение электрического поля вдоль проводов со скоростью распространения электромагнитной волны. Условия появления и существования тока проводимости. Вектор плотности тока. Классическая электронная теория проводимости.
презентация [181,7 K], добавлен 21.03.2014Поля и излучения низкой частоты. Влияние электромагнитного поля и излучения на живые организмы. Защита от электромагнитных полей и излучений. Поля и излучения высокой частоты. Опасность сотовых телефонов. Исследование излучения видеотерминалов.
реферат [11,9 K], добавлен 28.12.2005Электромагнитные волны, воспринимаемые человеческим глазом. Спектр видимого излучения. Основные спектральные цвета. Открытие ультрафиолетового и инфракрасного излучений. Характеристики границ видимого излучения. Диапазон длин волн спектральных цветов.
презентация [143,3 K], добавлен 05.09.2013Фотон как основная частица электромагнитного излучения, его свойства и схема движения. Характеристика спектров испускания. Взаимодействие фотонов электромагнитного излучения с веществом, поглощение света. Особенности человеческого цветовосприятия.
контрольная работа [740,3 K], добавлен 25.01.2011Поверхностные акустические волны - упругие волны, распространяющиеся вдоль свободной поверхности твёрдого тела или вдоль его границы с другими средами и затухающие при удалении от границ. Энергетические характеристики ПАВ, составление уравнения Ламе.
курсовая работа [2,4 M], добавлен 17.01.2012Рентабельность развития солнечной космической электростанции, этапы и направления данного процесса, его перспективы, значение. Фотоэлектрическое преобразование солнечного излучения. Беспроводная передача энергии с использованием уравнения передачи Фриис.
курсовая работа [1,2 M], добавлен 17.06.2012Экспериментальные закономерности теплового излучения. Спектральная плотность излучения. Поток лучистой энергии. Абсолютно черное тело и Закон Кирхгофа. Экспериментальная зависимость излучательной способности от температуры. Закон смещения или закон Вина.
презентация [1,8 M], добавлен 23.08.2013Определение плотности тока на поверхности и на оси провода. Численное значение частоты тока. Влияние обратного провода на поле в прямом проводе. Особенности распространения электромагнитной волны в проводящей среде. Плотность тока и напряженности поля.
задача [46,9 K], добавлен 06.11.2011Примеры расчета магнитных полей на оси кругового тока. Поток вектора магнитной индукции. Теорема Гаусса-Остроградского для вектора: основное содержание, принципы. Теорема о циркуляции вектора. Примеры расчета магнитных полей: соленоида и тороида.
презентация [522,0 K], добавлен 24.09.2013Концепция фотонов, предложенная А. Эйнштейном. Демонстрация эффекта Комптона на модели экспериментальной установке. Монохроматическое рентгеновское излучение. Объекты микромира и эффект Комптона. Биологическое действие рентгеновского излучения.
реферат [947,7 K], добавлен 16.03.2011