Диэлектрическая линзовая антенна
Краткие теоретические сведения о назначении, строении диэлектрической линзовой антенны. Замедляющие и ускоряющие антенны. Расчет параметров линзы, облучателя. Конструкция диэлектрической линзовой антенны. Законы распределения поля вдоль поверхности линзы.
Рубрика | Физика и энергетика |
Вид | статья |
Язык | русский |
Дата добавления | 17.02.2019 |
Размер файла | 322,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
ДИЭЛЕКТРИЧЕСКАЯ ЛИНЗОВАЯ АНТЕННА
Ломова В.П.
Любая радиотехническая установка, предназначенная для излучения или приёма радиоволн, содержит антенну. Антенные устройства играют важнейшую роль в радиотехнике, так как основным отличительным признаком радио является наличие излучения или приёма радиоволн. Само слово «Радио» происходит от греческого слова «излучать».
Требования, предъявляемые к антенне, различны в зависимости от назначения радиостанции. Все антенны чаще всего принято классифицировать по диапазонам волн. Рассматриваемая в данной работе линзовая антенна относится к антеннам дециметровых и более коротких волн.
Линзовые антенны представляют собой совокупность электромагнитной линзы и облучателя. Облучателем может быть любой однонаправленный излучатель. Важно, чтобы возможно большая часть энергии попадала на линзу, а не рассеивалась в других направлениях. Линзой называется радиопрозрачное тело с определённой формой поверхности, имеющее коэффициент преломления, отличный от единицы. В основе проектирования линзовых антенн лежит использование оптических свойств электромагнитных волн, которые проявляются при размерах и радиусах кривизны поверхности линзы много больших длины волны.
Рис.1.Линза.F-фокус линзы, 1. Линза.2. Ход электромагнитных волн.3. Волновой фронт.
Для антенн-линз рис.1 характерно то, что в них цилиндрический или сферический фронт волны преобразуется в плоский. Это позволяет получить очень узкую диаграмму направленности антенны с углом раствора всего лишь в несколько угловых минут. Есть два основных типа линзовых антенн: замедляющие и ускоряющие. [1]
В замедляющих линзах фазовая скорость распространения электромагнитной волны меньше скорости света, а в ускоряющих - больше. В работе рассматривается замедляющая линза из искусственного диэлектрика. Для таких линз коэффициент преломления n>1.
Сейчас зачастую используются металлодиэлектрические линзы, которые обладают лучшими массогабаритными показателями, но при этом коэффициент преломления таких линз оказывается сильно зависящим от частоты.
Линзовые антенны, несмотря на ряд ценных качеств (возможность получения высокой направленности излучения при малом уровне побочных лепестков), пока ещё находят ограниченное применение. В настоящее время они применяются, главным образом, в радиорелейных линиях связи. Основным препятствием к широкому внедрению линзовых антенн является их высокая стоимость, связанная с высокой точностью изготовления, и относительная сложность конструкции. Однако они представляют большой принципиальный интерес. Не исключена возможность, что в дальнейшем будущем они найдут более широкое применение.
Расчёт параметров линзы
Геометрические параметры линзы, прежде всего, определяются заданной диаграммой направленности антенны и распределением поля в раскрыве антенны.
Зададимся законом распределения, исходя из уровня поля на краю линзы:
Е=Д+(1-Д)*cos(р*z/(2*L))
(где Д-уровень поля на краю линзы, z-текущая координата, L-размер). Тогда:
Ширина антенны
Высота антенны
где:
Размещено на http://www.allbest.ru/
ширина диаграммы направленности на уровне 0.5 по мощности в соответствующих плоскостях;
Уточним законы распределения поля вдоль поверхности линзы и построим их с обозначением уровня поля на краю раскрыва:
-распределение поля вдоль вертикальной оси линзы:
Размещено на http://www.allbest.ru/
-распределение поля вдоль горизонтальной оси линзы:
Размещено на http://www.allbest.ru/
Рассчитаем коэффициент усиления, исходя из найденных размеров антенны. Для этого выберем диэлектрик, из которого будет изготавливаться линза. С точки зрения хорошего сочетания качественных свойств (очень малая зависимость коэффициента преломления от частоты, морозоустойчивость и малый вес), и экономических затрат (сравнительная простота обработки и дешевизна) выберем в качестве диэлектрика полистирол. Его коэффициент преломления n=1.6. КПД для такой линзы можно вычислить по формуле: з=exp(-2*р*n*D*tg(д)/л) (tg(д)-потери в диэлектрике).
Расчёт профиля линзы производится на основе обеспечения одинаковой оптической длины пути лучей 1 и 2.
В полярных координатах:
где расстояние до линзы -угол на линзу f;-фокусное расстояние f
Данное соотношение представляет собой уравнение гиперболы в полярных координатах. Рассчитаем угол раскрыва в вертикальной плоскости. Для этого зададимся значением поля на краю линзы и из закона распределения поля выразим ц.
Размещено на http://www.allbest.ru/
-закон распределения поля вдоль горизонтальной оси.
Расчёт облучателя
Так как размеры линзы в различных плоскостях разные, то целесообразно будет выбрать в качестве облучателя остроконечный пирамидальный рупор с диаграммой направленности, обеспечивающей допустимое «переливание» энергии через края линзы, а также заданное распределение поля в раскрыве линзы. При расчёте облучателя необходимо учитывать допустимую величину фазовых искажений.[2]
Размещено на http://www.allbest.ru/
-множитель линзы
Размещено на http://www.allbest.ru/
ДН рупора в Е плоскости имеет вид
Найдём размер рупора в Е плоскости исходя из обеспечения требуемого уровня поля на краю линзы. Для этого в ДН рупора подставим угол раскрыва и приравняем к 0.1.
Отсюда находим b1=2.1 см
Теперь можно построить реальное распределение поля в раскрыве и сравнить с выбранным. Для этого диаграмму направленности рупора умножим на множитель линзы. [4]
Как видно из графика распределения заметно отличаются, поэтому произведём коррекцию высоты рупора для более точной аппроксимации.[3]
Для этого возьмём b1=0.018. Тогда распределение поля будет выглядеть так: Найдем размеры рупора в Н плоскости. Для этого необходимо знать его ДН.
ДН рупора в Н плоскости имеет вид:
Найдём размер a1 множитель линзы
Тогда получаем
Отсюда размер a1=3.8см. Построим реальное распределение поля в Н плоскости и сравним с исходным. Для этого также необходимо перемножить ДН рупора в Н плоскости с множителем линзы.
Видно, что и в Н плоскости распределение поля существенно отличается от выбранного. Изменим размер рупора: a1=0.032. Тогда:
Как видно, лишь незначительная часть энергии «переливается» через края линзы. [1]
E плоскость
H плоскость
Рассчитаем углы раскрыва рупора в различных плоскостях, используя найденную длину рупора. Возьмём большую длину рупора для обеспечения лучшей технологичности изделия и совмещения вершины рупора с фокусом линзы.[5]
Конструкция антенны
Антенна представляет собой соединение диэлектрической линзы (1) и рупорного облучателя (2), запитываемого прямоугольным волноводом(3). Также конструктивно сюда входит устройство крепления(4) и оправа линзы(5). Линза представляет собой вырезку из гиперболоида вращения, изготовленную из полистирола. Облучатель - пирамидальный остроконечный рупор, вершина которого лежит в фокусе линзы. Волновод выбирается исходя из передаваемой мощности, диапазона частот, типа волны и т.д. На основании всего этого можно выбрать прямоугольный волновод 6.2Ч3.1 (аналог английского R400). [3]
Его основные параметры:
-размер 6.2Ч3.1 мм;
-толщина стенок 1.0, 0.5 мм;
-диапазон частот 33-50 ГГц (0.91-0.60 мм);
-затухание 7дБ/метр;
-допустимая мощность 16 кВт.
Именно эти параметры во многом будут определяющими для всей конструкции антенны. Так, например, диапазон частот будет целиком зависеть от волноводного тракта, так как это место является самым узкополосным во всей антенне. Перекрытие частоты 50/33=1.52 раза; уровень боковых лепестков (исходя из выбранного распределения поля) -22.4 дБ.
Масса и габариты антенны сравнительно невелики, если учитывать мощность в антенне - 2 кВт. Так, общая длина антенны составляет 25см, площадь раскрыва линзы-206 см2, площадь раскрыва рупора - 5.8 см2.
Линза с помощью металлической рамы соединена с облучателем (волноводом).
Сама же рама имеет в центре крепление для непосредственной установки антенны.
Рассчитанная в работе антенна может быть значительно модернизирована за счёт использования схем механического и электромеханического качания луча. Метод электромеханического сканирования особенно эффективен при использовании линз специальной формы Массу и толщину рассчитанной линзы можно было значительно сократить, используя зонирование. Но при этом рабочая полоса частот антенны резко сужается, а на линзе появляются так называемые вредные зоны.
Линзовая антенна, рассчитанная в данной работе, обладает достаточно хорошими характеристиками. Однако, применение замедляющих линз более оправдано, когда требуется получить игольчатую диаграмму направленности шириной в несколько угловых минут, так как большинство других типов антенн с такой задачей справиться не в состоянии. При этом необходимо учитывать резко возрастающие размеры и массу линзы, а также сложность её изготовления.
При сравнительно широкой диаграмме направленности, как в этой работе, целесообразность применения линзовых антенн будет определяться сравнительным соотношением характеристик антенны и затрат на её изготовление. Но следует учитывать, что при решении специальных задач, связанных с обеспечением игольчатой диаграммы направленности при малом уровне боковых лепестков, диэлектрическая линзовая антенна становится одной из самых востребованных.
облучатель диэлектрический линзовый антенна
Литература
1. Устройства СВЧ и антенны. Методические указания к курсовому проектированию. Сост.: В.И. Елумеев, А.Д. Касаткин, В.Я. Рендакова. Рязань, 1998. №2693
2. А.Л. Драбкин, В.Л. Зузенко, А.Г. Кислов. Антенно-фидерные устройства. -М.: Советское радио, 1974.
3. Д.М. Сазонов. Антенны и устройства СВЧ. Учебник для радиотехнических специальных вузов. - М.: Высшая школа, 1988г.
4. А.Л. Фельдштейн, Л.Р. Явич, В.П. Смирнов. Справочник по элементам волноводной техники. М: Советское радио, 1967
5. М.С. Жук, Ю.Б. Молочков. Проектирование антенно-фидерных устройств. М: Энергия, 1973
Размещено на Allbest.ru
...Подобные документы
Понятие диэлектрической проницаемости как количественной оценки степени поляризации диэлектриков. Зависимость диэлектрической проницаемости газа от радиуса его молекул и их числа в единице объема, жидких неполярных диэлектриков от температуры и частоты.
презентация [870,1 K], добавлен 28.07.2013Исследование диэлектрических свойств кристаллов со структурой перовскита методами дифференциальной диэлектрической спектроскопии. Спектры коэффициента отражения, восстановление диэлектрических функций феррита висмута. Диэлектрические и оптические функции.
курсовая работа [3,3 M], добавлен 26.03.2012Элементарная теория тонких линз. Определение фокусного расстояния по величине предмета и его изображения и по расстоянию последнего от линзы. Определение фокусного расстояния по величине перемещения линзы. Коэффициент увеличения линзы.
лабораторная работа [130,5 K], добавлен 07.03.2007Обзор особенностей преломления и отражения света на сферических поверхностях. Определение положения главного фокуса преломляющей поверхности. Описания тонких сферических линз. Формула тонкой линзы. Построение изображений предметов с помощью тонкой линзы.
реферат [514,5 K], добавлен 10.04.2013Разработка конструкции осесимметричной магнитной линзы для электронов. Определение сечения магнитопровода, методика проведения теплового расчета. Выбор конструкции линзы, расчет толщины железа необходимой для обеспечения в нем заданной магнитной индукции.
контрольная работа [446,4 K], добавлен 04.10.2013Сущность линзы, классификация ее выпуклой (собирающей) и вогнутой (рассеивающей) форм. Понятие фокуса линзы и фокусного расстояния. Особенности построения изображения в линзе в зависимости от пути луча после его преломления и местонахождения предмета.
презентация [1,2 M], добавлен 22.02.2012Основные характеристики астрономического визуального телескопа. Телескопические оптические системы. Сферическая, хроматическая и коматическая аберрация. Астигматизм, дисторсия и кривизна поля изображения. Габаритный расчет линзовой системы трубы Кеплера.
курсовая работа [751,6 K], добавлен 18.07.2014Понятие об излучающем диполе (рамке с полем). Распространение электромагнитных волн и излучение в дальней зоне. Диаграмма направленности в меридиональной и экваториальной плоскости. Принцип двойственности уравнений Максвелла. Излучение рамочной антенны.
презентация [367,5 K], добавлен 13.08.2013Анализ изменений емкости и диэлектрической проницаемости двухполюсника в зависимости от резонансной частоты, оценка закономерности. Применение измерителя добротности ВМ-560, порядок его калибровки. Построение графиков по результатам проведенных измерений.
лабораторная работа [426,0 K], добавлен 26.04.2015Основы распространения радиоволн подвижной радиосвязи в свободном пространстве. Нормированная характеристика изотропной антенны. Формула идеальной радиопередачи. Мощность сигнала на входе приемника на радиолиниях I и II рода. Представление зон Френеля.
реферат [292,9 K], добавлен 14.08.2015Законы распределения плотности тепловыделения. Расчет температурного поля и количества импульсов, излучаемых дуговым плазматроном, необходимого для достижения температуры плавления на поверхности неограниченного тела с учетом охлаждения материала.
курсовая работа [1,1 M], добавлен 05.03.2015Факторы, учитываемые при предварительном выборе двигателя. Расчет требуемой мощности двигателя и определение мощности на выходном валу редуктора. Кинематический расчет редуктора и его геометрических параметров. Обоснование выбора применяемых материалов.
курсовая работа [23,0 K], добавлен 24.06.2010Теория электрической проводимости и методика её измерения. Теория диэлектрической проницаемости и методика её измерения. Экспериментальные исследования электрической проводимости и диэлектрической проницаемости магнитной жидкости.
курсовая работа [724,5 K], добавлен 10.03.2007Краткие сведения о дипольных моментах атомов и молекул. Диэлектрическая проницаемость разреженного газа малой плотности. Разреженный газ из полярных молекул. Модель системы со спонтанной поляризацией. Графическое решение функционального уравнения.
реферат [302,8 K], добавлен 20.03.2016Исследование диэлектрического отклика. Поляризация и диэлектрическая проницаемость. Диэлектрические функции в диапазоне радио- и сверхвысоких частот, в области решеточных и электронных резонансов. Разложение диэлектрической функции на элементарные части.
курсовая работа [2,1 M], добавлен 16.08.2011Изучение уравнения электромагнитного поля в среде с дисперсией. Частотная дисперсия диэлектрической проницаемости. Соотношение Крамерса–Кронига. Особенности распространения волны в диэлектрике. Свойства энергии магнитного поля в диспергирующей среде.
реферат [111,5 K], добавлен 20.08.2015Микрополосковая линия как несимметричная полосковая линия передачи для передачи электромагнитных волн в воздушной или диэлектрической среде, вдоль двух или нескольких проводников. Построение соответствующей модели с помощью программы CST Studio SUITE.
контрольная работа [3,1 M], добавлен 12.03.2019Диэлектрики – вещества, обладающие малой электропроводностью, их виды: газообразные, жидкие, твердые. Электропроводность диэлектриков; ее зависимость от строения, температуры, напряженности поля. Факторы, влияющие на рост диэлектрической проницаемости.
презентация [1,4 M], добавлен 28.07.2013Вектор электрической индукции. Напряженность электрического поля и ее связь с вектором электрической индукции. Выявление диэлектрической восприимчивости. Граница двух диэлектриков с различными диэлектрическими проницаемостями. Понятие "пробный заряд".
реферат [107,1 K], добавлен 05.04.2014Понятие диэлектрической проницаемости. Потери энергии при прохождении электрического тока через конденсатор. Влияние строения, полярности, стереорегулярности, кристаллизации и пластификаторов на диэлектрические потери. Измерение параметров полимеров.
курсовая работа [1014,9 K], добавлен 14.06.2011