Ферромагнетики, свойства и применение

Анализ свойств и сфер применения ферромагнетиков или твердых веществ, обладающих при не слишком высоких температурах самопроизвольной намагниченностью, которая сильно изменяется под влиянием внешних воздействий – магнитного поля, изменения температуры.

Рубрика Физика и энергетика
Вид статья
Язык русский
Дата добавления 21.02.2019
Размер файла 423,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ФЕРРОМАГНЕТИКИ, СВОЙСТВА И ПРИМЕНЕНИЕ

Киселёв А.А.,

Френкель Е.Э.

Если в магнитное поле, образованное токами в проводах ввести то или иное вещество, поле изменится. Это объясняется тем, что всякое вещество является магнетиком, то есть способно под воздействием магнитного поля намагничиваться - приобретать магнитный момент М. Этот магнитный момент складывается из элементарных магнитных моментов m0, связанных с отдельными частицами тела М = m0. В настоящее время установлено, что молекулы многих веществ обладают собственным магнитным моментом, обусловленным внутренним движением зарядов. Каждому магнитному моменту соответствует элементарный круговой ток, создающий в окружающем пространстве магнитное поле. При отсутствии внешнего магнитного поля магнитные моменты молекул ориентированы беспорядочно, поэтому обусловленное ими результирующее магнитное поле равно нулю. Равен нулю и суммарный магнитный момент вещества. Последнее относится и к тем веществам, молекулы которых при отсутствии внешнего поля не имеют магнитных моментов. Если же вещество поместить во внешнее магнитное поле, то под действием этого поля магнитные моменты молекул приобретают преимущественную ориентацию в одном направлении, и вещество намагничивается - его суммарный магнитный момент становится отличным от нуля. При этом магнитные поля отдельных молекул уже не компенсируют друг друга, в результате возникает поле B. Иначе происходит намагничивание веществ, молекулы которых при отсутствии внешнего поля не имеют магнитного момента. Внесение таких веществ во внешнее поле индуцирует элементарные круговые токи в молекулах, и молекулы, а вместе с ними и все вещество приобретают магнитный момент, что также приводит к возникновению поля В1. Большинство веществ при внесении в магнитное поле намагничиваются слабо. Сильными магнитными свойствами обладают только ферромагнитные вещества: железо, никель, кобальт, многие их сплавы.

Ферромагнетики - твердые вещества, обладающие при не слишком высоких температурах самопроизвольной намагниченностью, которая сильно изменяется под влиянием внешних воздействий - магнитного поля, деформации, изменения температуры. К ним относятся: сталь, железо, никель, кобальт, их сплавы. Они имеют магнитную проницаемость, превышающую проницаемость вакуума в несколько тысяч раз. Поэтому все электротехнические устройства, использующие магнитные поля для преобразования энергии, обязательно имеют конструктивные элементы, изготовленные из ферромагнитного материала и предназначенные для проведения магнитного потока. Такие элементы называются магнитопроводы.

Магнитные свойства веществ зависят от магнитных свойств элементарных носителей магнетизма движущихся внутри атомов электронов, а также от совместного действия их групп. Электроны в атомах, двигаясь по орбитам вокруг ядра атома, образуют элементарные токи или магнитные диполи, которые характеризуются магнитным моментом m. Величина его равна произведению элементарного тока i и элементарной площадки s, ограниченной элементарным контуром m = is. Вектор m направлен перпендикулярно к площадке s по правилу буравчика. Магнитный момент тела представляет собой геометрическую сумму магнитных моментов всех диполей. Кроме орбитальных моментов, электроны, вращаясь вокруг своих осей, создают еще спиновые моменты, которые играют важнейшую роль в намагничивании ферромагнетиков.

Ферромагниты имеют следующие свойства.

1) ферромагнитные свойства вещества проявляются только тогда, когда соответствующее вещество находится в кристаллическом состоянии;

2) магнитные свойства ферромагнетиков сильно зависят от температуры, так как ориентации магнитных полей доменов препятствует тепловое движение. Для каждого ферромагнетика существует определенная температура, при котором доменная структура полностью разрушается, и ферромагнетик превращается в парамагнетик. Это значение температуры называется точкой Кюри. Так для чистого железа значение температуры Кюри приблизительно равно 900 °C;

3) ферромагнетики намагничиваются до насыщения в слабых магнитных полях. На рис. 1 показано, как изменяется модуль индукции магнитного поля B в стали с изменением внешнего поля B0;

рис.1

4) магнитная проницаемость ферромагнетика зависит от внешнего магнитного поля (рис. 2).

рис.2

Это объясняется тем, что вначале с увеличением B0 магнитная индукция B растет сильнее, а, следовательно, м будет увеличиваться. Затем при значении магнитной индукции B0 наступает насыщение (м в этот момент максимальна) и при дальнейшем увеличении B0 магнитная индукция B1 в веществе перестает изменяться, а магнитная проницаемость уменьшается (стремится к 1):

В В1 В1

=Размещено на http://www.allbest.ru/

=ВО+Размещено на http://www.allbest.ru/

=1+Размещено на http://www.allbest.ru/

В0 В0 В0

5) у ферромагнетиков наблюдается остаточная намагниченность. Если, например, ферромагнитный стержень поместить в соленоид, по которому проходит ток, и намагнитить до насыщения (точка А) (рис. 3), а затем уменьшать ток в соленоиде, а вместе с ним и B0, то можно заметить, что индукция поля в стержне в процессе его размагничивания остается все время большей, чем в процессе намагничивания. Когда B0 = 0 (ток в соленоиде выключен), индукция будет равна Br (остаточная индукция). Стержень можно вынуть из соленоида и использовать как постоянный магнит. Чтобы окончательно размагнитить стержень, нужно пропустить по соленоиду ток противоположного направления, то есть приложить внешнее магнитное поле с противоположным направлением вектора индукции. Увеличивая теперь по модулю индукцию этого поля до Boc, размагничивают стержень (B = 0).

рис.3

Модуль Boc индукции магнитного поля, размагничивающего намагниченный ферромагнетик, называют коэрцитивной силой.

При дальнейшем увеличении B0 можно намагнитить стержень до насыщения (точка А).Уменьшая теперь B0 до нуля, получают опять постоянный магнит, но с индукцией -Br (противоположного направления). Чтобы вновь размагнитить стержень, нужно снова включить в соленоид ток первоначального направления, и стержень размагнитится, когда индукция B0 станет равной Boc. Продолжая увеличивать B0, снова намагничивают стержень до насыщения (точка А).

Таким образом, при намагничивании и размагничивании ферромагнетика индукция B отстает от B0. Это отставание называется явлением гистерезиса. Изображенная на рисунке 3кривая называется петлей гистерезиса.

Гистерезис - свойство систем, которые не сразу следуют за приложенными силам. Гистерезис был открыт в 1880 г. Варбургом (1846-1931). Вид кривой намагничивания (петли гистерезиса) существенно различается для различных ферромагнитных материалов, которые нашли очень широкое применение в научных и технических приложениях. Некоторые магнитные материалы имеют широкую петлю с высокими значениями остаточной намагниченности силы, они называются магнитно-жесткими и используются для изготовления постоянных магнитов. Для других ферромагнитных сплавов характерны малые значения силы, такие материалы легко намагничиваются и перемагничиваются даже в слабых полях. Такие материалы называются магнитно-мягкими и используются в различных электротехнических приборах - трансформаторах, магнитопроводах.

ОСНОВЫ ТЕОРИИ ФЕРРОМАГНЕТИЗМА

В отличие от диамагнетизма и парамагнетизма, которые являются свойствами отдельных атомов или молекул вещества, ферромагнитные свойства вещества объясняются особенностями его кристаллической структуры. Атомы железа, если взять их, например, в парообразном состоянии, сами по себе диамагнитны или лишь слабо парамагнитны. Ферромагнетизм есть свойство железа в твердом состоянии, то есть свойство кристаллов железа. Прежде всего на это указывает зависимость магнитных свойств железа и других ферромагнитных материалов от обработки, изменяющей их кристаллическое строение. Далее оказывается, что из парамагнитных и диамагнитных металлов можно изготовить сплавы, обладающие высокими ферромагнитными свойствами. Таков, например, сплав Гойслера, почти не уступающий по своим магнитным свойствам железу, хотя он состоит из таких слабомагнитных металлов, как медь (60 %), марганец (25 %) и алюминий (15 %). С другой стороны, некоторые сплавы из ферромагнитных материалов, например сплав из 75 % железа и 25 % никеля почти не магнитны. Наконец, самым веским подтверждением является то, что при достижении определенной температуры (точка Кюри) все ферромагнитные вещества теряют свои ферромагнитные свойства.

Ферромагнитные вещества отличаются от парамагнитных не только весьма большим значением магнитной проницаемости и ее зависимостью от напряженности поля, но и весьма своеобразной связью между намагничиванием и напряженностью намагничивающего поля. Эта особенность находит свое выражение в явлении гистерезиса со всеми его следствиями: наличием остаточного намагничивания и коэрцитивной силы.

Взаимодействие магнитных моментов отдельных атомов ферромагнетика приводит к созданию чрезвычайно сильных внутренних магнитных полей, действующих в пределах каждой такой области и выстраивающих, в пределах этой области, все атомные магнитики параллельно друг другу, как показано на рис. 4. Таким образом, даже при отсутствии внешнего поля ферромагнитное вещество состоит из ряда отдельных областей, каждая из которых самопроизвольно намагничена до насыщения. Но направление намагничивания для разных областей различно, так что вследствие хаотичности распределения этих областей тело в целом оказывается в отсутствии внешнего поля не намагниченным.

рис.4 - Схема, иллюстрирующая ориентацию молекулярных магнитов в «областях самопроизвольного намагничивания» А и В.

а) Внешнее магнитное поле отсутствует;

б) под действием внешнего магнитного поля Н области А и В перестраиваются.

Под влиянием внешнего поля происходит перестройка и перегруппировка таких «областей самопроизвольного намагничивания», в результате которой получают преимущество те области, намагничивание которых параллельно внешнему полю, и вещество в целом оказывается намагниченным.

Один из примеров такой перестройки областей самопроизвольного намагничивания показан на рис.4. Здесь схематически изображены две смежные области, направления намагничивания которых перпендикулярны друг к другу.

При наложении поля Н часть атомов области В, в которой намагничивание перпендикулярно к полю, на границе её с областью А, в которой намагничивание параллельно полю, поворачивается, так что направление их магнитного момента становится параллельным полю. В результате область А, намагниченная параллельно внешнему полю, расширяется за счет тех областей, в которых направление намагничивания образует большие углы с направлением поля, и возникает преимущественное намагничивание тела по направлению внешнего поля. В очень сильных внешних полях возможны и повороты направления ориентации всех атомов в пределах целой области.

При снятии (уменьшении) внешнего поля происходит обратный процесс распада и дезориентации этих областей, то есть размагничивание тела. Ввиду больших по сравнению с атомами размеров «областей самопроизвольного намагничивания» как процесс ориентации их, так и обратный процесс дезориентации происходит с гораздо большими затруднениями, чем установление ориентации или дезориентации отдельных молекул или атомов, имеющее место в парамагнитных и диамагнитных телах. Этим и объясняется отставание намагничивания и размагничивания от изменения внешнего поля, то есть гистерезис ферромагнитных тел.

Ферромагнитные материалы играют огромную роль в самых различных областях современной техники. Магнито-мягкие материалы используются в электротехнике при изготовлении трансформаторов, электромоторов, генераторов, в слаботочной технике связи и радиотехнике; магнито-жёсткие материалы применяют при изготовлении постоянных магнитов.

При выключении внешнего магнитного поля ферромагнетик остается намагниченным, то есть создает магнитное поле в окружающем пространстве.

Упорядоченная ориентация элементарных токов не исчезает привыключении внешнего магнитного поля. Благодаря этому существуют постоянные магниты. Постоянные магниты находят широкое применение в электроизмерительных приборах, громкоговорителях и телефонах, звукозаписывающих аппаратах, магнитных компасах.

Широкое распространение в радиотехнике, особенно в высокочастотной радиотехнике, получили ферриты, сочетающие ферромагнитные и полупроводниковые свойства. Из ферритов изготавливают сердечники катушек индуктивности, магнитные ленты, пленки и диски.

Ферромагнетики - твердые вещества, обладающие при не слишком высоких температурах самопроизвольной (спонтанной) намагниченностью, которая сильно изменяется под влиянием внешних воздействий - магнитного поля, деформации, изменения температуры.

Кроме высокой магнитной проницаемости ферромагнетики обладают сильно выраженной нелинейной зависимостью индукции B от напряженности магнитного поля H, а при перемагничивании связь между B и H становится неоднозначной. При перемагничивании ферромагнетика в нем происходят необратимые преобразования энергии в тепло.

При высокой температуре ферромагнитные свойства всех ферромагнитных веществ исчезают.

В отличие от диамагнетизма и парамагнетизма, которые являются свойствами отдельных атомов или молекул вещества, ферромагнитные свойства вещества объясняются особенностями его кристаллической структуры. Атомы железа, если взять их, например, в парообразном состоянии, сами по себе диамагнитны или лишь слабо парамагнитны. Ферромагнетизм есть свойство железа в твердом состоянии, т. е. свойство кристаллов железа.

Ферромагнитные материалы играют огромную роль в самых различных областях современной техники. Магнито-мягкие материалы используются в электротехнике при изготовлении трансформаторов, электромоторов, генераторов, в слаботочной технике связи и радиотехнике; магнито-жёсткие материалы применяют при изготовлении постоянных магнитов.

поле температура ферромагнетик

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. Иродов И.Е. Электромагнетизм. Основные законы. - 3-е изд. М, Спб.: Лаборатория базовых знаний, 2000. - 352 с.

2. Ландсберг Г.С. Элементарный учебник физики: Учебное пособие. В 3-х томах. / Под редакцией Г.С. Ландсберга: Т.П. Электричество и магнетизм. - 11-е изд. - М.: Наука, Физматлит, 1995. - 480с.

3. Ферромагнетики // Википедия [Интернет-ресурс]. Режим доступа: https://ru.wikipedia.org/wiki/%D0%A4%D0%B5%D1%80%D1%80%D0%BE%D0 %BC%D0%B0%D0%B3%D0%BD%D0%B5%D1%82%D0%B8%D0%BA%D0%B8.

4. Точка Кюри // Википедия [Интернет-ресурс]. Режим доступа:https://ru.wikipedia.org/wiki/%D0%A2%D0%BE%D1%87%D0%BA%D0%B0_%D 0%9A%D1%8E%D1%80%D0%B8.

5. Трофимова Т.И. Курс физики: Пособие для вузов. - 7-е изд. - М.: Высш. шк., 2002. - 542 с.

6. Яворский Б.М., Детлаф А.А. Справочник по физике. - 3-е изд., испр. - М.: Наука. Гл. ред. физ.-мат. лит., 1990. - 624 с.

Размещено на Allbest.ru

...

Подобные документы

  • Намагниченность, напряженность магнитного поля. Факторы, характеризующие степень намагничивания магнетика. Понятие относительной магнитной проницаемости вещества. Ферромагнетики - твердые вещества, которые могут обладать спонтанной намагниченностью.

    лекция [303,4 K], добавлен 24.09.2013

  • Обнаружение магнитоупругого эффекта при воздействии на феррит акустической волны при отсутствии и наличии внешнего постоянного магнитного поля. Исследование изменения магнитоупругого эффекта при изменении величины напряженности внешнего магнитного поля.

    дипломная работа [2,9 M], добавлен 14.12.2015

  • Двойное лучепреломление под влиянием внешних воздействий: механических деформациях тел, электрического поля (эффект Керра), магнитного поля (явление Коттон-Мутона). Явление вращения плоскости поляризации в теории Френеля, сущность эффекта Фарадея.

    реферат [39,9 K], добавлен 17.04.2013

  • Природа и характеристики магнитного поля. Магнитные свойства различных веществ и источники магнитного поля. Устройство электромагнитов, их классификация, применение и примеры использования. Соленоид и его применение. Расчет намагничивающего устройства.

    курсовая работа [3,2 M], добавлен 17.01.2011

  • Регулирование скорости тягового электродвигателя при изменении магнитного поля. Пересчет характеристик при изменении магнитного поля и смешанном возбуждении. Особенности магнитного потока при шунтировании сопротивления и изменением числа витков обмотки.

    презентация [321,9 K], добавлен 14.08.2013

  • Магнитное поле — составляющая электромагнитного поля, появляющаяся при наличии изменяющегося во времени электрического поля. Магнитные свойства веществ. Условия создания и проявление магнитного поля. Закон Ампера и единицы измерения магнитного поля.

    презентация [293,1 K], добавлен 16.11.2011

  • Изучение свойств графита и структуры однослойных нанотруб. Квантовые поправки к проводимости невзаимодействующих электронов. Эффекты слабой локализации в присутствии магнитного поля. Взаимодействие в куперовском канале в присутствии магнитного поля.

    дипломная работа [1,9 M], добавлен 20.10.2011

  • Сущность магнитного поля, его основные характеристики. Понятия и классификация магнетиков - веществ, способных намагничиваться во внешнем магнитном поле. Структура и свойства материалов. Постоянные и электрические магниты и области их применения.

    реферат [1,2 M], добавлен 02.12.2012

  • Виды геометрической симметрии источников магнитного поля. Двойственность локальной идеализации токового источника. Опытное обнаружение безвихревого вида электромагнитной индукции. Магнито-термический эффект.

    статья [57,7 K], добавлен 02.09.2007

  • Моделирование электростатического поля. Контактные явления в металлах и термоэлектрические методы измерения температуры. Закон электромагнитной индукции, расчет индуктивности короткого соленоида. Электромагнитные колебания в последовательном RLC-контуре.

    методичка [827,1 K], добавлен 19.12.2009

  • Общая характеристика и значение основных механических свойств твердых тел, направления их регулирования и воздействий: деформация, напряжение. Классификация и типы деформации: изгиба, кручения и сдвига. Пластическое течение кристаллов. Закон Гука.

    контрольная работа [782,4 K], добавлен 27.05.2013

  • Расчет основных параметров низкотемпературной газоразрядной плазмы. Расчет аналитических выражений для концентрации и поля пространственного ограниченной плазмы в отсутствие магнитного поля и при наличии магнитного поля. Простейшая модель плазмы.

    курсовая работа [651,1 K], добавлен 20.12.2012

  • Анализ источников магнитного поля, основные методы его расчета. Связь основных величин, характеризующих магнитное поле. Интегральная и дифференциальная формы закона полного тока. Принцип непрерывности магнитного потока. Алгоритм расчёта поля катушки.

    дипломная работа [168,7 K], добавлен 18.07.2012

  • Определение наличия и направления магнитного поля метки. Создание постоянного магнитного поля, компенсирующего действие постоянных внешних магнитных полей. Принципиальная схема зарядно-разрядного узла устройства. Определение разряда накопительной емкости.

    лабораторная работа [1,2 M], добавлен 18.06.2015

  • Процесс формирования и появления магнитного поля. Магнитные свойства веществ. Взаимодействие двух магнитов и явление электромагнитной индукции. Токи Фуко — вихревые индукционные токи, возникающие в массивных проводниках при изменении магнитного потока.

    презентация [401,5 K], добавлен 17.11.2010

  • Гравитационное поле и его свойства. Направленность гравитационных сил, силовая характеристика гравитационного поля. Действие магнитного поля на движущийся заряд. Понятие силы Лоренца, определение ее модуля и направления. Расчет обобщенной силы Лоренца.

    контрольная работа [1,7 M], добавлен 31.01.2013

  • История открытия магнитного поля. Источники магнитного поля, понятие вектора магнитной индукции. Правило левой руки как метод определения направления силы Ампера. Межпланетное магнитное поле, магнитное поле Земли. Действие магнитного поля на ток.

    презентация [3,9 M], добавлен 22.04.2010

  • Определение ионосферы и линейного слоя, расчёт диалектической проницаемости ионосферы без учёта магнитного поля. Распределение магнитного поля в точке попадания на Землю отражённого луча. Закон изменения электронной концентрации для линейного слоя.

    курсовая работа [321,8 K], добавлен 14.07.2012

  • Физика низких температур. Низкотемпературные проблемы и возможности сжижения газов. Интенсивность тепловых движений. Свойства газов и жидкостей при низких температурах. Получение низких температур. Сверхтекучесть и другие свойства жидкого гелия.

    курсовая работа [988,1 K], добавлен 16.08.2012

  • Электрический заряд и закон его сохранения в физике, определение напряженности электрического поля. Поведение проводников и диэлектриков в электрическом поле. Свойства магнитного поля, движение заряда в нем. Ядерная модель атома и реакции с его участием.

    контрольная работа [5,6 M], добавлен 14.12.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.