Баро-электро-термо-акустический анализ в прогнозировании жизненного цикла композиционных материалов на основе графена
Анализ метода ускоренного старения для прогнозирования сроков старения композитных материалов на основе графена - одноатомного слоя графита, обладающего уникальной двумерной структурой, который обуславливает механические, тепловые свойства материала.
Рубрика | Физика и энергетика |
Вид | статья |
Язык | русский |
Дата добавления | 25.02.2019 |
Размер файла | 408,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
БАРО-ЭЛЕКТРО-ТЕРМО-АКУСТИЧЕСКИЙ АНАЛИЗ В ПРОГНОЗИРОВАНИИ ЖИЗНЕННОГО ЦИКЛА КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ НА ОСНОВЕ ГРАФЕНА
Стаценко Т.Г.
Стремительное развитие нанотехнологий, создание и использование наноматериалов в конструирование изделий, требуют решения ряда проблем, связанных с определением их долговечности, надежности и устойчивости физико-химических свойств.
Графен, двумерный монослой sp2- связанных атомов углерода, привлекает все большее внимание в последние годы, главным образом из-за его необычайно высокой электрической и термальной проводимости, механической прочность и большой удельной площади поверхности. Графен очень прочен и гибок. Он уникален тем, что способен проявлять свойства как проводника, так и полупроводника. Высокая подвижность носителей заряда (максимальная подвижность электронов среди всех известных материалов) делает его перспективным материалом для использования в самых различных приложениях, в частности, как будущую основу наноэлектроники и возможную замену кремния в интегральных микросхемах [1].
С материаловедческой точки зрения однослойный графен - это не материал, а вещество; больше того, это отдельная молекула и, надо сказать, не самая большая из известных. С химической точки зрения однослойный графен - это полимер, причём всего одна молекула полимера с массой около одного пикограмма (рисунок 1) [2].
Рисунок 1 - 3D-зонная структура графена [3]
Взаимное влияние графена и металлосодержащих наночастиц может привести к созданию новых материалов, обладающих сверхновыми свойствами. Наночастицы металлов и их оксидов проявляют уникальные свойства, отличные от свойств массивных объектов. При уменьшении размера частиц изменяются тепловые, магнитные, адсорбционные, электрохимические и каталитические характеристики таких материалов, что связано с влиянием размерного фактора [4].
Одним из эффективных подходов в создании новых материалов является нанесение металлов и их оксидов на поверхность различных носителей, что позволяет создать большое число потенциальных центров каталитических, сорбционных и электрохимических реакций [6]. Композиты графена вызывают научный и промышленный интерес из-за возникновения максимума проводимости и активной способности к адсорбции на своей поверхности различные ноночастицы металлов и их оксидов [6].
Одна из ключевых областей в применении передовых методов в производстве материалов на основе графена, это сочетание структурных функций в встроенной электронике с экологической безопасностью.
При исследованиях и испытаниях надежности и долговечности материалов и изделий из них, обычно применяются термостаты, криостаты, термобарокамеры и способы термоциклирования и термобаронагружения в них соответственно, в т.ч. для их ускоренного «старения» [7].
Общепринятые решения проблем надежности и долговечности материалов и изделий из них становятся малоэффективными в случаях с нанометриалами, в связи с чем, требуются принципиально новые вероятностно - физические подходы к решению указанных проблем, т.е. новые методы и средства регистрации нано-, и микро, и макроизменения наноматериалов [8].
Представляется актуальными применение нового метода, синхронно-сопрягающего термический и акустико-эмиссионный анализ, а также создание автоматизированной установки, его реализующей, позволяющих перейти к количественным показателям для оценки долговечности и устойчивости физико-химических свойств в условиях эксплуатации, включая их изменения в результате старения [9].
Для объективации регистрации вышеперечисленных параметров, а также. для повышения достоверности идентификации процессов нано-, микро- и макроизменений в материалах, было предложено синхронизировать с методами термического анализа и электрометрии - метод акустической эмиссии, а сопряжение их с ИК Фурье-спектрометром и микроскопом провести через "кварцевые окна" в термокриостате-электропечи [9], чтобы при анализе продуктов деструкции избавиться от процессов их конденсации на стенках газовых кювет и "температурных проблем" газового анализа (температурных ограничений, поддержания равенства температур отводимых в спектрометр газов и т.д.).
Если сопряжение ИК Фурье-спектрометра с дериватографом является общепринятым решением, например, для идентификации состава продуктов деструкции, то комплексирование методов термического анализа, электрометрии и акустической эмиссии было выполнено нами впервые [10].
Так для определения "порога протекания" и интенсивности процессов нано-, микро- и макродеструкции в материалах, а также вычисления эффективной энергии активации "каналов протекания" в частности, предложено была использовать на 2-х стадийную ая модель излучения акустической эмиссии, описывающую переход от рассеянного к локализованному дефектообразованию, которая дает возможность обнаружения такого перехода по сигналам акустической эмиссии, т.к. фиксирует единичные акты с энергией до 10-15 Дж [11]. Применение этой модели позволяет диагностировать предразрушающее состояние образца в рамках концентрационного критерия разрушения [11-13].
Метод термобароденсиметрии, объединенный с методами электрометрии, акустической эмиссии, ИК Фурье-спектрометрии и микроскопии, при использовании термодинамических акустико-эмиссионных эталонов, позволяет решить проблемы метрологии нано-, микро- и макроизмерений, а также проводить диагностику нано-, микро- и макроматериалов и идентифицировать состояние их "жизненного цикла" с привлечением критериев подобия, что повышает точность и достоверность результатов диагностики, и позволяет получить ценную (во многих случаях безальтернативную) информацию о "старении" материалов [14].
Применение данного метода для анализа структуры старения производных графена позволит определить нанодеструкцию, возникновение структурных изменений и появление дефектов (полостей, дислокаций и т.д.), образующихся под воздействием силовых, температурных и электромагнитных полей. Такая диагностика позволит выявить процессы нанодеструкции, протекающие в композиционных материалах не только с графеном, но и с иммобилизованным материалом на его поверхности. Так например за 24 часа, при использование баро-электро-термо-акустического анализа синхронно вычисляются 38 параметров в режиме ускоренного старения, как за 24 года эксплуатации!
графен старение композитный одноатомный
Список литературы
1. Novoselov, K. S. Electric field effect in atomically thin carbon films/ Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. A.//Science. - 2004. - Т. 306. - № 5696. - С. 666-669.
2. Губин, С.П. Графен и материалы на его основе / С.П. Губин, С.В. Ткачев // Наносистемы.- 2010. - Том 2. - №1-2. - С.99-137
3. Avouris P. Graphene: Electronic and Photonic Properties and Devices // Nano Lett., 2010, 10, 11, 4285-4294.
4. Пат.№ 2194666 РФ, МПК7 С 01 В 13/34. Наноструктурные окиси и гидроокиси и способы их синтеза / Т.Д. Ксиао и др. - № 98115315/12; Заявл. 18.11.97; Опубл. 20.12.02, Бюл. №35.
5. Chen J., Bradhurst D.H., Dou S.X., Liu H.K. Nickel hydroxide as an active material for the positive electrode in rechargeable alkaline batteries // J. Electrochem. Soc. - 1999. - V. 146, N 10. - P. 3606-3612.
6. Y Xu, H Bai, G Lu, C Li, G Shi; Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. - Journal of the American Chemical Society, 2008
7. Буловский П.И., Зайденберг М.Г. Надежность приборов систем управления /Справоч. пос./ - Л.: Машиностроение, 1975, с.266-273, с.289-298.
8. Белозеров В.В., Босый С.И., Буйло С.И., Видецких Ю.А., Викулин В.В., Прус Ю.В. ОКТАЭДР: метод и комплекс термоакустометрии с синхронным термическим анализом веществ и материалов //Современные наукоемкие технологии.- 2005.- № 11, с.26-27.
9. Белозеров В.В., Босый С.И. Диагностика опасности материалов методом баротермоэлектрометрии, сопряженной с акустической эмиссией //Фундаментальные исследования. - 2008. - №2, с.116-120..
10. Белозеров В.В., Белозеров В.В., Босый С.И., Панченко Е.М., Удовиченко Ю.И. Способ синхронно-сопряженного термического анализа веществ и материалов и установка для его осуществления - Патент РФ на изобретение № 2343467 от 10.01.2009.
11. Буйло С.И., Козинкина А.И. К вопросу об оценке накопления повреждений и момента перехода от рассеянного к локализованному дефектообразованию по восстановленным значениям потока актов акустической эмиссии //ФТТ.- 1996.- т.38, N11, с.3381-3384.
12. Буйло С.И. Применение явления акустической эмиссии для диагностики предразрушающего состояния угольного пласта //Современные проблемы механики сплошной среды: сб. тр. 3-й Междунар. конф./т.1 под ред. акад. РАН И.И. Воровича - Ростов н/Д: МП Книга, 1997, с.60-63.
13. Буйло С.И. Определение параметров процесса накопления повреждений и оценка критерия разрушения по восстановленным значениям потока актов акустической эмиссии //Дефектоскопия.- 1997.- №7, с.84-89.
14. Белозеров В.В., Босый С.И., Буйло С.И., Прус Ю.В., Удовиченко Ю.И. Способ термодинамического акустико-эмиссионного эталонирования и система его реализующая - Патент РФ на изобретение № 2399910 от 20.09.2010.
Размещено на Allbest.ru
...Подобные документы
Интересные факты из истории открытия графена. Свойства графена: механическая жёсткость, хорошая теплопроводность, прочность, гибкость. Использование графена как перспективной основы наноэлектроники, замены кремнию, при создании сенсорных дисплеев.
презентация [186,8 K], добавлен 17.05.2011Малосигнальные характеристики высокочастотных графеновых транзисторов. Получение графена и попытки химического расслоения. Получение больших образцов. Предельные размеры структур. Кристаллическая структура материала. Физические свойства носителей.
презентация [2,7 M], добавлен 12.04.2014Принципы численного моделирования влияния пор на физико-механические свойства материалов. Разработка элементной модели углепластика, содержащей дефект в виде поры на границе волокно-матрица. Построение такой модели в программном комплексе ANSYS.
дипломная работа [4,5 M], добавлен 21.09.2017Свойства материалов: механические, физические, химические. Виды деформаций: растяжение, сжатие, сдвиг, кручение и изгиб. Расчет плотности, теплопроводности и теплоемкости материалов. Огнестойкость материалов: несгораемые, трудносгораемые, сгораемые.
презентация [32,0 M], добавлен 10.10.2015Классификация, структура, свойства, достоинства и недостатки композиционных материалов. Методы их обработки: контактное (ручное) формование, напыление, инжекция, вакуумная инфузия, намотка, пултрузия, прямое прессование. Рынок композиционных материалов.
курсовая работа [2,7 M], добавлен 14.12.2015Свойства нанокристаллических порошковых материалов на основе тугоплавких соединений. Высокоэнергетические методы консолидации порошковых наноматериалов. Получение спеканием и свойства плотных образцов карбонитрида титана c нанокристаллической структурой.
реферат [5,2 M], добавлен 26.06.2010Свойства звукоизоляции и звукопроницаемости материалов. Определение звукоизоляции образца звукоизоляционного материала с помощью акустического интерферометра. Характеристики погрешности измерений. Оценка погрешности измерений звукоизоляции образца.
дипломная работа [3,4 M], добавлен 24.06.2012Физические и химические свойства графена, методы его синтеза и роль данного соединения в жизни человека. Возможность скручивания графенового листа и её пределы. Способы жидкофазного разделения слоев графита с помощью поверхостно-активных веществ.
курсовая работа [2,7 M], добавлен 04.03.2016Создание запаса энергии за короткое время с помощью электрохимических конденсаторов. Основные виды суперконденсаторов. Структура и свойства электродного материала на основе нанопористого углерода в зависимости от технологических особенностей синтеза.
курсовая работа [1,1 M], добавлен 20.01.2014Неизотропность и блуждание частицы в ячейках. Событийное моделирование двумерного одноатомного газа. Имитационное моделирование вихревого движения в газе. Событийное моделирование самоорганизации графена. Фрагмент участка фильтра с областями прилипания.
статья [337,9 K], добавлен 23.07.2012Свойства нанокомпозитных кобальтсодержащих полимерных материалов на основе политетрафторэтилена. Образование наночастиц кобальта при химическом восстановлении имплантированных ионов Co в структуру полимерных мембран на основе политетрафторэтилена.
дипломная работа [4,6 M], добавлен 13.01.2015Создание сверхвысокочастотных нагревательных и конвейерных волноводных установок на основе волноводов сложного сечения для равномерной обработки тонкослойного и линейного материала. Решение внутренней краевой задачи электродинамики и теплопроводности.
курсовая работа [1,0 M], добавлен 29.12.2012История открытия одноэлектронного транзистора, его конструкция, принцип работы, вольт-амперные характеристики. Явление кулоновской блокады. Наноэлектромеханический одноэлектронный транзистор с "механической рукой". Прототип транзистора на основе графена.
реферат [246,7 K], добавлен 12.12.2013Рассмотрение правил получения серии однослойных образцов металлов и их сплавов, напылённых на подложки с варьируемой толщиной слоя. Изучение влияние толщины напылённого слоя на соотношение характеристических полос испускания в рентгеновских спектрах.
дипломная работа [1,2 M], добавлен 20.07.2015Разработка радиоизотопных, кремниевых источников питания. Изучение двух ступенчатых преобразователей. Описание различных полупроводниковых материалов для бетавольтаических преобразователей. Анализ энергии потерь электронов в полупроводниковой структуре.
дипломная работа [1,4 M], добавлен 19.05.2015Электропроводность композитных материалов на основе гетерогенных ионообменных мембран с наноразмерными включениями металлов. Синтез наноразмерных частиц серебра, кобальта и палладия в матрице гетерогенных мембран с помощью химического восстановителя.
дипломная работа [5,5 M], добавлен 21.04.2016Получение композиционных материалов. Применение топологического подхода, основанного на теории катастроф, к аномальному поведению дисперсных систем и материалов. Анализ процессов структурообразования дисперсных систем при динамических воздействиях.
статья [171,2 K], добавлен 19.09.2017Структура межзеренных границ наноструктурированных материалов и сверхпластичность наноструктур. Сущность закона Хола-Петча. Дефекты в наноструктурированных материалах. Влияние границ раздела на механические свойства нанокристаллических наноматериалов.
курсовая работа [838,1 K], добавлен 21.09.2013Особенности и суть метода сопротивления материалов. Понятие растяжения и сжатия, сущность метода сечения. Испытания механических свойств материалов. Основы теории напряженного состояния. Теории прочности, определение и построение эпюр крутящих моментов.
курс лекций [1,3 M], добавлен 23.05.2010Ознакомление с научной деятельности физиков Андрея Гейма и Константина Новоселова. Изобретение технологии получения двухмерной аллотропной модификации углерода - графена, изучение свойств нового материала; награждение ученых Нобелевской премией.
презентация [3,1 M], добавлен 16.10.2011