Генерация плазмы

Определение термина "плазма" применительно к квазинейтральному ионизованному газу. Термический путь полной ионизации плазмы различных газов. Использование электрического газового разряда или мощного микроволнового излучения для получения плазмы в технике.

Рубрика Физика и энергетика
Вид статья
Язык русский
Дата добавления 01.03.2019
Размер файла 9,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Генерация плазмы

Вантеев П.М., Пермяков Н.А., Головкина М.В., Поволжский Государственный Университет Телекоммуникаций и Информатики

Плазма - частично или полностью ионизованный газ, образованный из нейтральных атомов (или молекул) и заряженных частиц (ионов и электронов). Важнейшей особенностью плазмы является ее квазинейтральность, это означает, что объемные плотности положительных и отрицательных заряженных частиц, из которых она образована, оказываются почти одинаковыми. Газ переходит в состояние плазмы, если некоторые из составляющих его атомов (молекул) по какой-либо причине лишились одного или нескольких электронов, т.е. превратились в положительные ионы. В некоторых случаях в плазме в результате «прилипания» электронов к нейтральным атомам могут возникать и отрицательные ионы. Если в газе не остается нейтральных частиц, плазма называется полностью ионизованной.

Между газом и плазмой нет резкой границы. Любое вещество, находящееся первоначально в твердом состоянии, по мере возрастания температуры начинает плавиться, а при дальнейшем нагревании испаряется, т.е. превращается в газ. Если это молекулярный газ (например, водород или азот), то с последующим повышением температуры происходит распад молекул газа на отдельные атомы (диссоциация). При еще более высокой температуре газ ионизуется, в нем появляются положительные ионы и свободные электроны. Свободно движущиеся электроны и ионы могут переносить электрический ток, поэтому одно из определений плазмы гласит: плазма - это проводящий газ. Нагревание вещества не является единственным способом получения плазмы.

Плазма - четвертое состояние вещества, она подчиняется газовым законам и во многих отношениях ведет себя как газ. Вместе с тем, поведение плазмы в ряде случаев, особенно при воздействии на нее электрических и магнитных полей, оказывается столь необычным, что о ней часто говорят как о новом четвертом состоянии вещества. В 1879 английский физик В. Крукс, изучавший электрический разряд в трубках с разреженным воздухом, писал: «Явления в откачанных трубках открывают для физической науки новый мир, в котором материя может существовать в четвертом состоянии». Древние философы считали, что основу мироздания составляют четыре стихии: земля, вода, воздух и огонь. В известном смысле это отвечает принятому ныне делению на агрегатные состояния вещества, причем четвертой стихии - огню и соответствует, очевидно, плазма.

Сам термин «плазма» применительно к квазинейтральному ионизованному газу был введен американскими физиками Лэнгмюром и Тонксом в 1923 при описании явлений в газовом разряде. До той поры слово «плазма» использовалось лишь физиологами и обозначало бесцветный жидкий компонент крови, молока или живых тканей, однако вскоре понятие «плазма» прочно вошло в международный физический словарь, получив самое широкое распространение.

Способ создания плазмы путем обычного нагрева вещества - не самый распространенный. Чтобы получить термическим путем полную ионизацию плазмы большинства газов, нужно нагреть их до температур в десятки и даже сотни тысяч градусов. Только в парах щелочных металлов (таких, например, калий, натрий или цезий) электрическую проводимость газа можно заметить уже при 2000-3000° С, это связано с тем, что в атомах одновалентных щелочных металлов электрон внешней оболочки гораздо слабее связан с ядром, чем в атомах других элементов периодической системы элементов (т.е. обладает более низкой энергией ионизации). В таких газах при указанных выше температурах число частиц, энергия которых выше порога ионизации, оказывается достаточным для создания слабоионизованной плазмы.

Общепринятым способом получения плазмы в лабораторных условиях и технике является использование электрического газового разряда. Газовый разряд представляет собой газовый промежуток, к которому приложена разность потенциалов. В промежутке образуются заряженные частицы, которые движутся в электрическом поле, т.е. создают ток. Для поддержания тока в плазме нужно, чтобы отрицательный электрод (катод) испускал в плазму электроны. Эмиссию электронов с катода можно обеспечивать различными способами, например нагреванием катода до достаточно высоких температур (термоэмиссия), либо облучением катода каким-либо коротковолновым излучением (рентгеновские лучи, g-излучение), способным выбивать электроны из металла (фотоэффект). Такой разряд, создаваемый внешними источниками, называется несамостоятельным.

К самостоятельным разрядам относятся искровой, дуговой и тлеющий разряды, которые принципиально отличаются друг от друга по способам образования электронов у катода или в межэлектродном промежутке. Искровой разряд обычно оказывается прерывистым даже при постоянном напряжении на электродах. При его развитии возникают тонкие искровые каналы (стримеры), пронизывающие разрядный промежуток между электродами и заполненные плазмой. Пример одного из наиболее мощных искровых разрядов являет собой молния.

В обычном дуговом разряде, который реализуется в довольно плотном газе и при достаточно высоком напряжении на электродах, термоэмиссия с катода возникает чаще всего от того, что катод разогревается падающими на него газовыми ионами. Дуговой разряд, возникающий в воздухе между двумя накаленными угольными стержнями, к которым было подведено соответствующее электрическое напряжение, впервые наблюдал в начале 19 в. русский ученый В.В.Петров. Ярко светящийся канал разряда принимает форму дуги благодаря действию архимедовых сил на сильно нагретый газ. Дуговой разряд возможен и между тугоплавкими металлическими электродами, с этим связаны многочисленные практические применения плазмы дугового разряда в мощных источниках света, в электродуговых печах для плавки высококачественных сталей, при электросварке металлов, а также в генераторах непрерывной плазменной струи - так называемых плазмотронах. Температура плазменной струи может достигать при этом 7000-10 000 К.

Различные формы холодного или тлеющего разряда создаются в разрядной трубке при низких давлениях и не очень высоких напряжениях. В этом случае катод испускает электроны по механизму так называемой автоэлектронной эмиссии, когда электрическое поле у поверхности катода просто вытягивает электроны из металла. Газоразрядная плазма, простирающаяся от катодного до анодного участков, а некотором расстоянии от катода образует положительный столб, отличающийся от остальных участков разряда относительным постоянством по длине характеризующих его параметров (например, напряженности электрического поля). Светящиеся рекламные трубки, лампы дневного света, покрытые изнутри люминофорами сложного состава, представляют собой многочисленные применения плазмы тлеющего разряда. Тлеющий разряд в плазме молекулярных газов (например, СО и СО2) широко используется для создания активной среды газовых лазеров на колебательно-вращательных переходах в молекулах.

Сам процесс ионизации в плазме газового разряда неразрывно связан с прохождением тока и носит характер ионизационной лавины. Это означает, что появившиеся в газовом промежутке электроны за время свободного пробега ускоряются электрическим полем и перед столкновением с очередным атомом набирают энергию, достаточную для того, чтобы ионизовать атом, т.е. выбить еще один электрон). Таким способом происходит размножение электронов в разряде и установление стационарного тока.

В тлеющих газовых разрядах низкого давления степень ионизации плазмы (т.е. отношение плотности заряженных частиц к общей плотности составляющих плазму частиц), как правило, мала. Такая плазма называется слабоионизованной. В установках управляемого термоядерного синтеза (УТС) используется высокотемпературная полностью ионизованная плазма изотопов водорода: дейтерия и трития. На первом этапе исследований по УТС плазма нагревалась до высоких температур порядка миллионов градусов самим электрическим током в так называемых самосжимаемых проводящих плазменных шнурах (омический нагрев). В тороидальных установках магнитного удержания плазмы типа токамак удается нагреть плазму до температур порядка десятков и даже сотен миллионов градусов с помощью впрыскивания (инжекции) в плазму высокоэнергетических пучков нейтральных атомов. Другой способ состоит в использовании мощного микроволнового излучения, частота которого равна ионной циклотронной частоте (т.е. частоте вращения ионов в магнитном поле) - то нагрев плазмы методом так называемого циклотронного резонанса.

плазма газ излучение ионизованный

Литература

1. Вологодская областная научная универсальная библиотека

2. Франк-Каменецкий Д.А. Плазма - четвертое состояние вещества. М., Атомиздат, 1963

3. Арцимович Л.А. Элементарная физика плазмы. М., Атомиздат, 1969

4. Смирнов Б.М. Введение в физику плазмы. М., Наука, 1975

5. Милантьев В.П., Темко С.В. Физика плазмы. М., Просвещение, 1983

6. Чен Ф. Введение в физику плазмы. М., Мир, 1987

Размещено на Allbest.ru

...

Подобные документы

  • Возникновение плазмы. Квазинейтральность плазмы. Движение частиц плазмы. Применение плазмы в науке и технике. Плазма - ещё мало изученный объект не только в физике, но и в химии (плазмохимии), астрономии и многих других науках.

    реферат [43,8 K], добавлен 08.12.2003

  • Механизм функционирования Солнца. Плазма: определение и свойства. Особенности возникновения плазмы. Условие квазинейтральности плазмы. Движение заряженных частиц плазмы. Применение плазмы в науке и технике. Сущность понятия "циклотронное вращение".

    реферат [29,2 K], добавлен 19.05.2010

  • Агрегатные состояния вещества. Что такое плазма? Свойства плазмы: степень ионизации, плотность, квазинейтральность. Получение плазмы. Использование плазмы. Плазма как негативное явление. Возникновение плазменной дуги.

    доклад [10,9 K], добавлен 09.11.2006

  • Изучение физических свойств и явлений, описывающих протекание электрического тока в газах. Содержание процесса ионизации и рекомбинации газов. Тлеющий, искровой, коронный разряды как виды самостоятельного газового разряда. Физическая природа плазмы.

    курсовая работа [203,2 K], добавлен 12.02.2014

  • Применение методов ряда фундаментальных физических наук для диагностики плазмы. Направления исследований, пассивные и активные, контактные и бесконтактные методы исследования свойств плазмы. Воздействие плазмы на внешние источники излучения и частиц.

    реферат [855,2 K], добавлен 11.08.2014

  • Изменение свободной энергии, энтропии, плотности и других физических свойств вещества. Плазма - частично или полностью ионизированный газ. Свойства плазмы: степень ионизации, плотность, квазинейтральность. Получение и использование плазмы.

    доклад [10,5 K], добавлен 28.11.2006

  • Понятие плазмы тлеющего разряда. Определение концентрации и зависимости температуры электронов от давления газа и радиуса разрядной трубки. Баланс образования и рекомбинации зарядов. Сущность зондового метода определения зависимости параметров плазмы.

    реферат [109,9 K], добавлен 30.11.2011

  • Расчет основных параметров низкотемпературной газоразрядной плазмы. Расчет аналитических выражений для концентрации и поля пространственного ограниченной плазмы в отсутствие магнитного поля и при наличии магнитного поля. Простейшая модель плазмы.

    курсовая работа [651,1 K], добавлен 20.12.2012

  • Электродинамические параметры плазмы как материальной среды, в которой распространение электромагнитных волн сопровождается частотной дисперсией. Характеристика взаимодействия частиц плазмы между собой кулоновскими силами притяжения и отталкивания.

    курсовая работа [67,4 K], добавлен 28.10.2011

  • Роль эффекта "накопления" в непрозрачном твердом теле под действием излучения лазера, с помощью регистрации ионизационного состава плазмы, эмитированных с поверхности твердых тел при многократном облучении. Использование метода масс-спектрометрии.

    статья [13,3 K], добавлен 22.06.2015

  • Применение косвенных методов рентгеновской диагностики плазмы индуцированных вакуумных разрядов при лазерном инициировании. Применение камеры-обскуры для исследования пространственных характеристик сильноточного вакуумного разряда на парах металла.

    отчет по практике [1,6 M], добавлен 08.07.2015

  • Физические основы диагностики плазмы. Методы излучения, поглощения и рассеяния для определения плотностей частиц в дискретных энергетических состояниях. Лазерный резонатор, спектроскопия поглощения с частотно-перестраиваемыми и широкополосными лазерами.

    реферат [677,7 K], добавлен 22.12.2011

  • Изучение понятия неоднородности плазмы. Определение напряженности поля, необходимой для поддержания стационарной плазмы. Кинетика распыления активных частиц ионной бомбардировкой. Взаимодействие ионов с поверхностью. Гетерогенные химические реакции.

    презентация [723,6 K], добавлен 02.10.2013

  • Устройство для получения высокочастотного индукционного разряда. Условия циклотронного резонанса. Виды реакторов высокочастотного емкостного разряда. Основные способы генерации плазмы. Зависимость скорости плазменного травления от параметров процесса.

    презентация [1,9 M], добавлен 02.10.2013

  • Современные подходы к построению электрофизических методов для создания низкотемпературной атмосферной плазмы для обработки поверхностей. Технико-физические пределы возможностей датчиков атмосферного давления. Параметры низкотемпературной плазмы.

    реферат [1,9 M], добавлен 23.01.2015

  • Уравнения для поперечных компонент смещения плазмы, минимизация функционал Крускала-Обермана потенциальной энергии МГД-возмущения. Невозмущенное состояние, потенциальная энергия возмущения. Преобразование кинетического слагаемого, условие устойчивости.

    реферат [567,9 K], добавлен 22.07.2011

  • Производство солнечных модулей, полученных струйным плазмохимическим методом. Разработка модели разложения силана в плазме высокочастотного газового разряда. Влияние метастабильного состояния атома аргона на кинетику электронного газа алюминиевой плазмы.

    презентация [1,4 M], добавлен 02.02.2018

  • Особенности плазмы и газового разряда. Проведение опытов с источником ионов с полым анодом при разном ускоряющем напряжении и расстоянии до цилиндра Фарадея. Определение оптимальных параметров для расчета коэффициента эффективности ионного тока в пучке.

    контрольная работа [1,0 M], добавлен 24.02.2013

  • Состав газоразрядной плазмы. Восстановление плазмой нейтральности. Энергетический спектр тяжелых частиц (атомов и молекул). Столкновения частиц в плазме. Диффузия и амбиполярная диффузия в плазме. Механизмы эмиссии электронов из катода в газовом разряде.

    контрольная работа [66,6 K], добавлен 25.03.2016

  • Рассмотрение основных особенностей изменения поверхности зонда в химически активных газах. Знакомство с процессами образования и гибели активных частиц плазмы. Анализ кинетического уравнения Больцмана. Общая характеристика гетерогенной рекомбинации.

    презентация [971,2 K], добавлен 02.10.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.