Естественная и искусственная радиоактивность

Строение атомного ядра. Виды радиоактивных излучений и распадов. Воздействие малых доз радиации на живой организм. Методы регистрации частиц: счетчик Гейгера - Мюллера, пузырьковая камера, газоразрядный счетчик. История открытия радиоактивности.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 26.03.2019
Размер файла 1,9 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Аварии.

В настоящее время на дне Атлантического океана покоятся пять погибших атомных подводных лодок (две американских и три отечественных), которые являются потенциальными источниками техногенных радионуклидов. Однако, как показали многолетние наблюдения за затонувшей в Норвежском море АПЛ «Комсомолец», поступление радионуклидов за пределы корпуса лодки происходит крайне медленно, кроме того, многие радионуклиды прочно сорбируются донными осадками, так что серьезной опасности для окружающей среды затонувшие АПЛ, по-видимому, не представляют.

В 1968 г. в 11 км к западу от авиабазы Туле, вблизи побережья Гренландии, произошла катастрофа американского самолета В-52, несущего четыре ядерные боеголовки. В результате взрыва самолета плутоний, содержавшийся в боеприпасах, был перемешан со льдом, а также частично поступил под лед с фрагментами боеголовок. В итоге в донные осадки попало около 1 ТБк плутония. В 1966 г. произошло столкновение в воздухе двух самолетов американских ВВС над побережьем Испании. В результате произошло падение четырех термоядерных бомб: три упали на берег, одна -- в Средиземное море. Однако эти инциденты не привели к серьезным последствиям для окружающей среды, поскольку большая часть плутония была удалена в результате своевременных дезактивационных работ.

В 1964 г. потерпел аварию американский навигационный спутник: он не вышел на орбиту и упал в Индийский океан. Энергоснабжение спутника обеспечивалось изотопным источником энергии. Авария спутника привела к распылению в атмосфере 629 ТБк 238Pu. Около 95% этого плутония выпало на поверхность Земли к концу 1970 г. Падение спутника привело к существенному изменению соотношения изотопов плутония в глобальных выпадениях.

Авария советского спутника «Космос-954» в 1978 г. привела к поступлению в окружающую среду продуктов деления из бортового атомного реактора. Примерно три четверти от общего количества радионуклидов рассеялись в верхних слоях атмосферы. Падение обломков произошло на территории Северной Америки.

Известен ряд аварий на предприятиях ядерного топливного цикла. Например, в Селлафилде в 1957 г. произошла авария на исследовательском реакторе с расплавлением активной зоны.

27 сентября 1957 г. произошла авария в Кыштыме (Челябинская область) на предприятии по переработке радиоактивных отходов, где находились около 60 охлаждаемых водой емкостей из нержавеющей стали объемом по 250 м3 с высокорадиоактивными отходами. В результате перебоя в подаче охлаждающей воды произошел взрыв мощностью 5--10 кт. Было эвакуировано 23 населенных пункта с населением 10180 человек. Радиоактивное облако поднялось на высоту 1 км и стало перемещаться на северо-восток.

Рис.8 Схема атомной электростанции.

Однако наиболее серьезная авария произошла на Чернобыльской АЭС в ночь на 26 апреля 1986 года. На Чернобыльской АЭС были установлены реакторы типа РБМК (реактор большой мощности кипящий), основной компонент выбросов которых в окружающую среду -- РГ (радиоактивные газы), не создающие опасности внутреннего облучения. Штатная загрузка РБМК -- 192 т ядерного топлива (UO2) с обогащением 2% и 1760 т графита. Для предотвращения окисления графита в кожух реактора подается газовая смесь, состоящая из 80% гелия и 20% водорода. Полная кампания топлива длится 1080 суток. За это время в топливе накапливается свыше 500 радионуклидов от трития до кюрия с общей активностью 6,8 * 1020 Бк. Среди этих радионуклидов достаточно много короткоживущих, активность которых быстро уменьшается со временем.

Авария на ЧАЭС произошла в результате грубейших нарушений техники безопасности при остановке 4-ого блока для проведения замены тепловыделяющих элементов. Произошел взрыв. Рассеяние крупных осколков топлива наблюдалось на расстоянии до сотен метров. Затем загорелся графит. Из общего количества накопившихся в реакторе РБМК радионуклидов при аварии 4-го блока ЧАЭС значительная часть была выброшена в окружающую среду. По мере того как графитовый компонент сердцевины реактора выгорал, он позволял оставшемуся топливу разъедать нижнюю биологическую защиту (НБЗ) и протекать в нижние части здания реактора. Через девять дней сердцевина реактора быстро затвердела и авария остановилась без прямого вмешательства человека (сбрасывание различных материалов с вертолета было неэффективным). Тепло распада быстро снизилось в связи с захватом окружающих материалов (нержавеющей стали и серпентина НБЗ) в соединении с быстрым распространением расплавленного топлива на расстояние до 40 м от эпицентра расплавленной сердцевины.

В течение первых 9 дней после аварии наблюдались четыре фазы процесса:

* первая фаза (26 апреля) -- механическая дисперсия топлива;

* вторая фаза (27 апреля-1 мая) -- спад уровня выброса; уменьшение горения графита;

* третья фаза (2--5 мая) -- сердцевина разогревается до температуры выше 2000°С; протекает реакция между кислородом и графитом; аэрозольные формы продуктов деления комбинируются с частицами графита;

* четвертая фаза (5--6 мая) -- быстрое снижение эмиссии продуктов деления, связанное с остановкой процесса деления. [2]

Выброс радиоактивных продуктов в атмосферу продолжался до конца августа со скоростью нескольких кюри в день.

В саркофаге, сооруженном вокруг аварийного блока, находится от 1270 до 1350 т содержащих топливо материалов (около 10,5% частично им горевшего ядерного топлива), 64000 м3 других материалов (цемент, строительные материалы и др.), приблизительно 10000 т строительных металлоконструкций и от 800 до 1000 т загрязненной воды. В затвердевших остатках топлива остается значительное количество цезия-137 (35% от его исходного количества).

Главные пятна загрязнения на территории бывшего СССР -- площади с уровнем радиоактивности на грунте более 560 кБк/м2. Большие площади на Украине и в Белоруссии имели уровень радиоактивности выше 40 кБк/м2. Наиболее загрязнена была 30-километровая зона, окружающая реактор, где уровень загрязнения цезием-137 обычно превосходил 1500 кБк/м2. В наиболее загрязненном Брянско-Белорусском пятне, находящемся в 200 км к северо-северо-востоку от 4-ого блока, уровень загрязнения цезием-137 достигал 5 МБк/м2.

Предельно высокие уровни выпадений, в том числе и в местах, находящихся в тысячах километров от места аварии, в основном были связаны с дождями. Сухие выпадения играли существенно меньшую роль в распространении Чернобыльских радионуклидов, чем в случае выпадений после испытаний ядерного оружия.

Все эти аварии - наглядный пример того, как опасна может быть радиация.

Часть 3. Воздействие малых доз радиации на живой организм

Эта тема не является основной для моего реферата, так что про неё я скажу совсем немного.

Механизм излучения, поражающего биологические объекты, еще недостаточно изучен. Но ясно, что оно сводится к ионизации атомов и молекул и это приводит к изменению их химической активности. Наиболее чувствительны к излучениям ядра клеток, особенно клеток, которые быстро делятся. Поэтому в первую очередь излучения поражают костный мозг, из-за чего нарушается процесс образования крови. Далее наступает поражение клеток пищеварительного тракта и других органов.

Сильное влияние оказывает облучение на наследственность, поражая гены в хромосомах. В большинстве случаев это влияние является неблагоприятным.

Облучение живых организмов может оказывать и определенную пользу. Быстроразмножающиеся клетки в злокачественных (раковых) опухолях более чувствительны к облучению, чем нормальные. На этом основано подавление раковой опухоли г-лучами радиоактивных препаратов, которые для этой цели более эффективны, чем рентгеновские лучи.

Воздействие излучений на живые организмы характеризуется дозой излучения. Поглощенной дозой излучения называется отношение поглощенной энергии Е ионизирующего излучения к массе m облучаемого вещества:

D=E/m (17)

В СИ поглощенную дозу излучения выражают в грэях (сокращенно: Гр). 1 Гр равен поглощенной дозе излучения, при которой облученному веществу массой 1 кг передается энергия ионизирующего излучения 1 Дж.

Естественный фон радиации (космические лучи, радиоактивность окружающей среды и человеческого тела) составляет за год дозу излучения около 2-10-3 Гр на человека. Международная комиссия по радиационной защите установила для лиц, работающих с излучением, предельно допустимую за год дозу 0,05 Гр. Доза излучения в 3--10 Гр, полученная за короткое время, смертельна.

Существенный вклад в облучение человека вносит радон и продукты его распада. Именно он, вызывает особую тревогу у ученых. По мнению правительственных экспертов за счет радона и продуктов его распада люди получают 3/4 дозы от общего количества радиации, поступающей в процессе облучения естественными источниками радиации. Таким образом, отрицательное действие радона на здоровье людей значительно превосходит воздействие от радиации, выброшенной в окружающую среду атомными станциями.

Основным источником этого радиоактивного инертного газа является земная кора, в которой он образуется в результате естественного радиоактивного распада. Проникая через трещины и щели в фундаменте, полу и стенах, радон поступает в первые этажи зданий и подвальные помещения и в них задерживается и накапливается (радон в 7,5 раз тяжелее воздуха). Как следствие, концентрация радона в верхних этажах многоэтажных домов обычно ниже, чем на первом этаже.

Еще один источник радона в помещении - это сами строительные материалы (бетон, кирпич и т.д.), содержащие естественные радионуклиды. До 80% времени мы проводим в помещениях - дома или на работе. С одной стороны, здания защищают от излучений извне, но если в материалах, из которых они построены, содержатся природные радионуклиды, то из защитных сооружений здание превращается в источник опасности. Вот почему так важно приобретать стройматериалы, неопасные для здоровья. Особенно если речь идет о строительстве или отделке собственного жилья, которое призвано прослужить не одному поколению.

Основную часть дозы облучения от радона человек получает, находясь в закрытом, непроветриваемом помещении. Регулярное проветривание снижает концентрацию радона в несколько раз.

При длительном поступлении радона и его продуктов в организм человека многократно возрастает риск возникновения рака легких. Так Американское Агентство по охране окружающей среды считает, что радон занимает второе после курения место в ряде причин, вызывающих это заболевание.

Эффекты воздействия радиации на человека обычно делятся на две категории:

1) Соматические (телесные) - возникающие в организме человека, который подвергался облучению.

2) Генетические - связанные с повреждением генетического аппарата и проявляющиеся в следующем или последующих поколениях: это дети, внуки и более отдаленные потомки человека, подвергшегося облучению.

Таблица3. Радиационные эффекты облучения человека.

Соматические эффекты

Генетические эффекты

Лучевая болезнь

Генные мутации

Локальные лучевые поражения

Хромосомные аберрации

Лейкозы

Опухоли разных органов

Часть 4. Методы регистрации частиц

Газоразрядный счетчик

В связи с распространением автоматического контроля различных производственных процессов с применением источников радио­активных излучений широкое применение получил газоразрядный счетчик, регистрирующий эти излучения. Его работа основана на ионизирующем действии радиоактивного излучения.

Рис.9 Газоразрядный счетчик.

Газоразрядный счетчик представляет собой стеклянный или металлический баллон с двумя электродами -- внешним (катод(2)) и внутренним (анод(1)). Катодом является или металлический баллон, или проводящий слой, нанесенный на внутреннюю поверхность стеклянного баллона. Анодом служит тонкая металлическая проволока, натянутая внутри баллона вдоль его оси.

Счетчик обычно наполнен специальной смесью газов под давлением 100 мм рт. ст.

Когда газ внутри счетчика не ионизирован ядерными частицами, несмотря на приложенное к нему напряжение, ток между его электродами не протекает. Как только газ внутри счетчика будет ионизирован попавшими в него ядерными частицами, в цепи счетчика появится электрический ток.

Источником ионизации газа могут быть г-, б- и в-лучи, рентгеновское и ультрафиолетовое излучения. Для работы счетчика используется такой режим, при котором ток в цепи счетчика пропорционален числу ионизирующих частиц. Этот режим называется «областью Гейгера» и используется для работы газоразрядных счетчиков. Последовательно со счетчиком включается сопротивление порядка 1 -- 10 Мом, являющееся нагрузкой, с зажимов которого снимаются импульсы напряжения. Частота следования импульсов пропорциональна числу частиц, вызывающих ионизацию.

Газоразрядный счетчик воспринимает ядерное излучение и превращает его в электрические импульсы. Эти импульсы попадают в регистрирующее устройство. Количество поступающих импульсов характеризует степень радиоактивности.

В практике применяют разнообразные типы счетчиков, которые реагируют на различные излучения. Они рассчитаны на разное рабочее напряжение, имеют различный срок службы, исчисляемый миллионами импульсов, а также разные размеры -- длину и диаметр.

Счётчик Гейгера--Мюллера.

Это газоразрядный прибор для подсчёта числа попавших в него ионизирующих частиц. Представляет собой газонаполненный конденсатор, пробивающийся при пролёте ионизирующей частицы через объём газа.

Дополнительная электронная схема обеспечивает счётчик питанием (как правило, не менее 300 V), обеспечивает, при необходимости, гашение разряда и подсчитывает количество разрядов через счётчик.

Счётчики Гейгера разделяются на несамогасящиеся и самогасящиеся (не требующие внешней схемы прекращения разряда).

Чувствительность счётчика определяется составом газа, его объёмом и материалом (и толщиной) его стенок.

Широкое применение счетчика Гейгера -- Мюллера объясняется высокой чувствительностью, возможностью регистрировать разного рода излучения, сравнительной простотой и дешевизной установки. Счетчик был изобретен в 1908 году Гейгером и усовершенствован Мюллером.

Рис.10 Счетчик Гейгера-Мюллера.

Цилиндрический счетчик Гейгера -- Мюллера состоит из металлической трубки или металлизированной изнутри стеклянной трубки и тонкой металлической нити, натянутой по оси цилиндра. Нить служит анодом, трубка -- катодом. Трубка заполняется разреженным газом, в большинстве случаев используют благородные газы аргон и неон. Между катодом и анодом создается напряжение порядка 1500 В.

Работа счетчика основана на ударной ионизации. г-кванты, испускаемые радиоактивным изотопом, попадая на стенки счетчика, выбивают из него электроны. Электроны, двигаясь в газе и сталкиваясь с атомами газа, выбивают из атомов электроны и создают положительные ионы и свободные электроны. Электрическое поле между катодом и анодом ускоряет электроны до энергий, при которых начинается ударная ионизация. Возникает лавина ионов, и ток через счетчик резко возрастает. При этом на сопротивлении R образуется импульс напряжения, который подается в регистрирующее устройство. Чтобы счетчик смог регистрировать следующую попавшую в него частицу, лавинный заряд нужно погасить. Это происходит автоматически. В момент появления импульса тока на сопротивлении R возникает большое падение напряжения, поэтому напряжение между анодом и катодом резко уменьшается и настолько, что разряд прекращается, и счетчик снова готов к работе.

Важной характеристикой счетчика является его эффективность. Не все г-фотоны, попавшие на счетчик, дадут вторичные электроны и будут зарегистрированы, так как акты взаимодействия г-лучей с веществом сравнительно редки, и часть вторичных электронов поглощается в стенках прибора, не достигнув газового объема

Эффективность счетчика зависит от толщины стенок счетчика, их материала и энергии г-излучения. Наибольшей эффективностью обладают счетчики, стенки которых сделаны из материала с большим атомным номером, так как при этом увеличивается образование вторичных электронов. Кроме того, стенки счетчика должны быть достаточно толстыми. Толщина стенки счетчика выбирается из условия ее равенства длине свободного пробега вторичных электронов в материале стенки. При большой толщине стенки вторичные электроны не пройдут в рабочий объем счетчика и возникновение импульса тока не произойдет. Так как гамма-излучение слабо взаимодействует с веществом, то обычно эффективность г-счетчиков также мала и составляет всего 1-2 %. Другим недостатком счетчика Гейгера -- Мюллера является то, что он не дает возможность идентифицировать частицы и определять их энергию.

Пузырьковая камера

Это трековый детектор элементарных заряженных частиц, в котором трек (след) частицы образует цепочка пузырьков пара вдоль траектории её движения. Изобретена А. Глэзером в 1952 г. (Нобелевская премия 1960 г.).

Принцип действия пузырьковой камеры напоминает принцип действия камеры Вильсона. В последней используется свойство перенасыщенного пара конденсироваться в мельчайшие капельки вдоль траектории заряженных частиц. В пузырьковой камере используется свойство чистой перегретой жидкости вскипать (образовывать пузырьки пара) вдоль пути пролёта заряженной частицы. Перегретая жидкость - это жидкость, нагретая до температуры большей температуры кипения для данных условий. Вскипание такой жидкости происходит при появлении центров парообразования, например, ионов. Таким образом, если в камере Вильсона заряженная частица инициирует на своём пути превращение пара в жидкость, то в пузырьковой камере, наоборот, заряженная частица вызывает превращение жидкости в пар.

Рис. 11 Пузырьковая камера.

Перегретое состояние достигается быстрым (5-20 мс) уменьшением внешнего давления. На несколько миллисекунд камера становится чувствительной и способна зарегистрировать заряженную частицу. После фотографирования треков давление поднимается до прежней величины, пузырьки “схлопываются” и камера вновь готова к работе. Цикл работы большой пузырьковой камеры 1 с (т. е. значительно меньше, чем у камеры Вильсона), что позволяет использовать её в экспериментах на импульсных ускорителях. Небольшие пузырьковые камеры могут работать в значительно более быстром режиме - 10-100 расширений в секунду. Моменты возникновения фазы чувствительности пузырьковой камеры синхронизуют с моментами попадания в камеру частиц от ускорителя.

Важным преимуществом пузырьковой камеры по сравнению с камерой Вильсона и диффузионной камерой является то, что в качестве рабочей среды в ней используется жидкость (жидкие водород, гелий, неон, ксенон, фреон, пропан и их смеси). Эти жидкости, являясь одновременно мишенью и детектирующей средой, обладают на 2-3 порядка большей плотностью, чем газы, что многократно увеличивает вероятность появления в них событий, достойных изучения, и позволяют целиком “уместить” в своём объёме треки высокоэнергичных частиц.

Пузырьковые камеры могут достигать очень больших размеров (до 40 м3). Их, как и камеры Вильсона, помещают в магнитное поле. Пространственное разрешение пузырьковых камер 0,1 мм.

Недостатком пузырьковой камеры является то, что её невозможно (в отличие от камеры Вильсона) быстро “включить” по сигналам внешних детекторов, осуществляющих предварительный отбор событий, так как жидкость слишком инерционна и не поддается очень быстрому (за время 1 мкс) расширению. Поэтому пузырьковые камеры, будучи синхронизованы с работой ускорителя, регистрируют все события, инициируемые в камере пучком частиц. Значительная часть этих событий не представляет интереса.

Камера Вильсона

Камера Вильсона - трековый детектор элементарных заряженных частиц, в котором трек (след) частицы образует цепочка мелких капелек жидкости вдоль траектории её движения. Изобретена Ч. Вильсоном в 1912 г. (Нобелевская премия 1927 г.).

Рис.12

Схема камеры Вильсона. Важным этапом в методике наблюдения следов частиц явилось создание камеры Вильсона (1912 г.). За это изобретение Ч. Вильсону в 1927 г. присуждена Нобелевская премия. В камере Вильсона треки заряженных частиц становятся видимыми благодаря конденсации перенасыщенного пара на ионах газа, образованных заряженной частицей.

На ионах образуются капли жидкости, которые вырастают до размеров достаточных для наблюдения (10-3-10-4 см) и фотографирования при хорошем освещении. Пространственное разрешение камеры Вильсона обычно 0,3 мм. Рабочей средой чаще всего является смесь паров воды и спирта под давлением 0,1-2 атмосферы (водяной пар конденсируется главным образом на отрицательных ионах, пары спирта - на положительных). Перенасыщение достигается быстрым уменьшением давления за счёт расширения рабочего объёма. Время чувствительности камеры, в течение которого перенасыщение остаётся достаточным для конденсации на ионах, а сам объём приемлемо прозрачным (не перегруженным капельками, в том числе и фоновыми), меняется от сотых долей секунды до нескольких секунд. После этого необходимо очистить рабочий объём камеры и восстановить её чувствительность. Таким образом, камера Вильсона работает в циклическом режиме. Полное время цикла обычно > 1 мин.

Возможности камеры Вильсона значительно возрастают при помещении её в магнитное поле. По искривлённой магнитным полем траектории заряженной частицы определяют знак её заряда и импульс. С помощью камеры Вильсона в 1932 г. К. Андерсон обнаружил в космических лучах позитрон.

Важным усовершенствованием, удостоенным в 1948 г. Нобелевской премии (П. Блэкетт), явилось создание управляемой камеры Вильсона. Специальные счётчики отбирают события, которые должны быть зарегистрированы камерой Вильсона, и “запускают” камеру лишь для наблюдения таких событий. Эффективность камеры Вильсона, работающей в таком режиме, многократно возрастает. “Управляемость” камеры Вильсона объясняется тем, что можно обеспечить очень высокую скорость расширения газовой среды и камера успевает отреагировать на запускающий сигнал внешних счётчиков.

Дозиметр и радиометр.

Дозимметр -- устройство для измерения дозы или мощности дозы ионизирующего излучения, полученной прибором (и тем, кто им пользуется) за некоторый промежуток времени, например, за период нахождения на некоторой территории или за рабочую смену.

Измерение вышеописанных величин называется дозиметрией.

Иногда «дозиметром» не совсем точно называют радиометр -- прибор для измерения активности радионуклида в источнике или образце (в объеме жидкости, газа, аэрозоля, на загрязненных поверхностях) или плотности

потока ионизирущей излучений для проверки на радиоактивность подозрительных предметов и оценки радиационной обстановки в данном месте в данный момент.

Измерение вышеописанных величин называется радиометрией.

Рентгенметр -- разновидность радиометра для измерения мощности гамма-излучения.

Бытовые приборы, как правило, комбинированные, имеют оба режима работы с переключением «дозиметр» -- «радиометр», световую и (или) звуковую сигнализацию и дисплей для отсчёта измерений. Масса бытовых приборов от 400 до нескольких десятков граммов, размер позволяет положить их в карман. Некоторые современные модели можно надевать на запястье, как часы. Время непрерывной работы от одной батареи от нескольких суток до нескольких месяцев.

Рис14.

Схема дозиметра. Диапазон измерения бытовых радиометров, как правило, от 10 микрорентген в час до 9,999 миллирентген в час (0,1 -- 99,99 микрозиверт в час), погрешность измерения ±30 %.

Детектором (чувствительным элементом дозиметра или радиометра, служащим для преобразования явлений, вызываемых ионизирующими излучениями в электрический или другой сигнал, легко доступный для измерения) может являться ионизационная камера (военный прямопоказывающий дозиметр «ДП-50», похож на авторучку с окошком в торце), сцинтиллятор (геологический поисковый радиометр «СРП-88»), счётчик Гейгера (военный радиометр «ДП-12», бытовые комбинированные «Белла», «Сосна», «Эксперт» (позволяет измерять мягкое бета

Рис.15 Радиометр.

излучение), «РКСБ-104» (радиометр с возможностью работы в дежурном режиме, подаёт сигнал при превышении установленного пользователем уровня), «Мастер» (маленький экономичный рентгенметр и так далее) или же специальный полупроводниковый диод.

Заключение

Итак, моя работа над рефератом выполнена ровно на половину. Как я и предполагала вначале, времени на измерение уровня радиоактивности и составление таблиц ,к сожалению, не хватило.

Выше изложенный материал - это то, в чем в течение года разбиралась я, и, надеюсь, после прочтения, разобрались и Вы.

Я планирую в следующем году завершить практическую часть своей работы и составить таблицы с радиационным паспортом гимназии.

Список используемой литературы

[1]Прескотт К. Оксфордский справочник школьника. - изд. ООО «Издательство Астрель», 2008, -стр.200.

[2] Радиоактивность окружающей среды./ Сапожников Ю.А., Алиев Р.А., Калмыков С.Н. - М.: БИНОМ. Лаборатория знаний, 2006. - стр32.

А.А. Пинской. Учебник по физике за 11 класс.

Г.Я. Мякишев. Учебник по физике за 11 класс.

Ю.Б. Кудряшов. Радиационная биофизика.

Физический энциклопедический словарь.

Размещено на Allbest.ru

...

Подобные документы

  • Методы наблюдения и регистрации элементарных частиц; газоразрядный счетчик Гейгера и камера Вильсона. Открытие радиоактивности; исследование альфа-, бета- и гамма-излучения. Рассмотрение биологического действия радиоактивных излучений на живые организмы.

    презентация [2,2 M], добавлен 03.05.2014

  • Характеристика газоразрядных детекторов ядерных излучений (ионизационных камер, пропорциональных счетчиков, счетчиков Гейгера-Мюллера). Физика процессов, происходящих в счетчиках при регистрации ядерных частиц. Анализ работы счетчика Гейгера-Мюллера.

    лабораторная работа [112,4 K], добавлен 24.11.2010

  • Принцип действия и назначение счетчика Гейгера–Мюллера, расшифровка его принципиальной схемы и выполняемые функции. Методы проверки счетчика, требования к качеству. Разновидности счетчиков и порядок их самостоятельного изготовления в домашних условиях.

    реферат [474,7 K], добавлен 28.09.2009

  • Строение вещества, виды ядерных распадов: альфа-распад, бета-распад. Законы радиоактивности, взаимодействие ядерных излучений с веществом, биологическое воздействие ионизирующего излучения. Радиационный фон, количественные характеристики радиоактивности.

    реферат [117,7 K], добавлен 02.04.2012

  • История открытий в области строения атомного ядра. Модели атома до Бора. Открытие атомного ядра. Атом Бора. Расщепление ядра. Протонно-нейтронная модель ядра. Искусственная радиоактивность. Строение и важнейшие свойства атомных ядер.

    реферат [24,6 K], добавлен 08.05.2003

  • Сведения о радиоактивных излучениях. Взаимодействие альфа-, бета- и гамма-частиц с веществом. Строение атомного ядра. Понятие радиоактивного распада. Особенности взаимодействия нейтронов с веществом. Коэффициент качества для различных видов излучений.

    реферат [377,6 K], добавлен 30.01.2010

  • История открытия рентгеновского излучения. Источники рентгеновских лучей, их основные свойства и способы регистрации. Рентгеновская трубка, ускорители заряженных частиц. Естественная и искусственная радиоактивность. Применение рентгеновского излучения.

    презентация [427,3 K], добавлен 28.11.2013

  • Один из важнейших приборов для автоматического счёта элементарных частиц - счётчик Гейгера, основанный на принципе ударной ионизации. Конденсация перенасыщенного пара с образованием капелек воды в камере Вильсона. Метод толстослойных фотоэмульсий.

    доклад [697,7 K], добавлен 28.05.2009

  • Сцинтилляционный, черенковский детектор частиц. Ионизационная камера, пропорциональный счетчик. Требования к детекторам. Каскадный ускоритель, электростатистический генератор. Ускорение протонов при облучении коротким лазерным импульсом тонкой фольги.

    курсовая работа [4,6 M], добавлен 16.11.2014

  • Пузырьковая камера — прибор для регистрации следов быстрых заряженных частиц, действие которого основано на вскипании перегретой жидкости вдоль траектории частицы. Изобретение и принцип действия пузырьковой камеры. Процесс рождения и распада гиперона.

    презентация [799,4 K], добавлен 19.09.2011

  • Изучение понятия радиоактивности - явления самопроизвольного превращения ядер одних элементов в другие, сопровождающего испускание различных частиц. Открытия Антуана Беккереля и Марии и Пьера Кюри – ученых, исследовавших это явление. Методы регистрации.

    презентация [330,6 K], добавлен 16.05.2012

  • Характеристика методов наблюдения элементарных частиц. Понятие элементарных частиц, виды их взаимодействий. Состав атомных ядер и взаимодействие в них нуклонов. Определение, история открытия и виды радиоактивности. Простейшие и цепные ядерные реакции.

    реферат [32,0 K], добавлен 12.12.2009

  • История открытия радиоактивности, модель атома Томсона. Опыты Резерфорда по рассеянию альфа-частиц. Правило квантования Бора-Зоммерфельда. Боровская теория водородоподобного атома, схема его энергетических уровней. Оптические спектры испускания атомов.

    презентация [3,7 M], добавлен 23.08.2013

  • Заряд, масса, размер и состав атомного ядра. Энергия связи ядер, дефект массы. Ядерные силы и радиоактивность. Плотность ядерного вещества. Понятие ядерных реакций и их основные типы. Деление и синтез ядер. Квадрупольный электрический момент ядра.

    презентация [16,0 M], добавлен 14.03.2016

  • Строение атома и атомного ядра. Явление радиоактивности. Взаимодействие нейтронов с атомными ядрами. Цепная ядерная реакция. История создания ядерного оружия. Виды ядерных зарядов. Поражающие факторы ядерного взрыва. Ядерный терроризм.

    реферат [85,8 K], добавлен 05.05.2006

  • Длина электромагнитных волн рентгеновского излучения, его виды и их характеристика. Взаимодействие рентгеновского излучения с веществом. Основные виды рентгенодиагностики. Естественная и искусственная радиоактивность. Виды радиоактивного распада.

    презентация [2,4 M], добавлен 30.09.2013

  • Открытие сложного строения атома – важнейший этап становления современной физики. Модель Томпсона и ее противоречие с опытами по исследованию распределения положительного заряда в атоме. Определение размеров атомного ядра. Открытие радиоактивности.

    презентация [1,7 M], добавлен 09.04.2015

  • Радиоактивные излучения, их сущность, свойства, единицы измерения, физическая доза и мощность. Газоразрядные счётчики ионизирующих частиц. Конструкция и принципы работы счётчиков Гейгера с высоковольтным питанием, СТС-5 и слабого бета-излучения СТБ-13.

    курсовая работа [3,8 M], добавлен 05.11.2009

  • Методы наблюдения и регистрации элементарных частиц. Образование пузырьков пара в перегретой жидкости на ионах. Преимущество пузырьковой камеры перед камерой Вильсона. Метод толстослойных фотоэмульсий. Химические свойства и радиоактивность изотопов.

    презентация [259,4 K], добавлен 28.03.2011

  • История камеры, изобретенной физиком Чарльзом Вильсоном. Назначение и устройство прибора, особенности его принципа работы, достоинства и недостатки. Трудоемкость обработки результатов. Создание управляемой камеры, отбор событий специальными счётчиками.

    презентация [359,9 K], добавлен 27.04.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.