Векторные диаграммы ЛЭП

Потеря напряжения как один из важнейших количественных показателей, характеризующих режим работы электрической сети. Мощность, генерируемая емкостями линий электропередач - фактор, который оказывает подмагничивающее действие на их магнитную систему.

Рубрика Физика и энергетика
Вид лекция
Язык русский
Дата добавления 03.04.2019
Размер файла 187,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Размещено на http://www.allbest.ru

1. Векторная диаграмма ЛЭП 35 кВ с одной нагрузкой

При передаче электроэнергии по сети в ее элементах помимо потери мощности происходит потеря напряжения. Потеря напряжения является одним из количественных показателей, характеризующих режим работы сети. Потеря напряжения приводит к изменению уровней напряжения на зажимах электроприемников. Если она превышает допустимые ПУЭ значения, электроприемники работают с ущербом.

Поэтому важное значение при проектировании и эксплуатации сетей имеет расчет напряжений в узлах сети и потерь напряжения в ее элементах.

Рассмотрим простейшую схему ЛЭП напряжением 35 кВ с симметричной нагрузкой на конце (рис. 1). В этом случае достаточно рассмотреть одну фазу.

Рис. 1

Знак “плюс” перед реактивной мощностью характеризует потребление электроприемником индуктивной мощности (отстающая реактивная мощность нагрузки). Если перед реактивной мощностью стоит знак “минус”, то это соответствует потреблению электроприемником емкостной реактивной мощности (опережающая реактивная мощность нагрузки) или выдаче электроприемником в сеть реактивной индуктивной мощности.

В задачу входит определение напряжения в начале ЛЭП при известных токе, наряжению и углу между ними в конце ЛЭП. Начинаем построение векторной диаграммы (рис. 2). По действительной оси откладываем напряжение U2ф. Получаем точку а. Под углом ц2 откладываем ток I2. Раскладываем его на активную I2а и реактивную I2р составляющие:

где

От конца вектора U2ф параллельно линии тока I2 откладываем вектор падения напряжения в активном сопротивлении ЛЭП. Получаем точку b. Под углом 900 к нему в сторону опережения откладываем вектор падения напряжения в реактивном сопротивлении. Получаем точку c. Соединяем начало координат с точкой c и получаем напряжение в начале ЛЭП U1ф. Угол между напряжением U1ф и током I2 обозначим ц1.

Рис. 2

Вектор численно равный произведению называется полным падением напряжения. Обозначается . Спроецируем вектор на действительную и мнимую оси. Получим точку d. Отрезок ad - это продольная составляющая падения напряжения. Обозначается . Отрезок сd - это поперечная составляющая падения напряжения. Обозначается .

Определим и . Для этого спроецируем векторы и на действительную и мнимую оси. Получим точки е и f. Точку пересечения отрезка с действительной осью обозначим , буквой k. В результате получим отрезки:

ae = ab·cos ц2 = I2·R cos ц2; be = df = ab·sin ц2 = I2·R sin ц2;

ed = bf =bc·sin ц2 = I2·X sin ц2; cf = bc·cos ц2 = I2·X cos ц2.

Продольная составляющая падения напряжения равна:

ДUф = ad = ae + ed = I2·R· cos ц2 + I2·X sin ц2.

Поперечная составляющая падения напряжения равна:

ДUф = cf - df = I2·X cos ц2 - I2·R sin ц2.

2. Напряжение в начале ЛЕП определяется как

,

а модуль -

Падение напряжения - это геометрическая разность между напряжениями в начале и конце ЛЭП.

Диаграмма, приведенная на рис. 2, построена не в масштабе. Фактически разность углов ц1 и ц2 мала. Поэтому, если не требуется высокая точность, расчет ведут по потере напряжения.

Потеря напряжения - это алгебраическая разность между напряжениями в начале и конце ЛЭП. Определим ее. Для этого из начала координат радиусом ос делаем засечку на действительной оси. Получаем точку с'. Отрезок ас' и есть потеря напряжения.

Так как отрезок dс' мал, то с достаточной степенью точности, считают, что потеря напряжения равна продольной составляющей падения напряжения. Ошибка от принятого допущения в самом худшем случае при cos ц2 = 1 не превышает 0,55%.

Смысл имеет фазная потеря напряжения, но для удобства расчетов используется линейная:

В приближенных расчетах напряжение в начале ЛЭП рассчитывается по формуле:

В сетях напряжением 220 кВ и выше расчет следует выполнять, учитывая обе составляющие падения напряжения.

Линейная поперечная составляющая падения равна

а напряжение в начале ЛЭП в этом случае рассчитывается по формуле:

2. Векторная диаграмма ЛЭП 35 кВ с несколькими нагрузками

Распространим полученные выводы на линию с несколькими нагрузками. Пусть есть ЛЭП с двумя нагрузками (см. рис. 3).

Рис. 3

Строим векторную диаграмму (см. рис. 4). На участке 1-2 построения выполняются вышеизложенному. Получаем треугольник abc - треугольник падения напряжения от тока I2 в сопротивлениях R2 и X2. Соединяем точку 0 с точкой с и получаем фазное напряжение в точке 1. Под углом ц1 к U1ф откладываем вектор тока I1.

Рис. 4

По участку 0-1 протекает суммарный ток нагрузок IУ. Он и создает падение напряжения в сопротивлениях R1 и X1. Построим этот вектор. Повторим построения на этом участке и получим треугольник падения напряжения сdf. Соединяем точку 0 с точкой f и получаем фазное напряжение в точке 0. Спроецируем вектор U0ф на вещественную ось. Отрезок af - продольная составляющая полного падения напряжения на участках 1-2 и 0-1. Отрезок aе, полученный после совмещения векторов U0ф и U2ф, - суммарная потеря напряжения на участках ЛЭП.

Считаем:

Таким образом,

ДUф = I2·R2 cos ц2 + I2·X2 sin ц2 + IУ·R1 cos ц1 + IУ·X1 sin ц1.

При n нагрузках -

ДUф = (Ii·Ri cos цi + Ii·Xi sin цi),

А при заданных мощностях -

3. Векторная диаграмма ЛЭП 110 кВ с одной нагрузкой

При построении векторной диаграммы примем допущение, что потери мощности на корону в сети отсутствуют. В этом случае схема замещения ЛЭП представлена П-образной схемой: активным R и реактивным X сопротивлениями и емкостной проводимостью B/2 в начале и конце ЛЭП (см. рис. 5). В них протекают токи и . В сопротивлениях ЛЭП протекает ток IZ. Нужно определить U1ф, I1 и cos ц1.

Рис. 5

Ток IZ представляет собой геометрическую сумму тока нагрузки и тока проводимости в конце ЛЕП:

IZ = I2 + .

Ток в проводимости опережает напряжение в конце ЛЭП на 900 и рассчитывается по формуле:

= U2ф? B/2.

Напряжение в начале ЛЕП отличается от напряжения в конце на величину падения напряжения в сопротивлениях и проводимостях ЛЭП:

U1ф = U2ф + ДUф.

Падение напряжения рассчитывается следующим образом:

т.е. полное падение напряжение в нагруженной ЛЭП складывается из падения напряжения при холостом ходе U0ф, вызванного током , и падения напряжения ДUф2, вызванного током нагрузки I2.

Построение векторной диаграммы начнем с построения вектора падения напряжения от тока проводимости. По действительной оси откладываем напряжение U2ф (см. рис. 6). Получаем точку а. Под углом 900 откладываем опережающий ток .

Рис. 6

От конца вектора U2ф параллельно линии тока откладываем вектор падения напряжения в активном сопротивлении ЛЭП. Получаем точку b. Под углом 900 к нему в сторону опережения откладываем вектор падения напряжения в реактивном сопротивлении. Получаем точку c. Соединяем начало координат с точкой c и получаем напряжение в начале ЛЭП в режиме холостого хода U1ф0.

Стороны треугольника падения напряжения от тока холостого хода (тока ) пропорциональны:

ab?•R; bc?•X; ac?•Z.

Под углом ц2 к напряжению U2ф откладываем ток I2. От точки с параллельно линии тока I2 откладываем вектор падения напряжения в активном сопротивлении ЛЭП. Получаем точку d. Под углом 900 к нему в сторону опережения откладываем вектор падения напряжения в реактивном сопротивлении. Получаем точку e. Соединяем начало координат с точкой e и получаем напряжение в начале ЛЭП U1ф.

Стороны треугольника падения напряжения от тока нагрузки (тока I2) пропорциональны:

cd? I2•R; de? I2•X; ce? I2•Z.

Если соединить точку а с точкой е, получим вектор полного падения напряжения от тока IZ протекающего в ЛЭП. Его проекции на действительную и мнимую оси дают продольную и поперечную составляющие падения напряжения:

?Uф ? af ; дUф ? ef .

На диаграмме видно, что величина тока IZ меньше тока нагрузки. Это объясняется тем, что емкостный ток проводимости в конце ЛЭП, протекая по линии совместно с током нагрузки, компенсирует соответствующую величину индуктивной составляющей тока нагрузки.

Чтобы определить ток I1 в начале ЛЭП, необходимо сложить векторы IZ и :

I1 = IZ + .

Вектор тока в проводимости в начале ЛЭП опережает напряжение U1ф на 900. Угол между напряжением U1ф и током I1 обозначим ц1.

Определим из диаграммы значения векторов ?Uф и дUф. Спроецируем векторы •R, •X, I2•R и I2•X на обе оси. Получим точки с', b', d' и f '. Отрезок dd' продолжим до пересечения с отрезком bb'. Получим точку k. Рассмотрим два треугольника - ckd и def `. Эти треугольники подобны по двум углам: прямые; дополняют до прямого угла.

Из треугольников получим:

c'd' = ck = I2•R? cos ц2; dk = b'f ` = I2•R sin ц2;

fd' = d'f = I2•X? sin ц2; ef ` = I2•X cos ц2.

Величина продольной составляющей падения напряжения рассчитывается следующим образом:

?Uф = c'd' + fd' - c'a = I2•R? cos ц2 + I2•X? sin ц2 - •X.

Величина поперечной составляющей падения напряжения определяется из выражения:

дUф = ef ` - ff ` = ef ` - (b'f ` - bf `) = ef ` - b'f ` + bf ` = I2•X cos ц2 - I2•R sin ц2 + •R.

Найдем формулы для расчета величины линейных значений ?U и дU. Для этого полученные выражения умножим на множитель В результате преобразований, получим:

электрический напряжение магнитный

Из приведенных выражений следует, что зарядные мощности ЛЭП уменьшают продольную составляющую падения напряжения (потерю напряжения) и увеличивают поперечную составляющую.

Это можно показать и на векторной диаграмме. При учете тока в проводимости величина потери напряжения уменьшается на величину отрезка аc', а поперечная составляющая падения напряжения увеличивается на величину отрезка b'f. Следствием этого является увеличение сдвига фаз между напряжениями U1ф и U2ф.

Уменьшение потери напряжения благоприятно сказывается на режиме работы ЛЭП, особенно при больших и средних нагрузках. При некоторой небольшой нагрузке линии потеря напряжения, вызванная током нагрузки I2, будет полностью скомпенсирована отрицательной потерей напряжения от емкостного тока проводимости . В этом случае передача мощности будет выполняться при равенстве напряжений в начале и конце ЛЭП. При дальнейшем снижении тока нагрузки отрицательная потеря напряжения от тока станет больше потери напряжения от тока нагрузки. Напряжение в начале ЛЭП станет меньше напряжения в конце (см. векторную диаграмму при холостом ходе). Такой режим недопустим. Мощность, генерируемая емкостями ЛЭП, направлена в сторону генераторов и будет оказывать подмагничивающее действие на их магнитную систему. В результате будет увеличиваться напряжения на шинах генераторов и в сети, которая питается от этих шин. В сетях с глухозаземленной нейтралью в режиме холостого хода напряжение в сети может превысить величину напряжения, на которую рассчитана изоляция оборудования.

Размещено на Allbest.ru

...

Подобные документы

  • Описание линий электропередач как основной части электрической системы. Разновидности неполадок ЛЭП и способы их преодоления. Особенности перегрузок межсистемных и внутрисистемных транзитных связей. Условия безаварийной работы линий электропередач.

    контрольная работа [18,7 K], добавлен 28.04.2011

  • Выбор мощности силовых трансформаторов. Расчет сечения линий электропередач, их параметры. Потери мощности и электроэнергии в силовых трансформаторах и линиях электропередач. Проверка выбранного сечения линий электропередачи по потере напряжения.

    курсовая работа [741,1 K], добавлен 19.12.2012

  • История высоковольтных линий электропередач. Принцип работы трансформатора - устройства для изменения величины напряжения. Основные методы преобразования больших мощностей из постоянного тока в переменный. Объединения элетрической сети переменного тока.

    отчет по практике [34,0 K], добавлен 19.11.2015

  • Протяженность линий электропередачи. Установленная мощность трансформаторных подстанций. Энергетические показатели сети. Суммарный максимум активной нагрузки потребителей. Годовой полезный отпуск электроэнергии. Потери мощности в электрической сети.

    дипломная работа [265,0 K], добавлен 24.07.2012

  • Изучение нагрузочной способности воздушных линий электропередач. Характеристика электрифицируемого района, потребителей и источника питания. Составление баланса реактивной мощности, выбор сечений проводов. Методы расчёта основных режимов работы сети.

    дипломная работа [676,4 K], добавлен 14.02.2010

  • Построение схем замещения и параметров воздушных линий электропередач. Определение приведенной мощности на понижающей подстанции. Упрощенная схема замещения электрической сети. Расчет установившегося режима электрической сети с применением ЭВМ.

    курсовая работа [711,2 K], добавлен 07.06.2021

  • Предварительный выбор числа и мощности трансформаторов. Выбор сечений линий электропередач для различных вариантов схемы развития. Экономическое сравнение вариантов электрической сети. Исследование аварийных и послеаварийных режимов электрической сети.

    курсовая работа [1,4 M], добавлен 25.12.2014

  • Расчет и оценка показателей режима электрической сети, емкостных токов, токов короткого замыкания в электрической сети 6–20 кВ. Оценка потерь энергии. Оптимизация нормальных точек разрезов в сети. Загрузка трансформаторных подстанции и кабельных линий.

    курсовая работа [607,6 K], добавлен 17.04.2012

  • Возможные варианты конфигураций соединения цепей электропередач. Приближенные расчёты потокораспределения в нормальном режиме наибольших нагрузок. Выбор номинального напряжения и числа цепей линий. Электрический расчёт сети в послеаварийном режиме.

    курсовая работа [1,2 M], добавлен 06.08.2013

  • Расчет напряжений на проводах линий электропередач в сети с эффективно заземленной нейтралью. Определение электрической и магнитной составляющей наведенного напряжения в проводе линии, выведенной в ремонт в сети с эффективно заземленной нейтралью.

    курсовая работа [1,2 M], добавлен 25.04.2014

  • Выбор графа, схемы и номинального напряжения проектируемой электрической сети. Распределение мощностей по линиям электропередач сети. Баланс активной и реактивной мощности в сетевом районе. Выбор марки провода и номинальной мощности трансформаторов.

    курсовая работа [971,8 K], добавлен 27.12.2013

  • Расчет трансформаторных подстанций, воздушных линий электропередач и кольцевой схемы. Определение потерь напряжений на участках линий, КПД электрической сети для режима наибольших нагрузок. Выбор положения регулировочных ответвлений трансформаторов.

    курсовая работа [1,1 M], добавлен 17.05.2015

  • Описания потерь мощности при передаче электроэнергии по сети. Расчет напряжений в узлах сети и потерь напряжения в ее элементах. Построение векторных диаграмм и определение значения векторов. Нахождение линейной поперечной составляющей падения напряжения.

    презентация [94,9 K], добавлен 20.10.2013

  • Разработка схем электрической сети района. Предварительное распределение мощностей. Выбор номинальных напряжений линий, сечения и марок проводов. Определение потерь мощности в линиях. Выбор трансформаторов и схем подстанций. Расчёт количества линий.

    дипломная работа [1,3 M], добавлен 05.04.2010

  • Выбор номинальных напряжений сети. Определение сопротивлений и проводимостей линий электропередач и трансформаторов. Расчет потерь мощностей, падений напряжения. Полные схемы электрических соединений. Себестоимость передачи и распределения электроэнергии.

    курсовая работа [3,4 M], добавлен 11.06.2014

  • Выбор графа, схемы и номинального напряжения проектируемой электрической сети. Основные технико-экономические показатели проектируемой сети. Регулирование напряжения в электрической сети. Расчёт основных нормальных и утяжелённых режимов работы сети.

    курсовая работа [310,6 K], добавлен 23.06.2011

  • Выбор сечений проводов воздушных линий электропередачи. Зарядная мощность линий. Мощность трансформаторов на подстанциях. Справочные и расчетные параметры выбранных трансформаторов. Определение расчетных нагрузок узлов. Анализ схемы электрической сети.

    курсовая работа [439,9 K], добавлен 16.01.2013

  • Разработка конфигураций электрических сетей. Расчет электрической сети схемы. Определение параметров для линии 10 кВ. Расчет мощности и потерь напряжения на участках сети при аварийном режиме. Точка потокораздела при минимальных нагрузках сети.

    курсовая работа [1,0 M], добавлен 14.04.2011

  • Составление балансов активных и реактивных мощностей. Выбор числа и мощности силовых трансформаторов, сечений проводников. Конструктивное исполнение электрической сети. Расчет максимального и послеаварийного режимов. Регулирование напряжения в сети.

    курсовая работа [242,4 K], добавлен 17.06.2015

  • Выбор варианта районной электрической сети, номинального напряжения, силовых трансформаторов. Расчет нагрузки, схем замещения и установившегося режима. Механический расчет воздушной линии электропередач, определение стрелы провеса на анкерном пролете.

    курсовая работа [1,3 M], добавлен 02.04.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.