Системы электроснабжения
Защита цеховых трансформаторов. Современные системы промышленного электроснабжения. Элементы релейной защиты и автоматики. Источники оперативного тока для питания элементов релейной защиты. Принципиальная схема устройства электродвигателей 6-10кВ.
Рубрика | Физика и энергетика |
Вид | курс лекций |
Язык | русский |
Дата добавления | 02.04.2019 |
Размер файла | 147,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на Allbest.ru
ОСНОВНЫЕ ВИДЫ ПОВРЕЖДЕНИЙ И НЕНОРМАЛЬНЫХ РЕЖИМОВ СПЭ
Системы электроснабжения должны быта надежными, экономичными, удобными и безопасными в эксплуатации и обеспечивать потребителей электроэнергией требуемого качества. Большую роль в выполнении этих требований играют устройства релейной защиты и автоматики.
Кроме того, системы электроснабжения должны обеспечивать функционирование основных производств предприятия в послеаварийном режиме (после всех необходимых оперативных переключений) с учетом допустимых кратковременных перерывов питания приемников электроэнергии, возможных ограничений мощности, перегрузки элементов системы электроснабжения и т.д.
В системах промышленного электроснабжения (СПЭ) могут возникать нарушения нормального режима и аварии. К нарушениям нормального режима относятся токовые перегрузки, замыкания на землю в сетях с незаземленной нейтралью (или заземленной через реактор), медленное газообразование в масляных трансформаторах и т.д. В этих случаях защита, как правило, действует на сигнал дежурному персоналу для принятия конкретных мер.
Основным видом аварий в СПЭ являются КЗ, поэтому аппараты отключения должны обладать соответствующей отключающей способностью. К таким аппаратам относятся плавкие предохранители высокого (ВН) и низкого (НН) напряжений, автоматические выключатели НН, выключатели ВН, управляемые встроенными в привод расцепителями или релейной защитой соответственно.
Наиболее часто в СПЭ применяют следующие защиты: максимального тока, минимального напряжения, дифференциальную, направленную, газовую, термическую.
Для каждого элемента СПЭ обычно предусматривают основную и резервную защиты; причем последняя должна действовать при отказе основной защиты. Защита должна обладать:
1) избирательностью (селективностью), т.е. отключать только поврежденный элемент;
2) быстротой (мгновенная tC3 < 0,05 с; быстродействующая 0,05 с < tC3 <, 0,05с ; замедленная tc%> 0,5 с); 3)чувствительностью
4) надежностью, т.е. срабатывать во всех необходимых случаях; надежность характеризуется вероятностью безотказной работы.
Защита цеховых трансформаторов
Основными видами повреждений в цеховых трансформаторах являются следующие:
1) многофазные (междуфазные) КЗ в обмотках и на их выводах;
2) однофазные замыкания, которые бывают двух видов: на землю и между витками одной фазы.
Замыкание одной фазы на землю опасно для обмоток, присоединенных к сетям с глухозаземленными нейтралями. В этом случае защита должна отключать трансформатор. В сетях с нейтралями, изолированными или заземленными через дугогасящие катушки (реакторы), защита от однофазных замыканий на землю с действием на отключение устанавливается на трансформаторе в том случае, если такая защита имеется в сети. Отключение таких замыканий в сетях 6 или 10 кВ необходимо по условиям техники безопасности.
ТРЕБОВАНИЯ ПРЕДЬЯВЛЯЕМЫЕ К СИСТЕМАМ АВТОМАТИЗИРОВАННОГО ЭЛЕКТРОСНАБЖЕНИЯ
промышленное электроснабжение
Современные системы промышленного электроснабжения, оборудуют комплексом автоматических устройств, предназначенных для управления нормальными режимами электроснабжения а для действия в аварийных режимах или сразу же после их ликвидации.
К первой группе могут быть отнесены автоматические устройства пуска электродвигателей, регулирования напряжения и реактивной мощности, настройки дугогасящих реакторов.
Во вторую группу обычно включают устройства, осуществляющие автоматические переключения, направленные на предотвращение развития аварии, на восстановление питания электроприемников и нарушенных, в результате отключения устройствами релейной защиты, связей в системе электроснабжения: автоматическое включение резерва (АВР), автоматическое повторное включение (АПВ), автоматическую частотную разгрузку (АЧР), специальные средства противоаварийной автоматики (ПА). Среди устройств этой группы только АВР и АПВ, решая задачи восстановления нарушенного электроснабжения, считаются устройствами сетевой автоматики и имеют локальное значение. Два других вида автоматических устройств: АЧР и ПА являются элементами системной противоаварийной автоматики, основной задачей которой является не допустить развития уже начавшейся системной аварии, связанной, как правило, с внезапным отключением больших генерирующих мощностей, мощных межсистемных связей или их участков. К устройствам автоматики предъявляются требования чув-ствительности, селективности, быстродействия и надежности.
Требование чувствительности означает, что конкретное устройство автоматики должно эффективно, на возможно ранней стадии выявлять (как правило, с помощью фиксации отклонений электрических параметров режима работы системы электроснабжения от значений режима работы, не требующего вмешательства данного вида автоматики) наступление аварийного режима соответствующего назначению устройства.
Требование селективности означает, что не только автоматические устройства одного вида (например АВР) должны действовать так, чтобы обойтись минимальным числом управляющих воздействий для восстановления нормального режима электроснабжения, но и устройства разных видов (АВР и АПВ; АВР и АЧР) должны осуществлять управляющие воздействия, наиболее соответствующие конкретному нарушению нормального режима. Так, например, устройства АВР на более высоких ступенях электроснабжения должны действовать раньше аналогичных устройств на низших ступенях электроснабжения, а устрой-ства АВР и АЧР на подстанциях с синхронными электродвигателями должны определять причину, по которой происходит снижение частоты на секции распределительного устройства: из-за выбега синхронных электродвигателей, связанного с потерей питания, или из-за системной аварии, вызванной отключением генерирующих источников. Селективность устройств автоматики должна соблюдаться и по отношению к устройствам релейной защиты.
Требование быстродействия означает, что управляющие воздействия должны вырабатываться автоматическим устройством незамедлительно после достоверной фиксации наступления аварийного режима и осуществляться за время, в течение которого определяющие живучесть технологического процесса параметры не выйдут за допустимые пределы.
Требование быстродействия и селективности иногда оказываются противоречащими друг другу. В таком случае определяющим, как правило, является требование быстродействия.
Надежность -- наиболее важное требование к устройствам автоматики включает в себя требования к их высокой аппаратной и эксплуатационной надежности.
ЭЛЕМЕНТЫ РЕЛЕЙНОЙ ЗАЩИТЫ И АВТОМАТИКИ
Функционирование энергетического хозяйства промышленного предприятия, в настоящее время невозможно без автоматического управления, принципы которого базируются на повышении надежности и экономичности работы систем энергоснабжения. Структура комплексов автоматического управления становится многоуровневой и иерархической. На нижних иерархических уровнях используют локальные устройства, к которым относятся устройства промышленной автоматики (АВР, АПВ, АЧР и др.) и компьютерная техника. Алгоритм действия этих устройств ограничивается использованием информации, реализуемой на месте. На более высоких иерархических уровнях используют управляющую компьютерную технику, обладающую большими техническими возможностями. С помощью компьютеров осуществляется координация действия локальных устройств путем изменения их уставок.
Управление отдельными процессами производится в порядке декомпозиции общей задачи управления. Теоретические аспекты автоматического управления системами энергоснабжения базируются в основном на теории автоматического регулирования, режимах систем энергоснабжения и т. д.
Ниже рассмотрена локальная автоматика, наиболее широко применяемая на промышленных предприятиях, в первую очередь в системах электроснабжения.
Применение средств автоматизации, телемеханизации и компьютерной техники с учетом конкретных технологических и других особенностей работы потребителей обеспечивает надежное, рациональное и экономичное энергоснабжение промышленных предприятий.
Для повышения надежности питания электроэнергией промышленного предприятия, его цехов и установок в телемеханизируемой системе электроснабжения используют следующие виды автоматики:
а) автоматическое повторное включение (АПВ), предназначенное длябыстрого восстановления питания потребителей путем автоматическоговключения выключателей, отключенных устройством релейной защиты.АПВ предусматривают на воздушных и смешанных (кабельно-воздушных) линиях всех типов напряжением выше 1 кВ; на шинахэлектростанций и подстанций; на одиночных понижающихтрансформаторах мощностью более 1 МВА, имеющих выключатель имаксимальную токовую защиту с питающей стороны; на ответственныхэлектродвигателях, отключаемых для обеспечения самозапуска другихэлектродвигателей;
б) автоматическое включение резервного питания и оборудования(АВР), предназначенное для восстановления питания потребителей путем автоматического присоединения резервного источника питания (ИП) при отключении рабочего ИП, при водящем к обесточению электроустановок потребителя. Устройства АВР предназначены также для автоматического включения резервного оборудования при отключении рабочего оборудования, приводящем к нарушению нормального технологического процесса. Устройства АВР предусматривают в тех случаях, если при их применении возможно упрощение релейной защиты, снижение токов КЗ и удешевление аппаратуры за счет замены кольцевых сетей радиально-секционированными и т. п. Устройства АВР устанавливают на трансформаторах, линиях, секционных и шино-соединительных выключателях, электродвигателях и т. п.;
в) автоматическое регулирование возбуждения (АРВ), напряжения и реактивной мощности, предназначенное для поддержания напряжения приемников электроэнергии при нормальной работе энергосистемы, для распределения реактивной нагрузки между источниками реактивной мощности по заданному закону и повышения статической и динамической устойчивости электрических систем. Автоматическое регулирование возбуждения предусматривают на синхронных машинах (генераторах, компенсаторах, двигателях). Трансформаторы с регулированием под нагрузкой (РПН) и линейные регуляторы распределительных подстанций оснащают системой автоматическогорегулирования коэффициента трансформации. Конденсаторныеустановки оборудуют устройствами автоматического регулирования;
г) автоматическое регулирование частоты и активной мощности(АЧРМ), предназначенное для поддержания частоты в электрической системе в нормальном режиме, регулирования и распределения мощности на всех уровнях диспетчерского управления. Системы АРЧМ предусматривают в энергообъединениях, изолированных энергосистемах и на электростанциях;
д) автоматическое ограничение снижения частоты, осуществляющееавтоматический частотный ввод резерва, автоматическую частотную разгрузку (АЧР), включение питания отключенных потребителей привосстановлении частоты (ЧАПВ). Автоматический ввод резерва приснижении частоты используют, в первую очередь, для уменьшения объема отключений или длительности перерыва питания потребителей;
е) автоматическое предотвращение перегрузки оборудования, предназначенное для ограничения длительности тока в линиях, трансформаторах, устройствах продольной компенсации, превышающего наибольший допустимый ток, длительность которого составляет более 10 -- 20 мин. Устройства автоматического предотвращения перегрузки оборудования воздействуют на отключение потребителей (перегружающегося оборудования);
ж) самозапуск электродвигателей. При наличии АПВ и АВР, когда питание электроэнергией прерывается кратковременно (на 1 - 2 с), т. е. на время работы устройств автоматики, необходимо, чтобы ответственные электродвигатели, если это допускается условиями технологического процесса и техники безопасности, не отключались от сети. Это достигается применением самозапуска этих двигателей. Остальные, менее ответственные потребители для облегчения самозапуска ответственных электродвигателей отключаются защитой минимального напряжения.
ОБЩИЕ ВОПРОСЫ ВЫПОЛНЕНИЯ РЕЛЕЙНОЙ ЗАЩИТЫ ЭЛЕКТРОЭНЕРГЕТИЧЕСКИХ СИСТЕМ
В электроэнергетических системах могут возникать повреждения и ненормальные режимы работы.
Повреждения: короткие замыкания - сверх ток, понижение напряжения - потеря устойчивости.
Ненормальные режимы - отклонения напряжения, тока и частоты.
Развитие аварии может быть предотвращено быстрым отключением поврежденного участка при помощи специальных автоматических устройств - релейной защиты.
Назначение - выявление места КЗ и быстрое отключение поврежденного участка от неповрежденной части.
Выявление нарушений нормального режима и подача предупредительных сигналов или проведение операций, необходимых для восстановления нормального режима. Связь РЗ с автоматикой - АПВ, АВР, АЧР.
Подробнее о повреждениях.
Причины: нарушение изоляции. ТВЧ - старение, механическое повреждение, перенапряжение.
ЛЭП - смыкание проводов.
Ошибки персонала.
Виды: КЗ - наиболее тяжелое.
Вследствие увеличения тока возрастает падение напряжения в элементах системы, что приводит к понижению напряжения во всех точках сети. Возникающая дуга разрушает оборудование, а понижение напряжения нарушает работу потребителей и устойчивость параллельной работы генераторов.
Замыкание на землю одной фазы в сети с изолированной нейтралью. (Обычно в системах собственных нужд эл. станций.)
Ток при этом невелик - несколько десятков ампер. Опасно тем, что вызывает перенапряжения - возможность перехода в междуфазное замыкание.
Ненормальные режимы
Перегрузка оборудования - перегрев ТВЧ и изоляции, её ускоренный износ.
Качания в системах - выход из синхронизма параллельно работающих генераторов. При этом ток колеблется от нуля до максимального, превосходящего нормальную величину значения. Садится напряжение.
Повышение напряжения - при внезапном отключении нагрузки.
Селективность - способность отключать только поврежденный участок сети.
Рис.1. Основное условие для обеспечения надёжного электроснабжения потребителей.
Быстродействие - главное условие для сохранения устойчивости параллельной работы генераторов. Уменьшается время снижения напряжения у потребителей, повышается эффективность АПВ, уменьшается ущерб для оборудования.
Таблица 1.1
Номинальное напряжение, кВ |
Время действия релейной защиты, с |
|
300...500 |
0,1...0,12 |
|
110...220 |
0,15...0,3 |
|
6...10 |
1,5...3 |
Критерий - остаточное напряжение не менее 60 % от номинального. Кроме того, нужно учитывать и время срабатывания выключателей:
tоткл=tз+tв,
где tз - время действия защиты,
tв - время отключения выключателя - 0,15...0,06 с.
Быстродействующей считается защита, имеющая диапазон срабатывания - 0,1...0,2 с, самые быстродействующие - 0,02...0,04 с.
В ряде случаев требование быстродействия является определяющим.
Быстродействующие защиты могут быть и неселективными, для исправления неселективности используется АПВ.
Чувствительность - для реагирования на отклонения от нормального режима.
Рис. 2
Резервирование следующего участка - важное требование. Если защита по принципу своего действия не работает за пределами основной зоны, ставят специальную резервную защиту.
Чувствительность защиты должна быть такой, чтобы она действовала при КЗ в конце установленной зоны действия в минимальном режиме системы.
Чувствительность защиты характеризуется коэффициентом чувствительности kч
, (1.2)
где Iк.мин - минимальный ток КЗ,
Iс.з - ток срабатывания защиты.
Надежность. Защита должна безотказно работать при КЗ в пределах установленной для неё зоны и не должна ложно срабатывать в режимах, при которых её работа не предусматривается.
Пусковые органы - непосредственно и непрерывно контролируют состояние и режим работы защищаемого оборудования и реагируют на возникновение КЗ и нарушение нормального режима работы.
Это различные реле - автоматические устройства, срабатывающие при определенном значении воздействующей на него величины.
Логические органы - воспринимают команды пусковых органов и в зависимости от их сочетания, по заданной программе производят заранее предусмотренные операции.
Реле также подразделяются на основные и вспомогательные.
Типы основных реле: тока;
напряжения;
сопротивления;
мощности (определяющие величину и направление (знак)).
Реле бывают максимальными - действующие при возрастании контролируемой величины, и минимальными - при снижении этой величины.
Специальные реле: частоты;
тепловые.
Типы вспомогательных реле: времени;
указательные (для сигнализации);
промежуточные (передающие действие основных защит на отключение выключателей).
ИСТОЧНИКИ ОПЕРАТИВНОГО ТОКА ДЛЯ ПИТАНИЯ ЭЛЕМЕНТОВ РЕЛЕЙНОЙ ЗАЩИТЫ
Оперативным называется ток, обеспечивающий работу ло-гической (в ряде случаев и измерительной) части релейной за-щиты, ее исполнительного и сигнального органов, а также элек-тромагнитов управления коммутационных аппаратов. Очевидно, что надежное функционирование устройства релейной защиты и целом во многом определяется надежностью источ-ников питания и схемы оперативного тока.
Источники оперативного тока должны всегда, в любых ава-рийных режимах обеспечивать такие значения напряжения и мощности, которые гарантируют надежное действие защиты и электромагнитов управления коммутационных аппаратов.
На подстанциях распределительных сетей могут применять-ся следующие виды оперативного тока и их источники:
постоянный -- аккумуляторные батареи;
переменный -- измерительные трансформаторы тока ТТ и трансформаторы напряжения TH, а также трансформаторы соб-ственных нужд ТСН;
выпрямленный -- блоки питания (токовые БПТ и напряжения БПН) и другие выпрямительные устройства;
ток разряда конденсаторов -- предварительно заряженные конденсаторы, собранные в блоки БК, совместно с блоками для заряда конденсаторов УЗ или БПЗ.
Из всех перечисленных источников оперативного тока прин-ципиально самым падежным является аккумуляторная батарея, так как она обеспечивает питание защитных устройств с необхо-димыми значениями напряжения и мощности во время самых тяжелых аварийных режимов, когда на подстанции может пол-ностью исчезнуть первичное напряжение. Аккумуляторная бата-рея по праву издавна считается автономным (независимым) источником оперативного тока. Однако при массовом строитель-стве в нашей стране понижающих подстанций потребовалось бы очень много аккумуляторных батарей, которые стоят значи-тельно дороже других источников оперативного тока, требуют специальных помещений, зарядных агрегатов, специалистов для обслуживания. Из опыта эксплуатации известно, что только при систематическом квалифицированном обслуживании акку-муляторная батарея является надежным источником оператив-ного тока. Поэтому в настоящее время на понижающих подстан-циях 35--110 кВ распределительных сетей аккумуляторные ба-тареи, как правило, не применяются, что соответствует указа-ниям [1]. Исключение могут составлять подстанции с тяжелы-ми масляными выключателями ПО кВ (например, типа МКП), которые требуют для включения мощный независимый источник постоянного оперативного тока.
Источники переменного оперативного тока -- ТТ, ТН и ТСН -- могут обеспечить надежное питание защитных устройств только в случае их совместного применения. При междуфазных к. з., сопровождающихся увеличением тока и глубоким снижением напряжения, очевидно, нельзя использовать в качестве источни-ков оперативного тока ТН и ТСН, включенные на стороне НН или СН трансформаторной подстанции, но можно использовать ТТ, установленные для защиты трансформатора (рис. 5,а). Успешно применяется так называемая схема с дешунтированием ЭО (ЭВ), в которой ТТ являются источниками оператив-ного тока для максимальных и дифференциальных токовых за-щит, действующих при междуфазных к. з.
При других видах повреждения, например при витковом за-мыкании в обмотке трансформатора или уходе масла из-за неисправности бака трансформатора, а также при перегруз-ках напряжение на подстанции не снижается, поэтому ТН и ТСН вполне могут быть использованы в качестве источников оперативного тока для газовой защиты, а также максималь-ной токовой защиты от сверхтоков, обусловленных пере-грузкой. По этому же принципу строится схема питания защитных устройств выпрямленным оперативным током (рис. 5,6). То-ковый блок питания БПТ обеспечивает выпрямленное напряже-ние на общих шинках оперативного тока «+» и «--» при между-фазных коротких замыканиях, сопровождающихся большими токами через ТТ. Блок питания БПН включен на переменное напряжение трансформатора собственных нужд ТСН и обеспечи-вает выпрямленное напряжение на тех же шинках оперативного тока при таких повреждениях и ненормальных режимах, при которых напряжение на шинах НН подстанции сохраняется нор-мальным или близким к нормальному (витковые замыкания
Рис. 5 Источники переменного (а) и выпрямленного (б) оперативного тока ТСН трансформатор собственных нужд; БК - блоки предварительно заряженных конденсаторов; УЗ зарядное устройство; БПТ, БПН блоки питания в трансформаторе, перегрузка, уход масла). Блок БПН обеспе-чивает выпрямленное напряжение также для операций опера-тивного включения и отключения коммутационных аппаратов.
Oт общих шин выпрямленного оперативного тока получают питание все устройства релейной защиты, электромагнит отклю-чения выключателя В, электромагнит включения короткозамыкателя КЗ. Однако на современных подстанциях распределительных се-тей могут возникать такие аварийные режимы, во время кото-рых на подстанции пет напряжения и не проходит ток к. з. И именно в таком режиме должна действовать специальная автоматика и должны отключаться выключатели пли автомати-ческие отделители. Наиболее характерным примером является действие автоматики отделителя ОД, через который понижаю-щий трансформатор подключен к питающее линии (рис. 6). Автоматический отделитель АОД представляет собой обычный разъединитель с приводом и с несколько увеличенными расстоя-ниями между полюсами, который не способен отключать токи к.з. и даже токи нагрузки трансформатора. Автоматический отделитель должен отключаться только во время бестоковой паузы, т.е. тогда, когда трансформатор находится без тока на-грузки и без напряжения.
Рассмотрим работу автоматики АОД, обеспечивающей от-ключение отделителя ОД в бестоковую паузу (рис. 6). При к. з. в трансформаторе и действии его релейной защиты РЗТ включается короткозамыкатель КЗ. Источниками оперативного тока для этой операции могут служить трансформаторы тока ТТ (при действии дифференциальной или максимальной токо-вой защиты) или трансформатор ТСН (при действии газовой защиты). После включения КЗ Действует защита питающей ли-нии P3Л и отключает выклю-чатель В линии ВЛ-110 кВ, после чего на рассматривае-мой подстанции полностью ис-чезает напряжение и ток до момента работы АПВ линии. Для того чтобы в этот проме-жуток времени, называемый бестоковой паузой, отключить отделитель, необходим незави-симый источник оперативного тока. Таким источником мо-жет быть, кроме аккумуля-торной батареи, предвари-тельно заряженный конденса-тор БК (рис. 4-6). Накоплен-ная в конденсаторе энергия сохраняется в течение доста-точно длительного времени (минуты) после полного исчезновения напряжения на подстан-ции и прекращения заряда конденсатора зарядным устройст-вом УЗ. Эта энергия используется для отключения ОД в бестоковую паузу.
Предварительно заряженные конденсаторы применяются в качестве независимого источника оперативного тока практиче-ски на всех упрощенных подстанциях, причем в ряде случаев не только для отключения ОД в бестоковую паузу, но также для обеспечения работы токовых защит трансформатора и включе-ния КЗ, если схема с дешунтированием ЭО (ЭВ) не может быть использована. Энергия предварительно заряженных кон-денсаторов широко используется и в схемах автоматики распре-делительных сетей [5].
Таким образом, на типовой упрощенной подстанции распре-делительных сетей 35--110 кВ используется несколько источни-ков оперативного тока, взаимно дополняющих друг друга и обеспечивающих надежную работу защитных устройств и ком-мутационных аппаратов во всех возможных режимах.
Рис. 6. Структурная схема оперативного тока для питания цепей авто-матики отключения отделителя ОД (АОД)
Оперативный ток - питает цепи дистанционного управления выключателями, оперативные цепи релейной защиты, автоматики.
Основное требование к источникам оперативного тока - надежность, при КЗ и ненормальных режимах напряжение источников оперативного тока и их мощность должны иметь достаточную величину как для действия релейной защиты, так и для отключения выключателей.
ОСНОВНЫЕ ТРЕБОВАНИЯ ПРЕДЬЯВЛЯЕМЫЕ К УСТРОЙСТВАМ АВТОМАТИЧЕСКОГО ПОВТОРНОГО ВКЛЮЧЕНИЯ
Сущность АПВ состоит в, том, что элемент системы электроснабжения, отключившийся под действием релейной защиты (РЗ), вновь включается под напряжение (если нет запрета на повторное включение) и если причина, вызвавшая отключение элемента, исчезла, то элемент остается в работе, и потребители получают питание практически без перерыва. Опыт эксплуатации показывает, что многие повреждения в системах электроснабжения промышленных предприятий являются неустойчи-выми и самоустраняются. К наиболее частым причинам, вызывающим неустойчивые повреждения элементов системы электроснабжения, относят перекрытие изоляции линий при атмосферных перенапряжениях, схлестывание проводов при сильном ветре или пляске, замыкание линий различными предметами, отключение линий или трансформаторов вследствие кратковременных перегрузок или неизбирательного срабатывания РЗ, ошибочных действий дежурного персонала и т. д. Стоимость устройства АПВ незначительна по сравнению с ущербами производства, вызываемыми перерывами электроснабжения. Применение устройств АПВ различных элементов системы электроснабжения значительно повышает надежность электроснабжения даже при одном ИП.
При применении АПВ трансформаторов в схеме АПВ предусматривают запрет АПВ при внутренних повреждениях трансформатора, т. е. при отключении трансформаторов под действием газовой или дифференциальной защиты. Наиболее эффективным является применение АПВ для воздушных линий высокого напряжения, так как появление неустойчивых повреждений для них более вероятно, чем для других элементов.
В системах электроснабжения промышленных предприятий в основном применяют устройства АПВ однократного действия как наиболее простые и дешевые. С увеличением кратности действия АПВ их эффективность уменьшается. Так, эффективность применения однократного АПВ для воздушных линий в энергосистемах России составляет 60 -- 75 %, при двукратном -- 30 -- 35 % и при трехкратном -- всего лишь 1 -- 5 %.
В настоящее время разработано и внедрено много схем и конструкций типовых устройств АПВ для выключателей с приводами, работающими на постоянном и переменном токе, выпускаемых нашей промышленностью [32].
Устройства АПВ в соответствии с [31] должны удовлетворять следующим основным требованиям:
1) устройства АПВ не должны действовать: при отключении выключателя персоналом дистанционно или при помощи телеуправления; при автоматическом отключении выключателя защитой непосредственно после включения его персоналом; при отключении выключателя защитой от внутренних повреждений трансформаторов и вращающихся машин, устройствами противоаварийной автоматики, а также в других случаях отключений выключателя, когда действие АПВ недопустимо;
2) устройства АПВ должны быть выполнены так, чтобы была исключена возможность многократного включения на КЗ при любой неисправности в схеме устройства;
3) устройства АПВ должны выполняться с автоматическим возвратом;
4)при применении АПВ необходимо предусматривать ускорение действия защиты на случай неуспешного АПВ; ускорение действия защиты после неуспешного АПВ выполняют с помощью устройства ускорения после включения выключателя, которое используют и при включении выключателя по другим причинам (от ключа управления, телеуправления или устройства АВР); не следует ускорять действие защиты после включения выключателя, когда линия уже включена под напряжение другим своим выключателем;
5) устройства трехфазного АПВ (ТАПВ) необходимо выполнять с пуском от несоответствия между ранее поданной оперативной командой и отключенным положением выключателя (допускается также пуск устройства АПВ от защиты).
Ускорение защиты до АПВ сокращает до минимума время протекания тока КЗ, благодаря чему уменьшаются вызываемые им разрушения и увеличивается возможность успешного АПВ. Ускорение защиты до АПВ заключается в том, что выдержка времени максимальной защиты выводится из действия и первое отключение выключателя осуществляется мгновенно. Второе отключение выключателя после неуспешного АПВ выполняется избирательно, с выдержкой времени, которая к этому моменту автоматически вводится в действие.
Ускорение защиты после АПВ применяют на участках сети, имеющих несколько ступеней избирательной защиты, так как вывод из действия выдержки времени может привести к ложному срабатыванию защиты. Отключение выключателя после неуспешного АПВ производится мгновенно, для чего к этому моменту выдержка времени максимальной токовой защиты автоматически выводится из действия.
В системах промышленного электроснабжения применяют устройства ТАПВ однократного или двукратного действия (последнее -- если это допустимо по условиям работы выключателя). Устройство ТАПВ двукратного действия применяют для воздушных линий, особенно для одиночных с односторонним питанием. В сетях 35 кВ и ниже устройства ТАПВ двукратного действия применяют для линий, не имеющих резервирования по сети.
УСТРОЙСТВА АПВ С ВЫДЕРЖКОЙ ВРЕМЕНИ
В сетях с изолированной или компенсированной нейтралью применяют блокировку второго цикла АПВ в случае замыкания на землю после АПВ первого цикла. Выдержка времени ТАПВ во втором цикле должна быть не менее 15 с.
Для ускорения восстановления нормального режима работы сети выдержку времени устройства ТАПВ (для первого цикла АПВ двукратного действия на линиях с односторонним питанием) выбирают минимально возможной с учетом времени погасания дуги и деионизации среды в месте повреждения, а также с учетом времени готовности выключателя и его привода к повторному включению.
Выдержку времени устройства ТАПВ на линии с двусторонним питанием выбирают с учетом возможного неодновременного отключения повреждения с обоих концов линии. С целью повышения эффективности ТАПВ однократного действия его выдержку времени увеличивают, если это допускает работа потребителя.
На одиночных линиях с двусторонним питанием (при отсутствии шунтирующих связей) предусматривают один из следующих видов трехфазного АПВ (или их комбинации): а) быстродействующее ТАПВ (БАПВ); б) несинхронное ТАПВ (НАПВ); в) ТАПВ с улавливанием синхронизма (ТАПВ УС).
Быстродействующее АПВ или БАПВ (одновременное включение с минимальной выдержкой времени с обоих концов) предусматривают на одиночных линиях с двусторонним питанием для автоматического повторного включения, как правило, при небольшом расхождении угла между векторами ЭДС соединяемых систем. Запуск БАПВ производится при срабатывании быстродействующей защиты, зона действия которой охватывает всю линию. БАПВ блокируется при срабатывании резервных защит и блокируется или задерживается при работе УРОВ.
Время действия трехфазного однократного АПВ линий, питающих трансформаторы, со стороны высшего напряжения которых установлены короткозамыкатели и отделители, отстраивают от суммарного времени включения короткозамыкателя и отключения отделителя.
Устройства автоматического повторного включения предус-матриваются на выключателях всех воздушных и кабельно-воздушных линий электропередачи, сборных шин подстанций, если эти шины не являются элементом комплектного или закрытого распределительного устройства (КРУ или ЗРУ), понижающих трансформаторов однотрансформаторных ГПП. Эффективно сочетание АПВ линий электропередачи с неселективными быстродействующими защитами линий для исправления их неселективного действия при повреждениях вне линии и с устройствами автоматической частотной разгрузки.
Автоматическое повторное включение выключателя должно осуществляться после неоперативного отключения выключателя, за исключением случаев отключения от релейной защиты присоединения, на котором установлено устройство АПВ, непосредственно после включения выключателя оперативным персоналом или средствами телеуправления, после действия защит от внутренних повреждений трансформаторов или устройств про-тивоаварийной системой автоматики. Время действия устройства АПВ должно быть не меньше необходимого для полной деионизации среды в месте КЗ и для подготовки привода выключателя к повторному включению, должно быть согласовано с временем работы других устройств автоматики (например АВР), защиты, учитывать возможности источников оперативного тока по питанию электромагнитов включения выключателей, одновременно включаемых от устройства АПВ. Характеристики выходного импульса устройства АПВ должны обеспечивать надежное одно- или двукратное (в зависимости от требований) включение выключателя. Устройства АПВ должны допускать блокирование их действия во всех необходимых случаях.
Пуск устройства АПВ осуществляется одним из следующих способов:
от несоответствия положения неоперативно отключившегося выключателя и зафиксированного ранее его включенного положения. В качестве фиксирующего устройства может быть использован ключ управления с соответствующим образом подобранными вспомогательными контактами или двухпозиционное реле; от релейной защиты. Этот способ менее универсален и более сложен и применяется относительно редко, например, в схемах АПВ шин 6 -- 35 кВ.
Для выполнения наиболее распространенного в системах элек-троснабжения однократного АПВ используются комплектные реле повторного включения. В современных схемах сетевой автоматики для осуществления однократного АПВ служит полупроводниковое реле типа РПВ-01 или его аналог -- группа функциональных блоков (главный из которых -- блок типа АО ПО) в составе комплектного устройства ЯРЭ-2201.
Минимальное время срабатывания устройства АПВ составляет обычно
0,5 -- 0,7 с. Время готовности в соответствии с опытом эксплуатации должно составлять не менее 20 -- 25 с.
Рис. 1. Принципиальная схема устройства АПВ электродвигателей 6-10кВ.
На рисунке 1 приведена принципиальная схема устройства АПВ двигателей напряжением 6--10 кВ.
Пуск устройства АПВ осуществляется защитой минимального напряжения, которая отключает часть электродвигателей. При этом срабатывает и самоудерживается промежуточное реле КL1. После восстановления напряжения срабатывает реле напряжения KV, уставка которого Uc = (0,8 -- 0,9) Umu и замыкает цепь обмотки КТ. После замыкания проскальзывающего контакта КТ.2 срабатывает промежуточное реле KL2 и подает импульс на включение двигателей М, отключившихся действием защиты минимального напряжения. Реле KL2 имеет небольшое замедление на возврат (0,1 -- 0,2 с) для обеспечения надежного включения выключателей двигателей. Возврат схемы в исходное положение осуществляется после замыкания упорного замыкающего контакта КТ.1.
Когда к шинам подстанции наряду с асинхронными электро-двигателями подключены синхронные, пуск устройства АПВ осуществляется не от реле напряжения, а от реле частоты. В некоторых случаях пуск устройства АПВ двигателей осуществляют без проверки напряжения на шинах подстанции, по истечении определенного времени после отключения двигателей. Выдержка времени определяется временем самозапуска не отключившихся двигателей.
При исчезновении в сети напряжения контакт реле KL в течение заданного времени остается замкнутым и тем самым обеспечивает АПВ контактора или магнитного пускателя КМ при восстановлении напряжения, если оно происходит в течение времени задержки KL на отпускание. При подаче оперативной команды на отключение электродвигателя кнопкой "Стоп" SBT должна быть обеспечена длительность этой команды, превышающая время задержки на возврат реле KL
ОСНОВНЫЕ ЭЛЕМЕНТЫ УСТРОЙСТВ АВР
Информация о начавшемся режиме потери питания может быть получена двумя путями: непосредственно, от устройств релейной защиты, действующих на отключение выключателей питающих линий, или вспомогательных контактов этих выключателей, а также косвенным путем, используя фиксацию изменения электрических величин до уровня, однозначно свидетельствующего о нарушении электроснабжения. В настоящее время в большинстве случаев применяется более дешевый второй путь, связанный с контролем уровня напряжения и частоты на шинах распределительных устройств в узле нагрузки. В общем случае устройство АВР питания шин ПС и РП состоит из блоков двух видов. Блок первого вида включает в себя пусковой орган (ПО), фиксирующий прекращение электроснабжения потребителей, измерительный орган контроля (ИОК) качества напряжения на резервирующем источнике и логическую часть, формирующую команду на отключение обесточенной секции шин от поврежденного источника питания и, при необходимости, управляющие воздействия для подготовки электроприемников к приему напряжения от резервирующего источника (ввода секции шин). Измерительные реле ПО устройства АВР, часто используемые для защиты электродвигателей от потери питания, и ИОК осуществляют постоянный контроль за состоянием источника электроснабжения на основе информации, получаемой сравнением уровня контролируемого параметра (напряжения, частоты, мощности) электрического режима с заданным значением. Логическая часть первого блока содержит орган выдержки времени (ОВ), необходимый для обеспечения селективности действий устройств АВР по отношению к устройствам релейной защиты от КЗ, при которых могут сработать измерительные реле ПО, и к другим устройствам АВР на более высоких ступенях системы электроснабжения. В ряде схем АВР (чаще на напряжении ниже 1 кВ) измерительные реле ПО и ОВ совмещаются в одном аппарате: реле времени переменного тока. Команда на отключение обесточенной секции шин вырабатывается при получении от ИОК информации об удовлетворительном качестве напряжения на резервирующем источнике. В зависимости от принятой схемы резервирования: один рабочий и один резервный источник (АВР одностороннего действия) или два взаиморезервирующих источника электроснабжения (АВР двухстороннего действия), в устройствах АВР используется соответственно один или два блока с ПО. Для облегчения согласования действия устройств АВР на разных ступенях электроснабжения ответственных электроприемников принципы осуществления устройств АВР, и особенно измерительных реле ПО, рекомендуется выполнять одинаковыми во всей электрически связанной сети. Допускается не соблюдать этот принцип в узлах электрической нагрузки при отсутствии требований к быстроте переключений электроприемников на резервирующий источник питания, а также в электрических сетях, где не предусматривается самозапуск электродвигателей после АВР.
Второй блок устройств АВР содержит логическую часть, которая после отключения выключателя ввода рабочего источника на секцию шин формирует команду на включение выключателя, которым на потерявшую питание секцию шин подается напряжение от резервирующего источника электроснабжения. В логической части блока предусмотрены цепи, препятствующие многократности включения выключателя, и цепи, запрещающие его включение в случае, если выключатель рабочего источника был отключен действием релейной защиты секции шин от КЗ, в том числе и дуговых.
Выбор принципов выполнения устройств АВР, его ПО и логической части, особенно в тех случаях, когда измерительные реле ПО используются одновременно для осуществления защиты электродвигателей от потери питания, в значительной степени зависит от требований к их быстродействию с учетом условий самозапуска и обеспечения своевременной подготовки электродвигателей к приему напряжения после паузы АВР. Для определения этих требований рекомендуется рассматривать виды повреждений и отказы в системе электроснабжения, приводящие к потере питания и снижению напряжения.
Следует отметить, что расчетными видами повреждений, после отключения которых устройствами релейной защиты сразу восстанавливается напряжение на обесточенных электродвигателях, являются трехфазные КЗ.
Для трансформаторов и линий малой протяженности с целью ускорения действия АВР защиту выполняют с действием на отключение не только выключателя со стороны питания, но и выключателя с приемной стороны. С этой же целью в наиболее ответственных случаях при отключении выключателя только со стороны питания предусматривают немедленное отключение выключателя с приемной стороны по цепи блокировки.
Если при использовании пуска АВР по напряжению время его действия велико (например, при наличии в составе нагрузки значительной доли синхронных электродвигателей), применяют в дополнение к ПО напряжения пусковые органы других типов (например, реагирующие на исчезновение тока, снижение частоты, изменение направления мощности и т. п.). В случае применения пускового органа частоты этот орган при снижении частоты со стороны рабочего источника питания до заданного значения и при нормальной частоте со стороны резервного питания действует с выдержкой времени на отключение выключателя рабочего источника питания.
При технологической необходимости пуск устройства автоматического включения резервного оборудования выполняют от специальных датчиков (давления, уровня и т. п.).
Устройства АВР выполняют на оперативном переменном и постоянном токе. Источниками оперативного переменного тока служат ТН, установленные на рабочем или резервном вводе или на шинах подстанции в зависимости от схемы устройства АВР. Эффективность действия АВР в системах электроснабжения составляет 90 -- 95 %. Ниже рассмотрены наиболее типичные схемы устройств АВР.
На рисунке 1 приведена принципиальная схема устройства АВР линий. В исходном положении схемы выключатели Ql, Q2 и Q3 включены, Q4 отключен, промежуточное реле KL1 (реле однократного включения) получает питание (замыкающий вспомогательный контакт SQ2. /замкнут, так как выключатель ^включен).
Рис. 1. Принципиальная схема устройства АВР линий
При КЗ на рабочей линии W1, которое сопровождается резким увеличением тока и снижением напряжения на этой линии, срабатывают реле минимального напряжения KV1, KV2 и замыкают свои размыкающие контакты в цепи реле времени КТ. При наличии напряжения на резервной линии W2 реле КТ срабатывает и подает питание на катушку отключения YAT2 привода выключателя Q2. Выключатель Q2 отключается, реле KL1 теряет питание. Вспомогательный контакт SQ2.2 в цепи катушки включения YAC4 привода выключателя Q4 замыкается, образуется цепь включения выключателя Q4.
Выдержка времени реле KL1 должна обеспечивать надежное включение выключателя Q4.
Реле напряжения KV3 контролирует наличие напряжения на W2, и при отсутствии этого напряжения замыкающий контакт реле KV3 разомкнут и действия устройства АВР не происходит. Реле KV3 не должно размыкать свой замыкающий контакт при минимальном рабочем напряжении Upa6min на W2 и должно замыкать свой замыкающий контакт при восстановлении напряжения после отключения КЗ в сети.
Реле минимального напряжения KV1 и KV2 не должны приводить в действие устройство АВР при КЗ на других линиях, отходящих от шин ПСЗ и при самозапуске двигателей после отключения КЗ. Напряжение срабатывания реле KV1 и KV2 выбирают, исходя из следующих условий: где UK -- напряжение на шинах при КЗ за реакторами и транс-форматорами на присоединениях, отходящих от шин ПСЗ; Ua -- напряжение на шинах при самозапуске двигателей после отключения КЗ.
Размыкающие контакты реле KV1, KV2 соединены последовательно для исключения ложного отключения выключателя Q2 при неисправностях в цепях питания этих реле.
ОСНОВНЫЕ ТРЕБОВАНИЯ ПРЕДЬЯВЛЯЕМЫЕ К УСТРОЙСТВАМ АВР
Автоматическое включение резервного питания и оборудования линий, силовых трансформаторов, генераторов, электродвигателей, электрического освещения, как правило, происходит после их отключения любыми видами защит, а также при ошибочных действиях обслуживающего персонала или самопроизвольном отключении выключателей.
Устройства АВР должны удовлетворять следующим основным требованиям:
1) обеспечивать возможность действия при исчезновении напряжения на шинах питаемого элемента, вызванном любой причиной, в том числе КЗ на этих шинах (последнее -- при отсутствии АПВ шин);
2) при отключении выключателя рабочего источника питания включать без дополнительной выдержки времени выключатель резервного источника питания; при этом должна обеспечиваться однократность действия устройства.
3) для обеспечения действия АВР при обесточении питаемого элемента в связи с исчезновением напряжения со стороны питания рабочего источника и при отключении выключателя с приемной стороны (например, для случаев, когда защита рабочего элемента действует только на отключение выключателей со стороны питания) в схеме АВР необходимо предусмотреть пусковой орган напряжения (ПОН); ПОН при исчезновении напряжения на питаемом элементе и при наличии напряжения со стороны питания резервного источника должен действовать с выдержкой времени на отключение выключателя рабочего источника питания с приемной стороны; ПОН АВР не предусматривают, если рабочий и резервный элементы имеют один источник питания;
4) элемент минимального напряжения ПОН АВР, реагирующий на исчезновение напряжения рабочего источника, должен быть отстроен от режима самозапуска электродвигателей и от снижения напряжения при удаленных КЗ; напряжение срабатывания элемента контроля напряжения на шинах резервного источника ПОН АВР должно выбираться по возможности исходя из условия самозапуска электродвигателей; время действия ПОН АВР должно быть больше времени отключения внешних КЗ, при которых снижение напряжения вызывает срабатывание элемента минимального напряжения ПОН, и, как правило, больше времени действия АПВ со стороны питания;
5) элемент минимального напряжения ПОН АВР должен быть выполнен так, чтобы исключалась его ложная работа при перегорании одного из предохранителей трансформатора напряжения (ТН) со стороны обмотки высшего (ВН) или низшего (НН) напряжения; при защите обмотки НН автоматическим выключателем при его отключении действие ПОН должно блокироваться;
6) при выполнении устройства АВР необходимо учитывать перегрузку резервного источника питания и самозапуск электродвигателей и, если имеет место чрезмерная перегрузка или не обеспечивается самозапуск, выполнять разгрузку при действии АВР (например, отключение неответственных, а в некоторых случаях и части ответственных электродвигателей; для последних рекомендуется применение АПВ);
7) устройства АВР не должны действовать на включение потребителей, отключенных устройствами АЧР; с этой целью должны применяться специальные мероприятия (например, блокировка по частоте).
Устройства АВР устанавливают на подстанциях (ПС) и рас-пределительных пунктах (РП), для которых предусмотрено два источника питания, работающих раздельно в нормальном режиме. Необязательным с точки зрения экономии аппаратуры считается выполнять АВР на ПС и РП в тех случаях, когда от их шин получают питание только электроприемники II и III категорий по надежности электроснабжения. Назначением устройства АВР является осуществление возможно быстрого, обеспечивающего минимальные нарушения и потери в технологическом процессе, автоматического переключения на резервное питание потребителей, обесточенных в результате повреждения или самопроизвольного отключения рабочего источника электроснабжения. Включение резервного источника питания на поврежденную секцию сборных шин КРУ, как правило, не допускается во избежании увеличения объема разрушений, вызванных КЗ, и аварийного снижения напряжения потребителей, электрически связанных с резервным источником. Действие устройства АВР не должно приводить к недопустимой перегрузке резервного источника как в последующем установившемся режиме, так и в процессе самозапуска потерявших питание электродвигателей потребителя. Схемы устройства АВР должны:
а) обеспечивать возможно раннее выявление отказа рабочего источника питания;
б) действовать согласованно с другими устройствами автоматики (АПВ,АЧР) в интересах возможно полного сохранения технологического процесса; в)не допускать, как правило, включение резервного источника на КЗ;
г) исключать недопустимое несинхронное включение потерявших
питание Синхронных электродвигателей на сеть резервного источника;
д) не допускать подключение потребителей к резервному источнику,
напряжение на котором понижено.
Выключатели напряжением выше 1 кВ, включаемые устройством АВР, должны иметь контроль исправности цепи включения.
НАЗНАЧЕНИЕ СИСТЕМ РЕГУЛИРОВАНИЯ ЧАСТОТЫ, СХЕМЫ УСТРОЙСТВ АЧР
Частота переменного тока является одним из основных показателей качества электроэнергии. Отклонение частоты в нормальных режимах от номинального значения 50 Гц не должно превышать ± 0,1 Гц. Допускается кратковременное отклонение частоты не более чем на ± 0,2 Гц.
Регулирование частоты тока возможно проводить только при наличии в энергосистеме резерва активной мощности (т. е. генераторы загружены не полностью). При возникновении дефицита активной мощности в системе электроснабжения происходит снижение частоты тока, вырабатываемого генераторами. Работа потребителей электроэнергии при пониженной частоте тока (напряжения) приводит к снижению частоты двигателей, а, следовательно, к снижению их производительности, нарушению технологического процесса производства, браку продукции.
Для восстановления баланса активной мощности часть потребителей на некоторое время должна быть отключена устройствами АЧР. Устройство АЧР является важным и необходимым средством автоматизации системы электроснабжения.
Автоматическая частотная разгрузка предусматривает отключение потребителей небольшими частями по мере снижения частоты (АЧР1) или по мере увеличения продолжительности существования пониженной частоты (АЧРП).Объемы отключения нагрузки устанавливают, исходя из обеспечения эффективности при любых возможных дефицитах мощности: очередность отключения выбирают так, чтобы уменьшить ущерб от перерыва электроснабжения, в частности применяют большое число устройств и очередей АЧР; более ответственные потребители подключают к более дальним по вероятности срабатывания очередям.
...Подобные документы
Определение параметров схемы замещения и расчет функциональных устройств релейной защиты и автоматики системы электроснабжения. Характеристика электроустановки и выбор установок защиты заданных присоединений: электропередач, двигателей, трансформаторов.
курсовая работа [422,5 K], добавлен 23.06.2011Выбор и расчет устройства релейной защиты и автоматики. Расчёт токов короткого замыкания. Типы защит, схема защиты кабельной линии от замыканий. Защита силовых трансформаторов. Расчетная проверка трансформаторов тока. Оперативный ток в цепях автоматики.
курсовая работа [1,3 M], добавлен 08.01.2012Устройства релейной защиты и автоматики. Расчет токов короткого замыкания. Защита питающей линии электропередач. Защиты трансформаторов и электродвигателей. Самозапуск электродвигателей и защита минимального напряжения. Автоматическое включение резерва.
курсовая работа [259,2 K], добавлен 23.08.2012Расчет релейной защиты заданных объектов, используя реле указанной серии в соответствии с расчетной схемой электроснабжения. Расчета токовой защиты и токовой отсечки асинхронного двигателя. Расчеты кабельной линии от однофазных замыканий на землю.
курсовая работа [178,6 K], добавлен 16.09.2010Значение релейной защиты и системной автоматики для обеспечения надёжной, экономичной работы потребителей электрической энергии. Выбор трансформатора тока. Разработка простой системы защиты фрагмента системы электроснабжения от основных видов повреждений.
курсовая работа [1,6 M], добавлен 07.03.2014Расчет токов короткого замыкания. Выбор тока плавкой вставки предохранителей для защиты асинхронного электродвигателя. Параметры установок автоматов. Чувствительность и время срабатывания предохранителя. Селективность между элементами релейной защиты.
дипломная работа [2,8 M], добавлен 24.11.2010Анализ существующей схемы режимов электропотребления. Расчет режимов работы подстанции, токов короткого замыкания в рассматриваемых точках системы электроснабжения. Выбор устройств релейной защиты и автоматики. Общие сведения о микропроцессорных защитах.
курсовая работа [355,6 K], добавлен 18.01.2014Анализ нормальных режимов сети. Определение значений рабочих токов и токов короткого замыкания в местах установки устройств защиты, сопротивления линий электропередачи. Выбор устройств релейной защиты и автоматики, расчет параметров их срабатывания.
курсовая работа [1,4 M], добавлен 03.01.2015Выбор электрической аппаратуры, токоведущих частей и изоляторов, измерительных трансформаторов, оперативного тока. Расчет собственных нужд подстанции, токов короткого замыкания, установок релейной защиты. Автоматизированные системы управления процессами.
дипломная работа [1,4 M], добавлен 11.01.2016Расчет токов короткого замыкания и релейной защиты для рассматриваемого фрагмента электрической сети. Организация и выбор оборудования для выполнения релейной защиты. Расчет релейной защиты объекта СЭС. Выбор трансформатора тока и расчет его нагрузки.
курсовая работа [911,3 K], добавлен 29.10.2010Основные требования к системам электроснабжения. Описание автоматизированного участка. Расчет электрических нагрузок. Выбор числа и мощности цеховых трансформаторов, компенсирующих устройств. Расчет релейной защиты. Проверка элементов цеховой сети.
курсовая работа [778,1 K], добавлен 24.03.2012Теоретические основы методики расчета экономической эффективности от внедрения релейной защиты подстанции. Описание проекта по внедрению релейной защиты на подстанции "Бишкуль" 110/10 кВ. Показатели финансово-экономической эффективности инвестиций.
дипломная работа [1,5 M], добавлен 24.06.2015Описание применяемой релейной защиты и автоматики. Выбор и обоснование контрольных точек расчёта и вида тока короткого замыкания. Расчет токов короткого замыкания на отходящих линиях. Выбор микропроцессорных терминалов защит системы электроснабжения.
дипломная работа [325,6 K], добавлен 16.01.2014Выбор системы релейной защиты блока генератор-трансформатор электрической станции. Расчет уставок срабатывания и разработка схемы подключения выбранных устройств релейной защиты. Техническое обслуживание дифференциального устройства защиты типа ДЗТ-21.
курсовая работа [1,0 M], добавлен 22.02.2015Релейная защита и автоматика систем электроснабжения. Расчёт токов короткого замыкания для целей релейной защиты. Функции защиты от асинхронного режима. Защита электродвигателей от многофазных коротких замыканий. Схема защиты синхронного электродвигателя.
курсовая работа [101,6 K], добавлен 08.11.2012Расчёт токов короткого замыкания в объеме, необходимом для выбора защит. Выбор коэффициентов трансформации трансформаторов тока и напряжения, необходимых для выполнения релейной защиты и автоматики. Разработка полных принципиальных схем релейной защиты.
курсовая работа [1,4 M], добавлен 14.12.2017Проектирование релейной защиты и автоматики энергосистем. Расчёт токов короткого замыкания. Максимальная токовая защита и токовая отсечка. Дифференциальная токовая защита без торможения. Расчёт трансформаторов тока, определение их полной погрешности.
курсовая работа [254,5 K], добавлен 30.06.2015Выбор релейной защиты и автоматики для линий 6кВ и 110кв. Газовая защита трансформатора. Расчёт тока срабатывания защиты по стороне 6 кВ. Выбор трансформатора тока. Расчёт тока срабатывания реле и тока отсечки. Параметры коммутационной аппаратуры.
курсовая работа [634,8 K], добавлен 20.12.2012Нефтеперекачивающие станции: понятие и назначение, функциональные особенности и структура, технологические режимы работы. Схема электроснабжения, расчет нагрузок, выбор числа и мощности трансформаторов. Оценка экономической эффективности проекта.
дипломная работа [1,2 M], добавлен 18.11.2013Модернизация релейной защиты подстанции 110/35/10 кВ "Буда-Кошелёво". Совершенствование противоаварийной автоматики на подстанции, электромагнитной совместимости электрооборудования. Охрана труда и безопасность при эксплуатации устройств релейной защиты.
дипломная работа [576,1 K], добавлен 15.09.2011