Плоское напряженное состояние

Нормальное и касательное напряжения на наклонной площадке. Тензор деформации в пределах плоскости. Величины экстремальных касательных напряжений. Координаты точек элемента до и после деформации. Определение деформированного состояния твердого тела.

Рубрика Физика и энергетика
Вид лекция
Язык русский
Дата добавления 24.03.2019
Размер файла 92,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http: //www. allbest. ru/

Лекция № 7

Плоское напряженное состояние

Рассмотрим важный для приложений случай плоского напряженного состояния, реализуемого, например, в плоскости Oyz. Тензор напряжений в этом случае имеет вид

Геометрическая иллюстрация представлена на рис.1. При этом площадки х=const являются главными с соответствующими нулевыми главными напряжениями. Инварианты тензора напряжений равны

,

а характеристическое уравнение принимает вид

Корни этого уравнения равны

(1)

Нумерация корней произведена для случая

Рис.1 Исходное плоское напряженное состояние

Рис.2 Позиция главных напряжений

Произвольная площадка характеризуется углом на рис. 1, при этом вектор п имеет компоненты:

, , nх=0.

Нормальное и касательное напряжения на наклонной площадке выражаются через угол следующим образом:

(2)

(3)

Так как на главных площадках касательное напряжение отсутствует, то, приравнивая нулю выражение (3), получим уравнение для определения угла между нормалью п и осью Оу

(4)

Наименьший положительный корень уравнения (4) обозначим через . Так как tg(х) -- периодическая функция с периодом , то имеем два взаимно ортогональных направления, составляющие углы и

с осью Оу. Эти направления соответствуют взаимно перпендикулярным главным площадкам (рис. 2).

Если продифференцировать соотношение (2) по и приравнять производную нулю, то придем к уравнению (4), что доказывает экстремальность главных напряжений.

Для нахождения ориентации площадок с экстремальными касательными напряжениями приравняем нулю производную от выражения

,

откуда получим

(5)

Сравнивая соотношения (4) и (5), находим, что

Это равенство возможно, если углы и отличаются на угол . Следовательно, направления площадок с экстремальными касательными напряжениями отличаются от направлений главных площадок на угол (рис. 3).

Рис.3 Экстремальность касательных напряжений

Величины экстремальных касательных напряжений получим после подстановки (5) в соотношение (3) с использованием формул

.

После некоторых преобразований получим

Сравнивая это выражение с полученными ранее значениями главных напряжений (2.21), выразим экстремальные касательные напряжения через главные напряжения

Аналогичная подстановка в (2) приводит к выражению для нормальных напряжений на площадках с

Полученные соотношения позволяют проводить направленно-ориентированный расчет конструкций на прочность в случае плоского напряженного состояния.

ТЕНЗОР ДЕФОРМАЦИИ

Рассмотрим вначале случай плоской деформации (рис. 4). Пусть плоский элемент MNPQ перемещается в пределах плоскости и деформируется (изменяет форму и размеры). Координаты точек элемента до и после деформации отмечены на рисунке.

Рис.4 Плоская деформация

По определению относительная линейная деформация в точке М в направлении оси Ох равна

Из рис. 4 следует

Учитывая, что

MN=dx,

получим

В случае малых деформаций, когда , , можно пренебречь квадратичными слагаемыми. С учетом приближенного соотношения

справедливого при x<<1, окончательно для малой деформации получим

Угловая деформация определяется как сумма углов и (4). В случае малых деформаций

Для угловой деформации имеем

Проводя аналогичные выкладки в общем случае трехмерной деформации, имеем девять соотношений

(6)

связывающих линейные и угловые деформации с перемещениями. Эти соотношения носят название соотношений Коши.

Три линейных и шесть угловых деформаций (6) образуют тензор малых деформаций

(7)

тензор деформация напряжение экстремальный

Этот тензор полностью определяет деформированное состояние твердого тела. Он обладает теми же свойствами, что и тензор напряжений. Свойство симметрии непосредственно следует из определения угловых деформаций. Главные значения и главные направления, а также экстремальные значения угловых деформаций и соответствующие им направления находятся теми же методами, что и для тензора напряжений.

Инварианты тензора деформаций определяются аналогичными формулами, причем первый инвариант тензора малых деформаций имеет ясный физический смысл. До деформации его объем равен dV0 =dxdydz. Если пренебречь деформациями сдвига, которые изменяют форму, а не объем, то после деформации ребра будут иметь размеры

(рис. 4), а его объем будет равен

.

Относительное изменение объема

в пределах малых деформаций составит

что совпадает с определением первого инварианта. Очевидно, что изменение объема есть физическая величина, не зависящая от выбора системы координат.

Так же, как и тензор напряжений, тензор деформаций можно разложить на шаровой тензор и девиатор. При этом первый инвариант девиатора равен нулю, т. е. девиатор характеризует деформацию тела без изменения его объема.

Размещено на Allbest.ru

...

Подобные документы

  • Плоское напряженное состояние главных площадок стального кубика. Определение величины нормальных и касательных напряжений по граням; расчет сил, создающих относительные линейные деформации, изменение объема; анализ удельной потенциальной энергии.

    контрольная работа [475,5 K], добавлен 28.07.2011

  • Произвольное плоское движение твердого тела. Три независимые координаты. Скорости точек тела при плоском движении. Угловая скорость вращения фигуры. Мгновенный центр скоростей и центроиды. Ускорения точек при плоском движении. Мгновенный центр ускорения.

    презентация [2,5 M], добавлен 24.10.2013

  • Определение: инвариантов напряженного состояния; главных напряжений; положения главных осей тензора напряжений. Проверка правильности вычисления. Вычисление максимальных касательных напряжений (полного, нормального и касательного) по заданной площадке.

    курсовая работа [111,3 K], добавлен 28.11.2009

  • Определение напряжений при растяжении–сжатии. Деформации при растяжении-сжатии и закон Гука. Напряженное состояние и закон парности касательных напряжений. Допускаемые напряжения, коэффициент запаса и расчеты на прочность при растяжении-сжатии.

    контрольная работа [364,5 K], добавлен 11.10.2013

  • Момент инерции тела относительно неподвижной оси в случае непрерывного распределения масс однородных тел. Теорема Штейнера. Кинетическая энергия вращающегося твердого тела. Плоское движение твердого тела. Уравнение динамики вращательного движения.

    презентация [163,8 K], добавлен 28.07.2015

  • Исследование напряжённого состояние в точке. Изучение главного касательного напряжения. Классификация напряжённых состояний. Определение напряжений по площадкам параллельным направлению одного из напряжений. Дифференциальные уравнения равновесия.

    курсовая работа [450,2 K], добавлен 23.04.2009

  • Расчет величины ускорения тела на наклонной плоскости, числа оборотов колес при торможении, направление вектора скорости тела, тангенциального ускорения. Определение параметров движения брошенного тела, расстояния между телами во время их движения.

    контрольная работа [1,0 M], добавлен 29.05.2014

  • Общие свойства твердого тела, его состояния. Локализированные и делокализированные состояния твердого тела, отличительные черты. Сущность, виды химической связи в твердых телах. Локальное и нелокальное описания в неискаженных решетках. Точечные дефекты.

    учебное пособие [2,6 M], добавлен 21.02.2009

  • Основные задачи динамики твердого тела. Шесть степеней свободы твердого тела: координаты центра масс и углы Эйлера, определяющие ориентацию тела относительно центра масс. Сведение к задаче о вращении вокруг неподвижной точки. Описание теоремы Гюйгенса.

    презентация [772,2 K], добавлен 02.10.2013

  • Методическое указание по вопросам расчётов на прочность при различных нагрузках и видах деформации. Определение напряжения при растяжении (сжатии), определение деформации. Расчеты на прочность при изгибе, кручении. Расчетно-графические работы, задачи.

    контрольная работа [2,8 M], добавлен 15.03.2010

  • Поступательное, вращательное и сферическое движение твердого тела. Определение скоростей, ускорения его точек. Разложение движения плоской фигуры на поступательное и вращательное. Мгновенный центр скоростей. Общий случай движения свободного твердого тела.

    презентация [954,1 K], добавлен 23.09.2013

  • Решение задачи на определение скоростей и ускорений точек твердого тела при поступательном и вращательном движениях. Определение кинетической энергии системы, работы сил, скорости в конечный момент времени. Кинематический анализ многозвенного механизма.

    контрольная работа [998,2 K], добавлен 23.11.2009

  • Физика твердого тела – один из столпов, на которых покоится современное технологическое общество. Физическое строение твердых тел. Симметрия и классификация кристаллов. Особенности деформации и напряжения. Дефекты кристаллов, способы повышения прочности.

    презентация [967,2 K], добавлен 12.02.2010

  • Фазовые переходы для автоколебательной системы "Хищник-Жертва" и для волн пластической деформации. Получение уравнений в обезразмеренном виде. Определение координат особых точек, показателей Ляпунова для них. Исследование характера их устойчивости.

    курсовая работа [805,6 K], добавлен 17.04.2011

  • Методика определения скоростей и ускорений точек твердого тела при плоском движении, порядок расчетов. Графическое изображение реакции и момента силы. Расчет реакции опор для способа закрепления бруса, при котором Yа имеет наименьшее числовое значение.

    задача [345,9 K], добавлен 23.11.2009

  • Вычисление напряжений, вызванных неточностью изготовления стержневой конструкции. Расчет температурных напряжений. Построение эпюр поперечной силы и изгибающего момента. Линейное напряженное состояние в точке тела по двум взаимоперпендикулярным площадкам.

    курсовая работа [264,9 K], добавлен 01.11.2013

  • Применения МД для исследования пластической деформации кристаллов. Алгоритм интегрирования по времени. Начальное состояние для кристалла с дефектами. Уравнение для ширины ячейки моделирования. Моделирования пластической деформации ГПУ кристаллов.

    дипломная работа [556,7 K], добавлен 07.12.2008

  • Определение момента инерции и его физический смысл. Теорема Гюйгенса-Штейнера о параллельных и перпендикулярных осях. Некоторые свойства тензора инерции: симметричность, положительная определенность, неравенства. Пример использования симметрии тела.

    презентация [766,1 K], добавлен 02.10.2013

  • Определение вязкости глицерина и касторового масла, знакомство с методом Стокса. Виды движения твердого тела. Определение экспериментально величины углового ускорения, момента сил при фиксированных значениях момента инерции вращающейся системы установки.

    лабораторная работа [780,2 K], добавлен 30.01.2011

  • Предпосылки возникновения теории пластической деформации, этапы развития представлений. Наблюдение линий максимальных касательных напряжений. Пластические сдвиги в монокристаллах. Теория решеточных дислокаций. Модель Френкеля-Конторовой. Сила Пайерлса.

    реферат [1,1 M], добавлен 04.05.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.