Изучение свойств структурированной воды
Отличие структурированной талой и омагниченной воды от обычной. Схема возможного взаимного расположения атомов водорода и кислорода в молекуле воды. Разработка установки для проверки прочности цемента и свойств жидкостей. Механизм возникновения кластеров.
Рубрика | Физика и энергетика |
Вид | статья |
Язык | русский |
Дата добавления | 22.03.2019 |
Размер файла | 1,6 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://allbest.ru
Изучение свойств структурированной воды
Автор:
Римский Никита Валерьевич
Руководитель:
Ветюков Дмитрий Алексеевич
Москва
2012
Оглавление
Глава 1. Теоретическая часть
1.1 Строение молекулы воды
1.2 Получение и свойства структурированной воды
Глава 2. Изучение свойств структурированной воды
Заключение
Список литературы
Глава 1. Теоретическая часть
1.1 Строение молекулы воды
Вода представляет собой сложное вещество, основной структурной единицей которого является молекула H2O, состоящая из двух атомов водорода и одного атома кислорода. Схем возможного взаимного расположения атомов H и O в молекуле H2O за весь период ее изучения было предложено несколько десятков; общепризнанная в настоящее время схема приведена на рис. 1.
Рис. 1. Схема строения молекулы воды: геометрия молекулы и электронные орбиты
Изучение молекулы воды с помощью спектрографических исследований позволило установить, что она имеет структуру как бы равнобедренного треугольника: в вершине этого треугольника расположен атом кислорода, а в основании его -- два атома водорода. Угол при вершине составляет 104°27, а длина стороны -- 0,096 нм. Эти параметры относятся к гипотетическому равновесному состоянию молекулы без ее колебаний и вращений. Проблема оценки структуры воды пока остается одной из самых сложных. Рассмотрим кратко две обобщенные гипотезы о структуре воды, получившие наибольшее признание, одна -- в начальный период развития учения о структуре воды, другая -- в настоящее время. Согласно гипотезе, предложенной Уайтингом (1883г.) и имеющей к настоящему времени различные интерпретации, основной строительной единицей водяного пара является молекула H2O, называемая гидроль, или моногидроль. Основной строительной единицей воды является двойная молекула воды (H2O)2--дигидроль; лед же состоит из тройных молекул (H2O)3 -- тригидроль. На этих представлениях основана так называемая гидрольная теория структуры воды.
Водяной пар, согласно этой теории, состоит из собрания простейших молекул моногидроля и их ассоциаций, а также из незначительного количества молекул дигидроля.
Вода в жидком виде представляет собой смесь молекул моногидроля, дигидроля и тригидроля. Соотношение числа этих молекул в воде различно и зависит от температуры. Согласно этой гипотезе, соотношение количества молекул воды и объясняет одну из основных ее аномалий -- наибольшую плотность воды при 4°С.
Так как молекула воды несимметрична, то центры тяжести положительных и отрицательных зарядов ее не совпадают. Молекулы имеют два полюса -- положительный и отрицательный, создающие, как магнит, молекулярные силовые поля.
Такие молекулы называют полярными, или диполями. Полярностью молекул моногидроля и объясняется образование дигидроля и тригидроля. Вместе с тем, так как собственные скорости молекул возрастают с повышением температуры, этим можно объяснить постепенный распад тригидроля в дигидроль и далее в моногидроль соответственно при таянии льда, нагревании и кипении воды.
Другая гипотеза строения воды, разрабатывавшаяся в XX веке (модели О.Я.Самойлова, Дж.Попла, Г.Н.Зацепиной и др.), основана на представлении, что лед, вода и водяной пар состоят из молекул H2O, объединенных в группы с помощью так называемых водородных связей (Дж.Бернал и Р.Фаулер, 1933г.). Эти связи возникают в результате взаимодействия атомов водорода одной молекулы с атомом кислорода соседней молекулы (с сильно электроотрицательным элементом). Такая особенность водородного обмена в молекуле воды обусловливается тем, что, отдавая свой единственный электрон на образование ковалентной связи с кислородом, он остается в виде ядра, почти лишенного электронной оболочки. Поэтому атом водорода не испытывает отталкивания от электронной оболочки кислорода соседней молекулы воды, а, наоборот, притягивается ею, и может вступить с нею во взаимодействие. Согласно данной гипотезе, можно предположить, что силы, образующие водородную связь, являются чисто электростатическими.
В табл.1 показан молекулярный состав воды, льда и водяного пара по различным литературным источникам.
Таблица 1.1
Молекулярный состав льда, воды и водяного пара, %
Таким образом, в результате взаимодействия атомов водорода одной молекулы воды с отрицательными зарядами кислорода другой молекулы образуются четыре водородные связи для каждой молекулы воды. При этом молекулы, как правило, объединяются в группы -- ассоциаты: каждая молекула оказывается окруженной четырьмя другими (рис. 2).
Рис. 2. Схема взаимодействия молекул воды. 1 -- кислород, 2 -- водород, 3 -- химическая связь, 4 -- водородная связь.
Такая плотная упаковка молекул характерна для воды в замерзшем состоянии и приводит к открытой кристаллической структуре. При этой структуре образуются «пустоты -- каналы» между фиксированными молекулами, поэтому плотность льда меньше плотности воды. Повышение температуры льда до его плавления и выше приводит к разрыву водородных связей. При жидком состоянии воды достаточно даже обычных тепловых движений молекул, чтобы эти связи разрушить.
При повышении температуры воды до 4°С упорядоченность расположения молекул по кристаллическому типу с характерной структурой для льда до некоторой степени сохраняется. Имеющиеся в этой структуре отмеченные выше пустоты заполняются освободившимися молекулами воды. Вследствие этого плотность жидкости увеличивается до максимальной при температуре 3,98°С. Дальнейший рост температуры приводит к искажению и разрыву водородных связей, а, следовательно, и разрушению групп молекул, вплоть до отдельных молекул, что характерно для пара. Так в чем же заключаются загадочные, необычные свойства привычной всем жидкой воды? Прежде всего, в том, что практически все свойства воды аномальны, а многие из них не подчиняются логике тех законов физики, которые управляют другими веществами.
Молекулы воды при конденсации формирует жидкое вещество удивительной сложности. В первую очередь это связано с тем, что молекулы воды обладают уникальным свойством объединяться в кластеры (группы) (Н2О)x. Под кластером обычно понимают группу атомов или молекул, объединенных физическим взаимодействием в единый ансамбль, но сохраняющих внутри него индивидуальное поведение. Возможности прямого наблюдения кластеров ограничены, и поэтому экспериментаторы компенсируют аппаратурные недостатки интуицией и теоретическими построениями.
При комнатной температуре степень ассоциации X для воды составляет, по современным данным, от 3 до 6. Это означает, что формула воды не просто Н2О, а среднее между Н6О3 и Н12О6. Другими словами, вода - сложная жидкость, "составленная" из повторяющихся групп, содержащих от трех до шести одиночных молекул.
Вследствие этого вода имеет аномальные значения температуры замерзания и кипения по сравнению с гомологами. Если бы вода подчинялась общим правилам, она должна была замерзать при температуре порядка -100оС и закипать при температуре около +10оС.
Если бы вода при испарении оставалась в виде Н6О3, Н8О4 или Н12О6, то водяной пар был бы намного тяжелее воздуха, в котором доминируют молекулы азота и кислорода.
В этом случае поверхность всей Земли была бы покрыта вечным слоем тумана. Представить себе жизнь на такой планете практически невозможно.
Людям крупно повезло: кластеры воды при испарении распадаются, и вода превращается практически в простой газ с химической формулой Н2О. Плотность газообразной воды меньше плотности воздуха, и поэтому вода способна насыщать своими молекулами земную атмосферу, создавая комфортные для человека погодные условия.
На Земле нет других веществ, наделенных способностью быть жидкостью при температурах существования человека и при этом образовывать газ не только легче воздуха, но и способный возвращаться к её поверхности в виде осадков.
1.2 Получение и свойства структурированной воды
Вода структурируется, т.е. приобретает особую регулярную структуру при воздействии многих структурирующих факторов, например, при замораживании-оттаивании воды (считается, что в такой воде сохраняются “ледяные” кластеры), воздействии постоянного магнитного или электромагнитного поля.
К числу факторов, приводящих к изменению структуры и свойств воды, относятся различные излучения и поля (электрические, магнитные, гравитационные и, возможно, ряд других, еще не известных, в частности, связанных с биоэнергетическим воздействием человека), механические воздействия (перемешивание разной интенсивности, встряхивание, течение в различных режимах и т.д.), а также их всевозможные сочетания. Такая структурированная вода становится активной и несёт новые свойства.
Самый яркий пример структурированной воды - талая вода. Её можно легко получить в домашних условиях методом замораживания-оттаивания. Она появляется при таянии льда и сохраняет температуру 0 °С, пока не растает весь лёд. Специфика межмолекулярных взаимодействий, характерная для структуры льда (см. рисунок), сохраняется и в талой воде, так как при плавлении кристалла льда разрушается только 15% всех водородных связей.
Поэтому присущая льду связь каждой молекулы воды с четырьмя соседними («ближний порядок») в значительной степени не нарушается, хотя и наблюдается бoльшая размытость кислородной каркасной решётки.
Рис. 3. “Ближний порядок” в талой воде.
Таким образом, структурированная талая вода отличается от обычной изобилием многомолекулярных кластеров, в которых в течение некоторого времени сохраняются рыхлые льдоподобные структуры. После таяния всего льда температура воды повышается и водородные связи внутри кластеров перестают противостоять возрастающим тепловым колебаниям атомов.
Структурированная талая вода обладает особой внутренней динамикой и особым «биологическим воздействием», которые могут сохраняться в течение длительного времени (см. например В.Белянин, Е.Романова, Жизнь, молекула воды и золотая пропорция, «Наука и жизнь», Номер 10, 2004 г.).
Рис. 4. Рыхлые, льдоподобные структуры структуры в талой воде.
Вода является источником сверхслабого и слабого переменного электромагнитного излучения. Наименее хаотичное электромагнитное излучение создаёт структурированная вода. Переносчиками информации могут быть физические поля самой различной природы. Так установлена возможность информационного взаимодействия структуры воды с объектами различной природы при помощи электромагнитных, акустических и других полей. Другой пример - структурирование воды магнитным полем. Если к определённому кубическому объёму воды приложить постоянное электромагнитное поле, то в этом случае все молекулы воды, представляющие собой маленькие заряжённые диполи выстроятся вдоль силовых линий электромагнитного поля, т.е. вдоль оси X. При тепловом движении дипольной молекулы воды перпендикулярно силовым линиям магнитного поля, вдоль оси Y ( см. вектор V ), будет возникать момент сил F1, F2 ( сила Лоренса ), пытающихся развернуть молекулу в горизонтальной плоскости.
Рис. 5. Поведение воды в магнитном поле
При движении молекулы в горизонтальной плоскости, вдоль оси Z , будет возникать момент сил в вертикальной плоскости. Но полюса магнита будут всегда препятствовать повороту молекулы, а следовательно и тормозить любое движение молекулы перпендикулярно линиям магнитного поля.
Таким образом, в молекуле воды, помещённой между двумя полюсами магнита остаётся только одна степень свободы - это колебание вдоль оси X - силовых линий приложенного магнитного поля. По всем остальным координатам движение молекул воды будет тормозиться. Таким образом, молекула воды становится как бы "зажатой" между полюсами магнита, совершая лишь колебательные движения относительно оси X. Причём определённое положение диполей молекул воды в магнитном поле вдоль силовых линий поля будет сохраняться, тем самым делая воду более структурированной и упорядоченной. Получить такую воду довольно легко - достаточно пропустить её через постоянное магнитное поле.
Другой метод структурирования воды - обработка воды электрическим полем. По определению явление электрохимической активации воды (ЭХАВ) - совокупность электрохимического и электрофизического воздействия на воду в двойном электрическом слое (ДЭС) электрода (либо анода, либо катода) электрохимической системы при неравновесном переносе заряда через ДЭС электронами и в условиях интенсивного диспергирования в жидкости образующихся газообразных продуктов электрохимических реакций. В результате пропускания через воду постоянного электрического тока, поступление электронов в воду у катода, так же как и удаление электронов из воды у анода, сопровождается серией электрохимических реакций на поверхности катода и анода.
В результате образуются новые вещества, изменяется система межмолекулярных взаимодействий, состав воды, в том числе структура воды как раствора. Получают такую воду с помощью диафрагменного проточного электрохимического реактора (СТЭЛ), включающего в свой состав специальную мембрану (диафрагму), разделяющую воду, находящуюся у катода и воду, находящуюся у анода. Состав электродов (анода и катода) таков, что они могут обмениваться только электронами. Но всё же этот метод в отличие от намагничивания воды постоянным магнитным полем, связан с деструкцией и разложением воды. Поэтому в качестве примера ограничимся рассмотрением в качестве структурированной намагниченной воды.
Рис. 6. Схема диафрагменного проточного электрохимического реактора (СТЭЛ)
После воздействия на воду магнитного (электромагнитного) поля вода становится более структурированной, чем вода обычная. В ней увеличивается скорость химических реакций и кристаллизации растворенных веществ, интенсифицируются процессы адсорбции, улучшается коагуляция примесей и выпадение их в осадок. Воздействие магнитного поля на воду сказывается на поведении находящихся в ней примесей, хотя сущность этих явлений пока точно не выяснена. Вполне возможно биологическое действие структурированной воды на организм связано с тем, что каналы (насосы) мембран клеток тканей пропускают молекулы структурированной воды с повышенной скоростью, из-за того, что регулярная структура воды напоминает регулярную структуру самой мембраны клетки - высокоструктурированной органеллы.
Эксперименты показали, что употребление внутрь омагниченной структурированной воды повышает проницаемость биологических мембран тканевых клеток, снижает количество холестерина в крови и печени, регулирует артериальное давление, повышает обмен веществ, способствует выделению мелких камней из почек. Не менее успешно структурированную воду используют и в сельском хозяйстве. Например, пятичасовое замачивание семян свеклы в магнитной воде заметно повышает урожай; полив магнитной водой стимулирует рост и урожайность сои, подсолнечника, кукурузы, помидоров. В некоторых странах магнитная вода служит и медицине: она помогает удалять почечные камни, оказывает бактерицидное действие, а бетон, замешанный на омагниченной воде, обретает повышенную прочность и морозоустойчивость.
Таким образом, эффекты структурированной воды очень многочисленны и их природу и область применения еще только начинают изучать. Проникновение в суть этого явления откроет не только практические возможности, но и новые свойства структурированной воды.
Однако "память" у омагниченной структурированной воды не очень долгая, а вернее очень короткая. Считается, что она помнит воздействие поля менее суток, хотя этот придел сильно завышен.
Эксперименты показали, что области с разным строением - кластеры возникают в воде спонтанно и спонтанно мгновенно распадаются. Вся структура воды живёт и постоянно меняется, причём время, за которое происходят эти изменения, очень маленькое.
Вода является очень сложной и во многих отношениях малоизученной системами. Это объясняется их динамичной структурой, образованной цепями слабых водородных связей, а также легко образующимися, распадающимися и переходящими друг в друга ассоциатами молекул и подверженной воздействию многочисленных факторов, до недавних пор вообще не рассматриваемых традиционной наукой.
Глава 2. Изучение свойств структурированной воды
Цель моей практической работы заключается в проверке теории существования необычных свойств структурированной воды, описанных выше. Для этого мне нужно было выбрать наиболее легкодостижимый метод по проверке свойств структурированной воды, создать методику проведения опыта. Также я должен был проверить собственноручно изготовленную установку по структурированию воды.
По данным статьи Мосина О.В. "Cтруктурированная вода. Способы получения", цемент, замешанный на структурированной воде прочнее, чем цемент, замешанный на обычной воде. Это свойство структурированной воды широко используется в строительстве.
Суть моего опыта заключается в проверке того, что цемент, замешанный на разных типах воды, будет различаться по прочности. Для проведения опыта я использовал цемент М-500, короба для электрических проводов в качестве формы для заливки цемента длиной 20 см, шириной 3,5 см, толщиной 1,5 см и воду для замешивания цемента.
Я использовал 4 типа воды. Одна из них была обычной водой из-под крана. Остальные же были структурированными. Первая из них была талой водой, то есть растаявший лед. Вторая была омагничена, то есть была подвергнута действию магнита. Третья была пропущена через мою установку. структурированный вода кластер молекула
К стеклянной ёмкости 160 см2 с двух сторон крепятся 2 жестяные пластины, вырезанные из жестяных банок, к ним подсоединяются(припаиваются) провода, которые впоследствии подключаются к источнику тока.
Во-первых, я нарезал короба ножницами по металлу. Затем заклеил с двух сторон для заливки цемента. Смешал цемент с разными типами воды в пропорции 3 к 1 и перемешивал до достижения густой консистенции. Затем разливал его по полученным формам и оставлял ждать на 3-5 дней. После его затвердевания я доставал заготовки из форм и испытывал на прочность на моей установке. Я разрезал сверху пятилитровую бутылку из-под воды, и сделал 4 выреза с 4-х сторон для штативов для устойчивости. Снизу же прикручена деревянная заостренная снизу дощечка, которая действует на цементную заготовку, после того как установка заливается водой.
Я не достиг ожидаемых результатов, так как столкнулся с некоторыми сложностями. Во-первых, мне не удалось получить подходящей заготовки для проверки на прочность непосредственно моей установкой. Я получал либо заготовку, выдерживающую нагрузки более 700 Н, либо она трескалась в процессе застывания. Во- вторых, мне не хватило времени для испытания новых заготовок и улучшенной установки для их проверки.
Заключение
Изучив теоретический материал, я выделил методы структурирования воды и свойства, которые можно проверить в школьных условия. Была разработана установка для структурирования воды и методика проверки свойств структурированной воды по прочности цемента.
Также была разработана установка для проверки прочности цемента. Не был достигнут ожидаемый результат, так как я столкнулся с рядом проблем.
В-первую очередь, меня встретила проблеме при создании заготовок из цемента. Было очень трудно определить соотношение первоначальной формы для заготовки, так чтобы заготовка не треснула или могла бы быть испытанной в школьных условиях. И даже когда выход из этой проблемы был найден, я столкнулся с проблемой нехватки времени. В будущем хотелось бы реализовать планы, которые я не успел выполнить.
Список литературы
1. Игнатов И. «Информативность» воды и резонансное и биорезонансное взаимодействие в гомеопатических растворах.http://www.o8ode.ru/article/energo/memory/gomeo.
2. Калиничев А. Еще раз о гомеопатии и о «памяти воды».trv-science.ru/2010/11/23/eshhe-raz-o-gomeopatii-i-o-pamyati-vodi.
3. Мосин О.В.Молекулярная физика воды. // http://www.o8ode.ru/article/water/molekularnaa_fizika_vody. Ссылка действительна на 25.05.2012.
4. Мосин О.В. Структурированная вода. Способы получения. //http://www.o8ode.ru/article/water/ctrukturirovannaa_voda_cpocoby_polu4enia. Ссылка действительна на 25.05.2012.
Размещено на Allbest.ru
...Подобные документы
Исследование структурных свойств воды при быстром переохлаждении. Разработка алгоритмов моделирования молекулярной динамики воды на основе модельного mW-потенциала. Расчет температурной зависимости поверхностного натяжения капель воды водяного пара.
дипломная работа [1,8 M], добавлен 09.06.2013Возможность осуществления ядерных реакций синтеза ядер изотопов водорода в присутствии катализаторов при температурах, существенно меньших, чем в термоядерных реакциях. Сколько же энергии в стакане обычной воды. Механизм работы холодного ядерного синтеза.
статья [559,5 K], добавлен 15.05.2019Распространенность, физическая характеристика и свойства воды, ее агрегатные состояния, поверхностное натяжение. Схема образования молекулы воды. Теплоёмкость водоёмов и их роль в природе. Фотографии замороженной воды. Преломление изображения в ней.
презентация [2,7 M], добавлен 28.02.2011Характеристика современных систем защиты от протечек воды. Схема накопления энергии при помощи конденсатора. Разработка структурной и принципиальной схемы датчика утечки воды. Схема преобразователя тока в напряжение на основе операционного усилителя.
курсовая работа [331,0 K], добавлен 09.12.2011Обзор существующих методов деминерализации и выбор типа установки для получения обессоленной воды. Экономические показатели схемы получения деминирализованной воды и целесообразность её внедрения в производство на АО "Акрон" взамен существующей.
дипломная работа [904,5 K], добавлен 29.10.2009Физические и химические свойства воды. Распространенность воды на Земле. Вода и живые организмы. Экспериментальное исследование зависимости времени закипания воды от ее качества. Определение наиболее экономически выгодного способа нагревания воды.
курсовая работа [1,4 M], добавлен 18.01.2011Расходы воды в промышленности, в быту и сельском хозяйстве. Использование воды в промышленности для охлаждения и нагревания жидкостей, приготовления и очистки растворов, транспортировки материалов и сырья по трубам. Водопотребление на орошение.
презентация [1,5 M], добавлен 08.04.2013Исторические сведения о воде. Круговорот воды в природе. Виды образования от разных изменений. Скорость обновления воды, ее типы и свойства. Вода как диполь и растворитель. Вязкость, теплоемкость, электропроводность воды. Влияние музыки на кристаллы воды.
реферат [4,6 M], добавлен 13.11.2014Принцип работы тахометрического счетчика воды. Коллективный, общий и индивидуальный прибор учета. Счетчики воды мокрого типа. Как остановить, отмотать и обмануть счетчик воды. Тарифы на холодную и горячую воду для населения. Нормативы потребления воды.
контрольная работа [22,0 K], добавлен 17.03.2017Принцип работы и конструкция лопастного ротационного счетчика количества воды. Определение по счетчику объема воды, поступившей в емкость за время между включением и выключением секундомера. Расчет относительной погрешности измерений счетчика СГВ-20.
лабораторная работа [496,8 K], добавлен 26.09.2013Определение массы и объёма воды, вытекающей из крана за разные промежутки времени. Расчет количества теплоты, необходимого для нагрева воды с использованием различных энергоресурсов. Оценка материальных потерь частного потребителя воды и электроэнергии.
научная работа [130,8 K], добавлен 01.12.2015Растворение разнообразных веществ как одно из основных свойств воды на планете, его значение. Сущность физического процесса несмачивания и смачивания поверхностей. Отличительные черты поведения молекул воды на смачиваемых и несмачиваемых поверхностях.
презентация [569,6 K], добавлен 19.05.2014Физические свойства воды, температура ее кипения, таяние льда. Занимательные опыты с водой, познавательные и интересные факты. Измерение коэффициента поверхностного натяжения воды, удельной теплоты плавления льда, температуры воды при наличии примесей.
творческая работа [466,5 K], добавлен 12.11.2013Значение воды в природе и жизни человечества. Изучение ее молекулярного строения. Использование воды как уникального энергетического вещества в системах отопления, водяных реакторах АЭС, паровых машинах, судоходстве и как сырья в водородной энергетике.
статья [15,2 K], добавлен 01.04.2011Выбор источника водоснабжения, анализ показателей качества исходной воды. Расчет предочистки и декарбонизатора. Анализ расхода воды на собственные нужды. Методы коррекции котловой и питательной воды. Характеристика потоков конденсатов и схемы их очистки.
курсовая работа [447,6 K], добавлен 27.10.2011Выбор основного теплоэнергетического оборудования. Тепловая схема блока. Расход пара на приводную турбину питательного насоса и подогрев воды. Расчёт количества добавочной воды и производительности испарителя. Тепловой баланс регенеративной установки.
дипломная работа [1,4 M], добавлен 19.03.2013Проверка эффекта Мпембы. Исследование температуры замерзания воды в зависимости от концентрации соли в ней. Зависимость температуры кипения от ее продолжительности, концентрации соляного раствора, атмосферного давления, высоты столба жидкости в сосуде.
творческая работа [80,5 K], добавлен 24.03.2015Структурное строение молекул воды в трех ее агрегатных состояниях. Разновидности воды, её аномалии, фазовые превращения и диаграмма состояния. Модели структуры воды и льда а также агрегатные виды льда. Терпературные модификации льда и его молекул.
курсовая работа [276,5 K], добавлен 12.12.2009Подогреватели сетевой воды вертикальные. Расчет средней температуры воды. Определение теплоемкости воды, теплового потока, получаемого водой. Коэффициент теплоотдачи от стенки трубы. Теплофизические параметры конденсата при средней температуре конденсата.
курсовая работа [507,5 K], добавлен 28.11.2012Принципиальная схема турбины К-150-130 для построения конденсационной электростанции. Расчёт параметров воды и пара в подогревателях, установки по подогреву воды, расхода пара на турбину. Расчёт регенеративной схемы и проектирование топливного хозяйства.
курсовая работа [384,4 K], добавлен 31.01.2013