Квантовая криптография

Изучение квантовой криптографии - метода защиты коммуникаций, основанный на принципах квантовой физики. Понятие и значение запутанности. Простейший алгоритм генерации секретного ключа (BB84). Эффективность регистрации и измерения поляризации фотона.

Рубрика Физика и энергетика
Вид статья
Язык русский
Дата добавления 20.04.2019
Размер файла 213,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

КВАНТОВАЯ КРИПТОГРАФИЯ

Вострова В.А.

Поволжский государственный университет телекоммуникаций и информатики Самара, Россия

Квамнтовая запумтанность -- квантовомеханическое явление, при котором квантовые состояния двух или большего числа объектов оказываются взаимозависимыми. Такая взаимозависимость сохраняется, даже если эти объекты разнесены в пространстве за пределы любых известных взаимодействий, что находится в логическом противоречии с принципом локальности. Например, можно получить пару фотонов, находящихся в запутанном состоянии, и тогда если при измерении спина первой частицы спиральность оказывается положительной, то спиральность второй всегда оказывается отрицательной, и наоборот.

Квантовая запутанность - область чрезвычайно активного исследования сообществом физики, и его эффекты были продемонстрированы экспериментально с фотонами, электронами, молекулами размера бакиболов и даже маленькими алмазами. Исследование также сосредоточено на использовании эффектов запутанности в коммуникации и вычислении.

Понятие и значение запутанности

Квантовые системы могут стать запутанными через различные типы взаимодействий. (Для некоторых путей, которыми запутанность может быть достигнута в экспериментальных целях, посмотрите секцию ниже на методах). У запутанной системы есть квантовое состояние, которое не может быть factored в продукт государств его местных элементов (например, отдельные частицы). Система не может быть выражена как прямой продукт квантовых состояний, которые составляют систему. Если запутано, один элемент не может быть полностью описан, не рассматривая другой (s). Как квантовые состояния отдельных частиц, государство запутанной системы выразимое как сумма или суперположение, базисных государств, которые являются eigenstates немного заметных (s). Запутанность сломана когда запутанные частицы decohere через взаимодействие с окружающей средой; например, когда измерение сделано.

Как пример запутанности: субатомная частица распадается в запутанную пару других частиц. События распада подчиняются различным законам о сохранении, и в результате результаты измерения одной частицы дочери должны высоко коррелироваться с результатами измерения другой частицы дочери (так, чтобы полные импульсы, угловые импульсы, энергия, и т.д остались примерно тем же самым прежде и после этого процесса). Например, нулевая вращением частица могла распасться в пару spin-1/2 частиц. Начиная с полного вращения прежде и после того, как этот распад должен быть нолем (сохранение углового момента), каждый раз, когда первая частица измерена, чтобы быть вращением на некоторой оси, другой (когда измерено на той же самой оси), как всегда находят, вращение вниз. (Это называют, вращение антикоррелировало случай; и если предшествующие вероятности для измерения каждого вращения равны, пара, как говорят, находится в синглетном состоянии.)

Квантовая криптография -- метод защиты коммуникаций, основанный на принципах квантовой физики. В отличие от традиционной криптографии, которая использует математические методы, чтобы обеспечить секретность информации, квантовая криптография сосредоточена на физике, рассматривая случаи, когда информация переносится с помощью объектов квантовой механики. Процесс отправки и приёма информации всегда выполняется физическими средствами, например, при помощи электронов в электрическом токе, или фотонов в линиях волоконно-оптической связи. А подслушивание может рассматриваться, как измерение определённых параметров физических объектов --в нашем случае, переносчиков информации.

Технология квантовой криптографии опирается на принципиальную неопределённость поведения квантовой системы -- невозможно одновременно получить координаты и импульс частицы, невозможно измерить один параметр фотона, не исказив другой. Это фундаментальное свойство природы в физике известно, как принцип неопределённости Гейзенберга, сформулированный в 1927 г. Используя квантовые явления, можно спроектировать и создать такую систему связи, которая всегда может обнаруживать подслушивание. Это обеспечивается тем, что попытка измерения взаимосвязанных параметров в квантовой системе вносит в неё нарушения, разрушая исходные сигналы, а значит, по уровню шума в канале легитимные пользователи могут распознать степень активности перехватчика.

История возникновения

Впервые идея защиты информации с помощью квантовых объектов была предложена Стивеном Визнером в 1970 году. Спустя десятилетие Ч. Беннет (фирма IBM) и Ж. Брассард (Монреальский университет), знакомые с работой Визнера, предложили передавать секретный ключ с использованием квантовых объектов. В 1984 году они предположили возможность создания фундаментально защищённого канала с помощью квантовых состояний. После этого ими была предложена схема (BB84), в которой легальные пользователи (Алиса и Боб) обмениваются сообщениями, представленными в виде поляризованных фотонов, по квантовому каналу.

Злоумышленник (Ева), пытающийся исследовать передаваемые данные, не может произвести измерение фотонов без искажения текста сообщения. Легальные пользователи по открытому каналу сравнивают и обсуждают сигналы, передаваемые по квантовому каналу, тем самым проверяя их на возможность перехвата. Если ими не будет выявлено никаких ошибок, то переданную информацию можно считать случайно распределённой, случайной и секретной, несмотря на все технические возможности, которые может использовать крипто аналитик.

Рисунок 1. Первая квантово-криптографическая схема.

Первая работающая квантово-криптографическая схема была построена в 1989 году в Исследовательском центре компании IBM, все теми же Беннетом и Брассардом. Данная схема представляла собой квантовый канал, на одном конце которого был передающий аппарат Алисы, на другом принимающий аппарат Боба. Оба аппарата размещены на

оптической скамье длиной около 1 м, в светонепроницаемом кожухе размерами 1,5х0,5х0,5 м. Управление происходило с помощью компьютера, в который были загружены программные представления легальных пользователей и злоумышленника. Сохранность тайны передаваемых данных напрямую зависит от интенсивности вспышек света, используемых для передачи. Слабые вспышки, хоть и делают трудным перехват сообщений, все же приводят к росту числа ошибок у легального пользователя, при измерении правильной поляризации. Повышение интенсивности вспышек значительно упрощает перехват путем расщепления начального одиночного фотона (или пучка света) на два: первого по-прежнему направленному легальному пользователю, а второго анализируемого злоумышленником. Легальные пользователи могут исправлять ошибки с помощью специальных кодов, обсуждая по открытому каналу результаты кодирования. Но все-таки при этом часть информации попадает к крипто аналитику. Тем не менее, легальные пользователи Алиса и Боб, изучая количество выявленных и исправленных ошибок, а также интенсивность вспышек света, могут дать оценку количеству информации, попавшей к злоумышленнику.

Простейший алгоритм генерации секретного ключа (BB84)

Схема ВВ84 работает следующим образом. Вначале отправитель (Алиса) производит генерацию фотонов со случайной поляризацией, выбранной из 0, 45, 90 и 135°. Получатель (Боб) принимает эти фотоны, затем для каждого выбирает случайным образом способ измерения поляризации, диагональный или перпендикулярный. Затем по открытому каналу сообщает о том, какой способ он выбрал для каждого фотона, не раскрывая при этом самих результатов измерения. После этого Алиса по тому же открытому каналу сообщает, правильный ли был выбран вид измерений для каждого фотона. Далее Алиса и Боб отбрасывают те случаи, когда измерения Боба были неверны. Если не было перехвата квантового канала, то секретной информацией или ключом и будут оставшиеся виды поляризации. На выходе будет последовательность битов: фотоны с горизонтальной или 45-й поляризацией принимаются за двоичный «0», а с вертикальной или 135-й поляризацией -- за двоичную «1». Этот этап работы квантово-криптографической системы называется первичной квантовой передачей.

Следующим этапом очень важно оценить попытки перехватить информацию в квантово-криптографическом канале связи. Это производится по открытому каналу Алисой и Бобом путем сравнения и отбрасывания подмножеств полученных данных случайно ими выбранных. Если после такого сравнения будет выявлен перехват, то Алиса и Боб должны будут отбросить все свои данные и начать повторное выполнение первичной квантовой передачи. В противном случае они оставляют прежнюю поляризацию. Согласно принципу неопределённости, крипто аналитик (Ева) не может измерить как диагональную, так и прямоугольную поляризацию одного и того же фотона. Даже если им будет произведено измерение для какого-либо фотона и затем этот же фотон будет переслан Бобу, то в итоге количество ошибок намного увеличится, и это станет заметно Алисе. Это приведет к тому, что Алиса и Боба будут полностью уверены в состоявшемся перехвате фотонов. Если расхождений нет, то биты, использованные для сравнения, отбрасываются, ключ принимается. С вероятностью 1 -- 2-k (где k -- число сравненных битов) канал не прослушивался.

Впрочем, если недоброжелатель может не только прослушивать основной канал Алиса->Боб, но и может фальсифицировать работу открытого канала Боб->Алиса, то вся схема рушится (Man-In-The-Middle).

Описанный алгоритм носит название протокола квантового распределения ключа BB84. В нём информация кодируется в ортогональные квантовые состояния. Помимо использования ортогональных состояний для кодирования информации, можно использовать и не ортогональные состояния (например, протокол B92). Недостаток этого подхода уже в самом его принципе. Так, при данном алгоритме Еве не обязательно даже измерять квантовую последовательность. Она перехватывает последовательность от Алисы и заменяет её своей. Затем подслушивает разговор Алисы и Боба и определяет, какие именно кванты будут использованы для ключа; так Еве становится известен ключ полностью, при этом Алиса и Боб пока ни о чём не догадываются. Боб посылает Алисе зашифрованное сообщение, которое Ева тут же дешифрует. Алиса, получив сообщение, не поддающееся дешифровке (ключ Алисы не совпадает с ключом шифрования, так как Боб использовал ключ Евы), понимает, что сообщение перехвачено, но к этому времени уже поздно, так как Ева знает его содержание. Для любых тестов и проверок необходимо повторное установление связи, а значит все начинается сначала. Таким образом решаются сразу две задачи: перехват сообщений и нарушение связи противника. Отсюда можно сделать вывод, что такой способ связи хорош исключительно только для дезинформации, но тогда он не рентабелен и смысл его использования падает до нуля, так как Ева знает, что он только для дезинформации.

Алгоритм Беннета

В 1991 году Ч. Беннетом был предложен следующий алгоритм для выявления искажений в переданных по квантовому каналу данных: Отправитель и получатель заранее оговаривают произвольность расположения битов в строках, что определяет произвольный характер положения ошибок. Все строки разбиваются на блоки длины k. Где k выбирается так, чтобы минимизировать вероятность ошибки. Отправитель и получатель определят четность каждого блока, и сообщают её друг другу по открытому каналу связи. После этого в каждом блоке удаляют последний бит. Если четность двух каких-либо блоков оказалось различной, отправитель и получатель производят итерационный поиск неверных битов и исправляют их. Затем весь алгоритм выполняется заново для другого (большего) значения k. Это делается для того, чтобы исключить ранее незамеченные кратные ошибки. Чтобы определить все ли ошибки были обнаружены, проводится псевдослучайная проверка. Отправитель и получатель открыто сообщают о произвольной перестановке половины бит в строках, а затем вновь открыто сравнивают четности (Если строки различны, четности обязаны не совпадать с вероятностью 0,5). Если чётности отличаются, отправитель и получатель производят двоичный поиск и удаляют неверные биты. Если различий не наблюдается, после n итераций отправитель и получатель будут иметь одинаковые строки с вероятностью ошибки 2-n.

Физическая реализация системы

Рассмотрим схему физической реализации квантовой криптографии. Слева находится отправитель, справа -- получатель. Для того, чтобы передатчик имел возможность импульсно варьировать поляризацию квантового потока, а приёмник мог анализировать импульсы поляризации, используются ячейки Покеля. Передатчиком формируется одно из четырёх возможных состояний поляризации. На ячейки, данные поступают в виде управляющих сигналов. Для организации канала связи обычно используется волокно, а в качестве источника света берут лазер.

На стороне получателя после ячейки Покеля расположена кальцитовая призма, которая должна расщеплять пучок на две составляющие, улавливаемые двумя фотодетекторами (ФЭУ), а те в свою очередь измеряют ортогональные составляющие поляризации. Вначале необходимо решить проблему интенсивности передаваемых импульсов квантов, возникающую при их формировании. Если в импульсе содержится 1000 квантов, существует вероятность того, что 100 из них будут отведены крипто аналитиком на свой приёмник. После чего, проводя анализ открытых переговоров, он сможет получить все необходимые ему данные. Из этого следует, что идеален вариант, когда в импульсе количество квантов стремится к одному. Тогда любая попытка перехватить часть квантов неизбежно изменит состояние всей системы и соответственно спровоцирует увеличение числа ошибок у получателя. В этой ситуации следует не рассматривать принятые данные, а заново повторить передачу. Однако, при попытках сделать канал более надёжным, чувствительность приёмника повышается до максимума, и перед специалистами встает проблема «темнового» шума. Это означает, что получатель принимает сигнал, который не был отправлен адресантом. Чтобы передача данных была надёжной, логические нули и единицы, из которых состоит двоичное представление передаваемого сообщения, представляются в виде не одного, а последовательности состояний, что позволяет исправлять одинарные и даже кратные ошибки.

Для дальнейшего увеличения отказоустойчивости квантовой криптосистемы используется эффект EPR (Einstein-Podolsky-Rosen), возникающий в том случае, если сферическим атомом были излучены в противоположных направлениях два фотона. Начальная поляризация фотонов не определена, но в силу симметрии их поляризации всегда противоположны. Это определяет тот факт, что поляризацию фотонов можно узнать только после измерения. Крипто схема на основе эффекта ERP, гарантирующая безопасность пересылки, была предложена Экертом. Отправителем генерируется несколько фотонных пар, после чего один фотон из каждой пары он откладывает себе, а второй пересылает адресату. Тогда если эффективность регистрации около единицы и на руках у отправителя фотон с поляризацией «1», то у получателя будет фотон с поляризацией «0» и наоборот. То есть легальные пользователи всегда имеют возможность получить одинаковые псевдослучайный последовательности. Но на практике оказывается, что эффективность регистрации и измерения поляризации фотона очень мала. квантовый физика криптография фотон

Практические реализации системы 1989 г. Беннет и Брассар в Исследовательском центре IBM построили первую работающую квантово-криптографическую систему. Она состояла из квантового канала, содержащего передатчик Алисы на одном конце и приёмник Боба на другом, размещённые на оптической скамье длиной около метра в светонепроницаемом полутораметровом кожухе размером 0,5Ч0,5 м. Собственно квантовый канал представлял собой свободный воздушный канал длиной около 32 см. Макет управлялся от персонального компьютера, который содержал программное представление пользователей Алисы и Боба, а также злоумышленника.

1989 г. передача сообщения посредством потока фотонов через воздушную среду на расстояние 32 см с компьютера на компьютер завершилась успешно. Основная проблема при увеличении расстояния между приёмником и передатчиком -- сохранение поляризации фотонов. На этом основана достоверность способа.

Созданная при участии Женевского университета компания GAP-Optique под руководством Николаса Гисина совмещает теоретические исследования с практической деятельностью. Первым результатом этих исследований стала реализация квантового канала связи с помощью оптоволоконного кабеля длинной 23 км, проложенного по дну озера и соединяющего Женеву и Нион. Тогда был сгенерирован секретный ключ, уровень ошибок которого не превышал 1,4 %. Но все-таки огромным недостатком этой схемы была чрезвычайно малая скорость передачи информации. Позже специалистам этой фирмы удалось передать ключ на расстояние 67 км из Женевы в Лозанну с помощью почти промышленного образца аппаратуры. Но и этот рекорд был побит корпорацией Mitsubishi Electric, передавшей квантовый ключ на расстояние 87 км, правда, на скорости в один байт в секунду.

Активные исследования в области квантовой криптографии ведут IBM, GAP-Optique, Mitsubishi, Toshiba, Национальная лаборатория в Лос-Аламосе, Калифорнийский технологический институт, молодая компания MagiQ и холдинг QinetiQ, поддерживаемый британским министерством обороны. В частности, в национальной лаборатории Лос Аламоса была разработана и начала широко эксплуатироваться опытная линия связи, длиной около 48 километров. Где на основе принципов квантовой криптографии происходит распределение ключей, и скорость распределения может достигать несколько десятков кбит/с.

В 2001 г. доктор Эндрю Шилдс и его коллеги из TREL и Кембриджского университета создали диод, способный испускать единичные фотоны. В основе нового светодиода лежит «квантовая точка» -- миниатюрный кусочек полупроводникового материала диаметром 15 нм и толщиной 5 нм, который может при подаче на него тока захватывать лишь по одной паре электронов и дырок. Это дало возможность передавать поляризованные фотоны на большее расстояние. В ходе экспериментальной демонстрации удалось передать зашифрованные данные со скоростью 75 Кбит/с -- при том, что более половины фотонов терялось.

В Оксфордском университете ставятся задачи повышения скорости передачи данных. Создаются квантово-криптографические схемы, в которых используются квантовые усилители. Их применение способствует преодолению ограничения скорости в квантовом канале и, как следствие, расширению области практического применения подобных систем. В университете Дж. Хопкинса (США) на квантовом канале длиной 1 км построена вычислительная сеть, в которой каждые 10 минут производится автоматическая подстройка.

В результате этого, уровень ошибки снижен до 0,5 % при скорости связи 5 кбит/с.

Исследованиями в области квантовой криптографии занимается молодая американская компания MagiqTechnologies из Нью-Йорка, выпустившая прототип коммерческой квантовой крипто технологии собственной разработки. Основной продукт Magiq -- средство для распределения ключей (quantum key distribution, QKD), которое названо Navajo (По имени индейцев Навахо, язык которых во время Второй мировой войны американцы использовали для передачи секретных сообщений, поскольку за пределами США его никто не знал). Navajo способен в реальном времени генерировать и распространять ключи средствами квантовых технологий и предназначен для обеспечения защиты от внутренних и внешних злоумышленников. В октябре 2007 года на выборах в Швейцарии были повсеместно использованы квантовые сети, начиная избирательными участками и заканчивая дата центром ЦИК. Была использована техника, которую ещё в середине 90-х в Университете Женевы разработал профессор Николас Гисин. Также одним из участников создания такой системы была компания Id Quantique. В 2011 году в Токио прошла демонстрация проекта «Tokyo QKD Network», в ходе которого разрабатывается квантовое шифрование телекоммуникационных сетей. Была проведена пробная телеконференция на расстоянии в 45 км. Связь в системе идёт по обычным оптоволоконным линиям. В будущем предполагается применение для мобильной связи.

Научный руководитель: доцент Головкина Мария Вилевна, ПГУТИ, г. Самара

Литература

1. Квантовая Запутанность

2. Квантовая криптография

3. Перспективы квантовой криптографии, Андрей Богданов, Рурский университет Бохума, Германия.

Размещено на Allbest.ru

...

Подобные документы

  • Предпосылки возникновения квантовой теории. Квантовая механика (волновая механика, матричная механика) как раздел теоретической физики, описывающий квантовые законы движения. Современная интерпретация квантовой теории, взаимосвязь с классической физикой.

    реферат [44,0 K], добавлен 17.02.2010

  • Развитие квантовой физики: гипотеза квантов, теория атома, природа света, концепция целостности. Создание нерелятивистской квантовой механики, принципы ее интерпретации. Парадокс Эйнштейна-Подольского-Розена, принцип неопределенности Гейзенберга.

    реферат [94,0 K], добавлен 14.02.2009

  • "Планетарная модель" атома Бора в основе квантовой механики, ее основные принципы, идеи и значение. Попытки объяснить корпускулярные и волновые свойства вещества в квантовой (волновой) механике. Анализ волновой функции и ее вероятностного смысла.

    реферат [90,7 K], добавлен 21.11.2011

  • Структура изучения квантовой оптики в школе. Особенности методики. Изучение вопроса о световых квантах. Внешний фотоэффект. Эффект Комптона. Фотоны. Двойственность свойств света. Применение фотоэффекта. Роль и значение раздела "Квантовая оптика".

    курсовая работа [61,0 K], добавлен 05.06.2008

  • Принципы неклассической физики. Современные представления о материи, пространстве и времени. Основные идеи и принципы квантовой физики. Современные представления об элементарных частицах. Структура микромира. Фундаментальные физические взаимодействия.

    реферат [52,2 K], добавлен 30.10.2007

  • Экспериментальные основы и роль М. Планка в возникновении квантовой теории твердого тела. Основные закономерности фотоэффекта. Теория волновой механики, вклад в развитие квантово-механической теории и квантовой статистики А. Гейзенберга, Э. Шредингера.

    доклад [473,4 K], добавлен 24.09.2019

  • История развития квантовой теории. Квантово-полевая картина мира. Основные принципы квантово-механического описания. Принцип наблюдаемости, наглядность квантово-механических явлений. Соотношение неопределенностей. Принцип дополнительности Н. Бора.

    реферат [654,4 K], добавлен 22.06.2013

  • Макс Планк как основоположник квантовой физики. Исследование фотоэффекта Столетовым. Максимальная кинетическая энергия фотоэлектронов. Определение массы фотона. Применение явления фотоэффекта в автоматизации станков на заводах, солнечных батареях.

    презентация [159,8 K], добавлен 02.04.2012

  • Общая характеристика компьютерных моделей в школьном курсе физики, их виды, функции и назначение. Описание методики работы с компьютерным курсом "Открытая физика 1.0" в индивидуальном режиме. План-конспект урока "Фотоэффект. Применение фотоэффекта".

    курсовая работа [1,2 M], добавлен 24.12.2013

  • Начало развития квантовой механики. Формирование квантовых представлений. Проблемы интерпретации квантовой теории. Парадокс Эйнштейна-Подольского-Розена и его интерпретации. Неравенство Белла и открытие А.Аспекта. Физический вакуум и его свойства.

    реферат [34,8 K], добавлен 06.01.2009

  • Изложение физических основ классической механики, элементы теории относительности. Основы молекулярной физики и термодинамики. Электростатика и электромагнетизм, теория колебаний и волн, основы квантовой физики, физики атомного ядра, элементарных частиц.

    учебное пособие [7,9 M], добавлен 03.04.2010

  • Законы квантовой механики, сущность и границы её применимости. Эффект Комптона и свойства света в период формирования новой физики. Волновая теория Бройля и ряд его крупнейших технических достижений. Теория теплового излучения и электромагнетизм.

    реферат [36,5 K], добавлен 26.02.2012

  • Особенности становления квантовой механики и ее предмета. Отличия статистических закономерностей в природе от динамических, диалектическая связь со случайностью и абсолютная противоположность случайного. Открытие квантового генератора, создание лазеров.

    реферат [25,0 K], добавлен 03.03.2010

  • Квантовая теория в ряду других современных физических теорий. Споры и дискуссии о реальности квантово-механических состояний. Необычайность свойств квантовой механики. Основные трактовки и интерпретации квантово-механической теории различными учеными.

    реферат [41,8 K], добавлен 28.03.2011

  • Открытие сложного строения атома - важнейший этап становления современной физики. В процессе создания количественной теории строения атома, объясняющей атомные системы, сформированы представления о свойствах микрочастиц, описанные квантовой механикой.

    реферат [146,3 K], добавлен 05.01.2009

  • Особенности определения энергии и волновых функций 3-го и 4-го стационарных состояний электрона в потенциальной яме. Порядок вычисления вероятности обнаружения электрона в каждом из секторов ямы. Понятие и сущность оператора Гамильтона в квантовой теории.

    курсовая работа [262,7 K], добавлен 03.06.2010

  • Уравнение плоской бегущей волны материи. Операторы импульса и энергии. Общая схема вычислений физических наблюдаемых в квантовой механике. Понятие о конфигурационном пространстве системы частиц. Уравнение Шрёдингера для простейших стационарных движений.

    реферат [56,2 K], добавлен 28.01.2009

  • Теория атомно-молекулярного строения мира. Объекты микромира: электрон, фундаментальные частицы, фермионы, лептоны, адроны, атомом, ядром атома и молекула. Разработка квантовой механики и явлений микромира. Концепции микромира и квантовая механика.

    реферат [35,9 K], добавлен 26.07.2010

  • Фундаментальные понятия квантовой механики: гипотеза де Бройля, принцип неопределённостей Гейзенберга. Квантовое состояние, сцепленность, волновая функция. Эксперимент над квантовомеханической системой: движение микрочастиц, принципы проведения измерений.

    реферат [99,1 K], добавлен 26.09.2011

  • Сущность геофизического электроразведочного метода вызванной поляризации. Аппаратура и схемы измерительных установок. Методика проведения полевых работ. Определение значений кажущихся поляризуемости и сопротивления. Интерпретация результатов измерения.

    курсовая работа [2,4 M], добавлен 19.06.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.