Перспективы развития сверхпроводимости
Открытие высокотемпературных сверхпроводников, теряющих сопротивление при температуре жидкого азота. Перспектива использования сверхпроводящих материалов. Возможности решения проблемы запаса электроэнергии впрок с выдачей ее при пиковых нагрузках.
Рубрика | Физика и энергетика |
Вид | статья |
Язык | русский |
Дата добавления | 22.04.2019 |
Размер файла | 209,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Поволжский государственный университет телекоммуникаций и информатики
ПЕРСПЕКТИВЫ РАЗВИТИЯ СВЕРХПРОВОДИМОСТИ
Агаповичева А.С., Матвеев И.В.
Введение
При охлаждении целого ряда материалов до очень низких температур - температуры кипения жидкого гелия, т.е. минус 269 градусов по Цельсию - сопротивление электрическому току становится равным нулю. Это и есть сверхпроводимость. В 1913 г. Камерлинг-Оннес обнаружил разрушение сверхпроводимости сильными магнитными полями и токами и только в середине 1960-х гг., когда советские ученые Лев Ландау, Алексей Абрикосов и Виталий Гинзбург разработали теорию сверхпроводимости, появилась надежда, что сверхпроводящие материалы найдут применение в технике, поскольку они смогут сохранить токонесущую способность в высоких магнитных полях. Их назвали сверхпроводниками второго рода. В конце 1980-х гг. были открыты высокотемпературные сверхпроводники, которые теряют сопротивление уже при температуре жидкого азота - минус 196 градусов по Цельсию.
Перспектива использования сверхпроводящих материалов
Наиболее важными областями применения сверхпроводников является создание сильных магнитных полей, получение и передача электроэнергии. Соленоид из сверхпроводящего материала может работать без подвода энергии извне сколь угодно долго, поскольку однажды возбужденный в нем ток не затухает. Поддержание соленоида в сверхпроводящем состоянии не требует больших энергетических затрат. При нулевом сопротивлении легко решается проблема теплоотвода. Кроме того, сверхпроводящие магниты намного компактнее обычных. Каждый килограмм массы сверхпроводящего магнита создает магнитное поле, эквивалентное по силе полю 20-тонного электромагнита с железным сердечником.
Сверхпроводящие магниты используют для исследований в области физики высоких энергий, создания мощных магнитных кольцевых ускорителей частиц и систем управления движением пучков частиц на выходе из ускорителя.
Проблемы термоядерной энергетики не могут быть решены без применения мощных сверхпроводящих магнитов. Для осуществления управляемого термоядерного синтеза ядер гелия из ядер дейтерия и трития необходимо удерживать в реакционном пространстве горячую тритий-дейтериевую плазму, нагретую до 108 - 109°С. Только сверхпроводящие магниты способны создать поля такой мощности.
В ближайшем будущем большой вклад в решение энергетической проблемы возможен за счет повышения термодинамического коэффициента полезного действия тепловых электростанций с использованием МГД-генераторов, принципиальная схема которых показана на рисунке 1.
Рисунок 1 Принципиальная схема МГД-генератора: 1 - потребитель; 2 - соленоид; 3 - электрод; 4 - поток плазмы
Ионизированные горячие продукты сгорания топлива в виде низкотем-пературной плазмы с температурой около 2500°С пропускают с большой скоростью через сильное магнитное поле. Образовавшуюся электроэнергию снимают электродами, расположенными вдоль плазменного канала. Таким образом, с помощью МГД-генератора осуществляется прямое преобразование тепловой энергии в электрическую.
В перспективе передачу энергии большой мощности целесообразно осуществлять с помощью сверхпроводящих кабельных подземных линий. Принципиально конструкции сверхпроводящих кабелей постоянного и переменного тока не отличаются друг от друга (рисунок 2).
Рисунок 2 Схема сечения сверхпроводящих кабелей трехфазного тока с коаксиальными парами проводников (а) и постоянного тока с концентрически расположенными проводниками: 1 - вакуумированное пространство; 2 - каналы для жидкого азота; 3 - термостатирующая изоляция; 4 - каналы для жидкого гелия; 5 - сверхпроводники; 6 - электрическая изоляция
Сверхпроводящие кабели имеют поперечное сечение в виде ряда мно-гослойных труб с вакуумной изоляцией между ними. Внутренние трубы по-крыты слоем сверхпроводящего материала толщиной около 0,3 мм и заполнены жидким гелием. В качестве сверхпроводника может быть использован сплав ниобия с титаном или цирконием. Кабели подобной конструкции прошли производственные испытания в России, США и Японии. сверхпроводник электроэнергия нагрузка сопротивление
Сверхпроводимость позволяет также решить проблему запаса электро-энергии впрок с выдачей ее при пиковых нагрузках. Индуктивный накопитель энергии представляет собой тороидальный криостат диаметром несколько метров, по виткам обмотки которого практически без потерь циркулирует ток.
Обычный железнодорожный поезд, движущийся по стальным рельсам, имеет принципиальный предел скорости около 350 км/ч. При его превышении нарушается надежное сцепление колес с рельсами, резко возрастает сила аэродинамического сопротивления, появляется «токосъемный барьер», препятствующий нормальному функционированию системы подвески контактного провода вследствие слишком больших вибраций.
Использование эффекта сверхпроводимости позволяет создать поезд без колес с магнитной подвеской и тягой - поезд на магнитной подушке (рисунок 3).
Рисунок 3 Эскиз поезда на магнитной подушке
В днище вагонов поезда установлены сверхпроводящие электромагниты 4, охлаждаемые жидким гелием 5. При движении поезда в алюминиевых полосах-рельсах 1 наводятся токи, в свою очередь создающие магнитные поля. Согласно правилу Ленца, магнитное поле индуцированного тока противоположно по направлению внешнему магнитному полю, и между магнитом и алюминиевой полосой возникают силы отталкивания, приподнимающие вагон над эстакадой. Применение сверхпроводящих магнитов позволяет поднять вагон над дорогой на высоту более 100 мм.
Тяга создается с помощью линейного бесконтактного электродвигателя. Линейный двигатель 3 можно представить как модификацию обычного вращающегося двигателя, который разрезали вдоль образующей, развернули и уложили на плоскости. На полотно дороги между алюминиевыми полосами проложен третий активный рельс, который играет роль статора, а сверхпроводящая катушка вагона - ротора. Вдоль пути движется тянущая поезд магнитная волна, скорость которой пропорциональна частоте переменного тока в рельсе.
Колеса в поезде на магнитной подушке используются, как в самолете, только для разгона и торможения. По аналогии такие поезда называют магнитопланами.
Применение сверхпроводников в современном мире.
Настоящее.
Спектр применений сверхпроводников удобно разделить на:
• различные материалы: пленочные проводники, сверхпроводящие магниты и пр.;
• микротехника: микроволновые устройства, сверхчувствительные системы обнаружения магнитных полей, цифровая электроника, искусственные биологические системы;
• макротехника: силовые кабели, электрические системы и сети, генераторы и двигатели.
В силовых применениях сверхпроводники позволяют снизить энергопотери и сократить массогабаритные показатели оборудования. Высокая плотность тока в сверхпроводниках позволяет уменьшать размеры оборудования, а также создавать магнитные поля высокой интенсивности, недостижимые обычной аппаратурой. Ограничивающим фактором является необходимость поддержания проводника при низкой температуре, что само по себе требует энергозатрат, поэтому наиболее актуальны применения в устройствах большой мощности. В этом случае затраты на криообеспечение пренебрежимо малы. В.Л.Гинзбург и У. Литтл. показали, что одной из самых важных проблем в области нанотехнологии является создание комнатнотемпературных сверхпроводников (КТСП). Нанотехнология КТСП позволяет конструировать искусственные слоистые сверхпроводниковые наноструктуры, нанося атомные слои не только из тех материалов, у которых параметры кристаллической решетки близки друг к другу (как требуется для полупроводниковых структур). При нанотехнологии можно использовать гораздо большее разнообразие проводников и диэлектриков, нанося их монослои с атомной точностью для создания искусственных электронного и фононного спектров, необходимых для КТСП. Именно это позволяет сделать исследования и производство сверхпроводящих материалов неким “полигоном” для отработки нанотехнологических методов для сильнокоррелированных структур. Поэтому, создание КТСП - это, в значительной мере, нанотехнологическая проблема и, на мой взгляд, одна из важнейших.
В настоящее время сверхпроводник, работающий при комнатных температурах, может быть изготовлен как в объемном, так и в пленочном виде.
Будущее.
Через 10-20 лет сверхпроводимость будет широко использоваться в энергетике, промышленности, на транспорте и гораздо шире в медицине и электронике. Внедрение СП-технологий приведет как к простой замене традиционного оборудования на более эффективное сверхпроводящее, так и к изменениям структурного характера и к появлению совершенно новых технологических нововведений.
Одним из самых перспективных направлений является комнатная сверхпроводимость. Оно будет усиленно развиваться, т.к. имеет огромное значение.
В электронике сверхпроводимость найдет широкое применение в компьютерных технологиях. Потенциально наиболее выгодное промышленное применение сверхпроводимости связано с генерированием, передачей и эффективным использованием электроэнергии. Еще одно перспективное применение сверхпроводников - в генераторах тока (от мощных электростанций до обычных ветряных установок) и электродвигателях. С развитием СП-технологий сверхпроводящие двигатели найдут широкое применение также и в самолетах и на автомобильном транспорте.
Строительство сверхпроводящей железной дороги запланировано в Японии. За счет сил взаимного отталкивания между движущимся магнитом и током, индуцируемым в направляющем проводнике, поезд будет двигаться плавно, без шума и трения и будет способен развивать очень большую скорость. Ожидается, что дорога будет введена в эксплуатацию к 2020 г.
Возможность ускорения макроскопических объектов электромагнитным полем найдет свое применение также на аэродромах и космодромах, где СП-магниты будут обеспечивать взлет/посадку воздушным судам и космическим кораблям. Рассматриваются также возможности применения сверхпроводящих магнитов для аккумулирования электроэнергии в магнитной гидродинамике и для производства термоядерной энергии.
Список литературы и интернет-ресурсов
1. Журнал «В мире науки», №1 2013 г., стр. 24.
2. http://uas.su/books/newmaterial/323/razdel323.php.
3. http://www.schoolnano.ru/node/5337.
Размещено на Allbest.ru
...Подобные документы
Открытие сверхпроводников, эффект Мейснера, высокотемпературная сверхпроводимость, сверхпроводящий бум. Синтез высокотемпературных сверхпроводников. Применение сверхпроводящих материалов. Диэлектрики, полупроводники, проводники и сверхпроводники.
курсовая работа [851,5 K], добавлен 04.06.2016История развития сверхпроводников. Создание генераторов переменного тока и магнитно-резонансного томографа на основе использования сверхпроводящего магнита. Применение высокотемпературных сверхпроводников. Внедрение ВТСП в вычислительную технику.
презентация [1,0 M], добавлен 22.01.2016Великие физики, которые прославились, занимаясь теорией и практикой сверхпроводимости. Изучение свойств вещества при низких температурах. Реакция сверхпроводников на примеси. Физическая природа сверхпроводимости и перспективы ее практического применения.
презентация [2,7 M], добавлен 11.04.2015Открытие особенностей изменения сопротивления ртути в 1911 году. Сущность явления сверхпроводимости, характерного для многих проводников. Наиболее интересные возможные промышленного применения сверхпроводимости. Эксперимент с "магометовым гробом".
презентация [471,0 K], добавлен 22.11.2010Свойства сверхпроводящих материалов. Определение электрического сопротивления и магнитной проницаемости немагнитных зазоров. Падение напряженности магнитного поля по участкам. Условия для работы устройства. Применение эффекта Мейснера и его изобретение.
научная работа [254,2 K], добавлен 20.04.2010Понятие и природа сверхпроводимости, ее практическое применение. Характеристика свойств сверхпроводников 1-го и 2-го рода. Сущность "теории Бардина-Купера-Шриффера" (БКШ), объясняющей явление сверхпроводимости металлов при сверхнизких температурах.
реферат [42,2 K], добавлен 01.12.2010История использования и современные методы генерации электроэнергии из энергии ветра. Перспективы развития ветроэнергетики в мире, экономические и экологические аспекты, себестоимость электроэнергии. Проект "Джунгарские ворота" в Казахстане, его цель.
реферат [835,1 K], добавлен 01.03.2011Открытие явления сверхпроводимости. Первые экспериментальные факты. Эффект Мейснера, изотопический эффект. Теория сверхпроводимости. Щель в энергетическом спектре. Образование электронных пар. Квантование магнитного потока (макроскопический эффект).
дипломная работа [2,7 M], добавлен 24.08.2010Понятие сверхпроводников и их отличия. Основные моменты их окрытия и исследования. Особенности поведения сопротивления в зависимости от температуры. Определение критической температуры и магнитного поля. Классификация и примеры сверхпроводников.
презентация [0 b], добавлен 12.03.2013Обращение в нуль электрического сопротивления постоянному току и выталкивание магнитного поля из объема. Изготовление сверхпроводящего материала. Промежуточное состояние при разрушении сверхпроводимости током. Сверхпроводники первого и второго рода.
курсовая работа [3,6 M], добавлен 24.07.2010Анализ современных исследований неоднородных сверхпроводящих мезоструктур. Сущность и особенности решения проблемы влияния внешних границ на критическую температуру структур: сверхпроводник - нормальный металл (S/N) и сверхпроводник – ферромагнетик (S/F).
реферат [529,6 K], добавлен 26.06.2010Методические указания и задания по дисциплине "Сопротивление материалов" для студентов-заочников по темам: растяжение и сжатие стержня, сдвиг, кручение, теория напряженного состояния и теория прочности, изгиб прямых стержней, сложное сопротивление.
методичка [1,4 M], добавлен 22.01.2012Методы получения высокотемпературных сверхпроводников. Псевдощель и фазовая диаграмма. Аномалии физических свойств, связываемые в настоящее время с образованием псевдощелевого состояния. Экспериментальная установка для измерения электросопротивления.
курсовая работа [1,1 M], добавлен 14.03.2012Роль кристаллохимических параметров высокотемпературных сверхпроводников в повышении температуры перехода в сверхпроводящее состояние. Взаимосвязь между кристаллохимическими параметрами и сверхпроводящим состоянием для таллиевой керамики, влияние фтора.
реферат [1,5 M], добавлен 25.06.2010Сверхпроводники. У начала пути. Сверхпроводники первого второго рода. Абрикосовские вихри. Свойства сверхпроводников. Микроскопическая теория сверхпроводимости Бардина - Купера - Шриффера (БКШ) и Боголюбова. Теория Гинзбурга - Ландау.
курсовая работа [60,1 K], добавлен 24.04.2003Традиционные методы производства электроэнергии. Электростанции, использующие энергию течений. Приливные, волновые, геотермальные и солнечные электростанции. Способы получения электроэнергии. Проблемы развития альтернативных источников электроэнергии.
презентация [2,5 M], добавлен 21.04.2015История открытия сверхпроводников, их классификация. Фазовый переход в сверхпроводящее состояние. Научные теории, описывающие это явление и опыты, его демонстрирующие. Эффект Джозефсона. Применение сверхпроводимости в ускорителях, медицине, на транспорте.
курсовая работа [77,2 K], добавлен 04.04.2014Этапы развития гидроэнергетики Украины. Важность решений проблемы покрытия пиковых мощностей специальными способами. Анализ эффективности малой гидроэнергетики. Значение работы гидроакумулирующих станций, перспективы их применения. Принцип работы плотин.
реферат [322,9 K], добавлен 13.06.2009Методическое указание по вопросам расчётов на прочность при различных нагрузках и видах деформации. Определение напряжения при растяжении (сжатии), определение деформации. Расчеты на прочность при изгибе, кручении. Расчетно-графические работы, задачи.
контрольная работа [2,8 M], добавлен 15.03.2010Понятие мощности как физической величины, ее виды. Соотношения между единицами мощности. Основное содержание и методы сопротивления материалов. Физические свойства машиностроительных материалов: чугуна, быстрорежущей стали и магниевых сплавов.
контрольная работа [29,1 K], добавлен 21.12.2010