Integration of Euler equations for 2D motion of compressible medium flow

Euler equations for 2D unsteady motion of a compressible medium when two components of the velocity vector, density and pressure, act as unknowns. Relations for simple algebraic combinations of unknowns, convenient for solving hydromechanical problems.

Рубрика Физика и энергетика
Вид статья
Язык английский
Дата добавления 29.04.2019
Размер файла 962,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1, 2 Admiral Makarov state university of maritime and inland shipping, Saint-Petersburg, Russia

* Corresponding author (alex.koptev[at]mail.ru)

Integration of Euler equations for 2D motion of compressible medium flow

Koptev A.V.1*, Voytko I.V.2

Abstract

euler density pressure algebraic

The Euler equations for 2D unsteady motion of compressible medium flow are under consideration. Two components of velocity vector, density and pressure supposed as the main unknowns. We propose the procedure of integration which based on introduction of new variables and general statements of theory of partial differential equations. As the result we obtain ratios for simple algebraic combinations of main unknowns which convenient for solution of fluid mechanics problems and for simulation of real fluid and gaseous flow.

Keywords: motion, ideal compressible medium, Euler equations, density, pressure, stream pseudo function, integral.

Аннотация

Коптев А.В.1, *, Войтко И.В.2 Интегрирование уравнений Эйлера для 2D движения сжимаемой среды

Рассматриваются уравнения Эйлера для 2D неустановившегося движения сжимаемой среды, когда в качестве основных неизвестных выступают две компоненты вектора скорости, плотность и давление. Предложена процедура интегрирования, основанная на введении новых неизвестных и на общих положениях теории дифференциальных уравнений. В результате получены соотношения для простых алгебраических комбинаций основных неизвестных, удобные для решения гидромеханических задач и моделирования реальных потоков.

Ключевые слова: движение, идеальная сжимаемая среда, уравнения Эйлера, плотность, давление, псевдо-функция тока, интеграл.

Introduction

The Euler equations are one of the basic relations of classical hydromechanics. Equations of that type describe the motion of fluid and gaseous ideal media. Absence of internal friction is the main characteristic of such a media. Euler equations are of interest from a mathematical point of view as one of the types of nonlinear partial differential equations. These equations are of a great interest as well from practical point of view, as they are the basis for calculation of structures in energy engineering, shipbuilding, aircraft engineering, hydraulic engineering and other areas [1-4].

For the case of 2D isothermal motion of a compressible medium in the absence of external mass forces the Euler equations can be represented as

Two components of the velocity vector u, v, density с and pressure p represents the main unknowns. Each of these values is a function of Cartesian coordinates x, y and time t. The main problem is to find these functions.

For today there are no general approaches to the solution of a problem at hand [1],[5] and studies on this direction are very relevant. In the paper under consideration an attempt is made to integrate equations (1-3) based on the introduction of new unknowns and general provisions of the theory of partial differential equations [6]. A similar method was previously used by author for the purpose to integrate the Navier - Stokes equations [7-8].

The canonical form of equations

Despite the external differences, each of the equations (1-3) can be represented on a divergent form that is, as a linear combination of the first derivatives over x, y and t

Where are some combinations of main unknowns u, v, с, p.

Equation (3) already has the form (4) and does not need to be transformed. For this equation

Equations (1) and (2) can also be reduced to form (4) as a result of the following transformations. Consider the first nonlinear terms in the left-hand parts (1-2) and transform them using equation (3) as

Using the representation data for and transferring all the terms to the left, we come to the equations of the form (4)

From the latter it follows that

Thus, each of the equations (1-3) has a canonical representation (4).

Integration and further transformation

Each of the equations of the form (4) allows integration in the general form.

Indeed, the left part (4) represents the divergence of vector on 3D space-time coordinate system . When using the well-known formula of vector analysis

we conclude that the general solution of (4) is determined by the coordinates of vector , where is an arbitrary vector of space. Last statement is equally true when is a vector of space when, as in our case, there is an arbitrary vector from space .

Specify the coordinates of vector and the result is equalities as the next

Where are arbitrary doubly differentiable functions of x, y, t, representing the coordinate functions of vector .

For our case i=1, 2, 3 and therefore we have three triples of expressions similar to (8). These expressions are defined by nine double-differentiable functions of x, y, t.

For these functions, we introduce sequential numbering and notation , where k=1, 2,…,9. These functions are called as stream pseudo-functions of the first order with number k. First index in its designation corresponds to the number of the stream pseudo-function, and the second to its order. At this stage the order is equal to 1. Taking into account the previously obtained expressions for on the basis of (8) we come to the relations as the following

The nine equations of system (9-11) represent the primary expressions for the integral of the Euler equations, since the combination of their first derivatives leads to equations (5-6), (3). Whereas the last ones are equivalent to original Euler equations.

We set the task to simplify the equations (9-11) as much as possible and give them the most convenient form for practical use. We suggest the transformations as the following. Add up the first of (9) and the second of (10) and multiply the result on . We obtain a convenient expression for pressure as

Calculating the differences of the same equations, we obtain

So, the unknown p is excluded according to (12) and instead of two equations, which contain p, we use equations (12) and (13).

We also pay attention to the following regularity characteristic of some equations of the system (9-11). Three pairs of equations with the same left-hand parts are distinguished. These equations are the second of (9) and the first of (10), the third of (9) and the first of (11), and the third of (10) and the second of (11). By calculating the soil differences for each pair, we arrive at three new equations that can be represented in canonical form (4)

For each of equations (14-16), we find the solution in general form similar to the way it was done earlier for equations (5-6) and (3). In this case, three triples of new functions are introduced. These functions are called as stream pseudo-functions of the second order and designated as where j=1, 2,…,9. Note that second lower index in their designation is equal 2.

As a result, we obtain new equations as the next

Of the nine equations (17-19) we define by first order derivatives of . Substituting these expressions in equations of determining system we obtain significant simplifications.

Equations (14-16) are executed identically, and it means that the number of equations of the determining system has been reduced by three. So in defining system there are only six equations. These are equations (12), (13), the first and second of (9), the third of (10) and the third of (11). These equations are simplified and take the form of

Symbol Д in the first equation (20) denotes 2D Laplace operator in Cartesian coordinates

then how denotes the modulus of the velocity vector .

Analysis of equations (20) leads to the conclusion that the right-hand sides are determined only by the following six stream pseudo-functions of the second order and their simple combinations:

Equations (20) can be given a more concise form, if you enter the notation of the formulas

Taking into account these designations, the equations of the determining system take the form

Conclusion

Equations (22-27) links main unknowns u, v, с, p and associated ones . The last appeared as a result of integration of the original equations. The order of derivatives of main unknowns in equations (22-27) is one less than their order in the original equations (1-3). In the original equations (1-3) the order of the derivatives of main unknowns is first then how in (22-27) the derivatives of main unknowns are absent. That is we can assume that the order of derivatives is zero. A direct test can be made that exist a combination of the first derivatives that converts equations (22-27) to (3),(5-6) or to the equivalent Euler equations (1-3).

The equations (22-27) considered together represent the integral of Euler equations (1-3) for 2D unsteady motion of the compressible medium.

The main unknowns in equations (22-27) appear in the form of simple algebraic combinations, and there is an excess of the number of unknowns (ten) over the number of equations (six). The solution of equations (22-27) is a simpler mathematical problem than the solution of the original Euler equations (1-3). Equations (22-27) are more convenient for modeling real flows and more convenient for solving problems of fluid and gas mechanics.

In the particular case of motion of an incompressible medium when , solutions of some fluid mechanics problems presented in the works [9], [10], [11].

Список литературы / References

1. Лойтцянский Л. Г. Механика жидкости и газа / Л. Г. Лойтцянский // М.: Наука. - 1987.

2. Кармак T. Аэродинамика. Избранные главы в их историческом развитии / Т. Кармак // Ижевск: Регулярная и хаотическая динамика. - 2001.

3. Лаврентьев M.А. Проблемы гидродинамики и их математические модели / М. А. Лаврентьев, Б. В. Шабат // М.: Наука. - 1973.

4. Келдыш M. В. Избранные труды / М. В. Келдыш, С. А. Чаплыгин // М.: Наука. - 1976.

5. Charles L. Fefferman. Existence and smoothness of the Navier - Stokes equations / C. L. Fefferman // Preprint, Princeton university, Math. Dept., Princeton, NJ, USA. - 2000. - P. 1-5.

6. Степанов В. В. Курс дифференциальных уравнений / В. В. Степанов // М.: Едиториал УРСС. - 2004.

7. Коптев А. В. Новый подход к исследованию трехмерных уравнений Навье - Стокса / А. В. Коптев // Саранск: Труды Средне-волжского математического общества, Т. 3-4, №1, 2001. - С. 281-287.

8. Koptev A.V. Integrals of Motion of an Incompressible Medium Flow. From Classic to Modern / A. V. Koptev // Handbook in Navier-Stokes Equations: Theory and Applied Analysis. - Nova Sciences Publishers. Inc., NY, USA. - 2017, P. 443-459.

9. Коптев А. В. Теоретическое исследование обтекания цилиндра потоком идеальной несжимаемой жидкости при наличии экранирующего эффекта / А. В. Коптев // Вестник государственного университета морского и речного флота им. адмирала С.О. Макарова. - 2 (36), 2016, С. 127-137.

10. Koptev A. V. D'Alembert Paradox in Near Real Conditions / A. V. Koptev // Journal of Siberian federal university, Math. & Phys. - 2017. - 10(2). - P. 170-180.

11. Коптев А. В. Невязкий аналог задачи Пуазейля / А. В. Коптев // Вестник Российского университета Дружбы Народов. Математика. Информатика. Физика. - Т. 26, №2, 2018, С. 140-154 .

Размещено на Allbest.ru

...

Подобные документы

  • The danger of cavitation and surface elements spillway structures in vertical spillway. Method of calculation capacity for vortex weirs with different geometry swirling device, the hydraulic resistance and changes in specific energy swirling flow.

    статья [170,4 K], добавлен 22.06.2015

  • The Rational Dynamics. The Classification of Shannon Isomorphisms. Problems in Parabolic Dynamics. Fundamental Properties of Hulls. An Application to the Invertibility of Ultra-Continuously Meager Random Variables. Fundamental Properties of Invariant.

    диссертация [1,6 M], добавлен 24.10.2012

  • Назначение и основные особенности программного комплекса Euler 6.0. Практические навыки моделирования законов движения многокомпонентных механических систем на примере трехзвенного манипулятора. Этапы моделирования, формирование динамической модели.

    методичка [1,3 M], добавлен 25.06.2013

  • Investigation of the problem with non-local conditions on the characteristic and on the line of degeneracy . The solution of the modied Cauchy problem with initial data. The solution of singular integral equations. Calculation of the inner integral.

    статья [469,4 K], добавлен 15.06.2015

  • Problem of oscillations arising in an elastic base caused by rotor vibrations of an asynchronous driver near the critical angular velocity. The equations of slow motions. Oscillations in the absence of energy dissipation. Damped stationary oscillations.

    статья [417,2 K], добавлен 25.03.2011

  • Russia Empire in the XX century entered into a complex economic and political environment. Consequences of defeat of autocracy in war with Japan. Reasons of growing revolutionary motion in Grodno. Events of revolution of a 1905 year in Byelorussia.

    реферат [9,4 K], добавлен 14.10.2009

  • History of money and barter. Medium for exchange. The first coins. The first European currencies. Single currencies in history. 20th century currencies in Europe, economic characteristics. Medium of exchange, unit of account, commodity money, liquidity.

    реферат [31,4 K], добавлен 12.10.2011

  • One of determinant national foreign policy priorities is European and Euroatlantic integration. Relationship between Ukraine and NATO was established in 1991, when Ukraine proclaimed sovereignty right after the fall of the USSR and joined the Council.

    статья [32,6 K], добавлен 29.12.2009

  • Construction of zone and flight plan. Modeling of zone in experimental program "Potok". Analysis of main flow direction of modeled airspace. Analysis of modeled airspace "Ivlieva_South" and determination of main flow direction, intensity, density.

    курсовая работа [2,0 M], добавлен 21.11.2014

  • Study of different looks of linguists on an accentual structure in English. Analysis of nature of pressure of the English word as the phonetic phenomenon. Description of rhythmic tendency and functional aspect of types of pressure of the English word.

    курсовая работа [25,7 K], добавлен 05.01.2011

  • Применение глаголов в Present Simple, Past Simple Tense и Future Simple Tense. Образование повествовательных и вопросительных предложений. Формы настоящего времени глагола to do. Редуцированные (сокращённые) формы вспомогательных глаголов с частицей not.

    контрольная работа [16,7 K], добавлен 16.06.2010

  • The central elements of the original Community method. A new "intergovernmentalist" school of integration theory emerged, liberal intergovernmentalism. Constructivism, and reshaping European identities and preferences and integration theory today.

    практическая работа [29,4 K], добавлен 20.03.2010

  • Construction of the general algorithm for integration of the linear usual distinctive equation. Creation of the common decision of the differential equation. An example of the decision of linear systems. Definition of components of certain functions.

    учебное пособие [2,4 M], добавлен 03.10.2011

  • Практические навыки моделирования законов движения многосвязных механических систем на примере трехзвенного манипулятора. Основные этапы моделирования: исходная система; формирование исходных данных, геометрической, динамической и математической модели.

    презентация [535,0 K], добавлен 25.06.2013

  • Stereotypes that influence on economic relations between the European Union countries and Russia. Consequences of influence of stereotypes on economic relations between EU and Russia. Results of first attempts solving problem. General conclusion.

    реферат [19,0 K], добавлен 19.11.2007

  • Practical application of linear interpolation, least squares method, the Lagrange interpolation polynomial and cubic spline interpolation. Determination of the integral in the set boundaries in accordance with the rules of the rectangle and trapezoid.

    курсовая работа [207,7 K], добавлен 21.09.2010

  • This method is based on the growth of the strain of halophilic bacteria Halobacterium halobium on a synthetic medium containing 2H-labeled aromatic ammo acids and fractionation of solubilized protein by methanol, including purification of carotenoids.

    статья [2,0 M], добавлен 23.10.2006

  • Основи роботи з пакетом FlexPDE: select, coordinates, variables, definitions, initial values, equations, constraints, extrusion. Оператори і функції програмного пакету. Рівняння руху рідини в циліндричній системі координат. Математичні функції, константи.

    дипломная работа [1,4 M], добавлен 08.05.2013

  • Basic problems of teenagers in a world. Question of spending their free time, relations with parents and unhappy love. Use for sniffing glue products and solvents. Danger of AIDS, his action on the immune system. Reasons on which are widespread smoking.

    реферат [16,5 K], добавлен 08.02.2010

  • Society is a system of relations. Public relations is relationships that arise between people in the course of their activities in various spheres of public life. They can be classified according to their object, subject, nature of relations between them.

    реферат [13,6 K], добавлен 14.05.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.