Методы Бринелля и Роквелла

Рассмотрение методов измерения твердости металла вдавливанием индентора. Определение твердости по Бринеллю и Роквелла как нагрузки на единицу поверхности шаровой лунки. Расчет временного сопротивления алюминиевого сплава, углеродистой стали и титана.

Рубрика Физика и энергетика
Вид лабораторная работа
Язык русский
Дата добавления 10.03.2019
Размер файла 143,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Цель работы

1.1. Получить навыки работы на приборах Бринелля и Роквелла для измерения твердости.

1.2. Оценить механические свойства металлов измерением твердости.

2. Краткая теория

В числе многих методов механических испытаний особое место занимают измерения твердости как наиболее распространенный метод оценки свойств материала. Причины такого положения заключаются в следующем: с одной стороны, твердость непосредственно характеризует сопротивление материала истиранию, его режущие свойства, способность выдерживать местные давления, с другой стороны, она связана с механическими свойствами, определяемыми при стандартных испытаниях на растяжение. Кроме того, твердость можно определить быстро, на любой стадии технологической обработки металла, а также подвергнуть стопроцентному контролю готовые детали без их разрушения.

Наибольшее распространение и практическое значение имеет твердость при пластическом вдавливании.

Твердостью на вдавливание называется сопротивление материалов внедрению в него более твердого тела, не испытывающего остаточной деформации. В качестве такого тела, называемого индентером, используются стальной шарик, алмазные конус и пирамида.

Испытания на твердость имеют специфику, заключающуюся:

1) в местном воздействии на небольшую часть поверхности тела;

2) в малости объема металла, участвующего в деформации;

3) в создании в деформированном металле такого напряженного состояния, при котором растягивающие напряжения малы по сравнению с касательными, что дает возможность успешно испытывать и хрупкие материалы. При этих испытаниях определяются свойства материала в пластической области без разрушения.

На рис. 1 приведена схема вдавливания шарового индентора в испытуемый материал.

Рис. 1. Схема напряженного состояния в зоне пластической деформации (заштрихована) при вдавливании шарика

Под действием нагрузки шарик вдавливается в поверхность образца, при этом из зоны деформации металл вытесняется наружу. В результате в месте вдавливания образуется шаровая лунка (отпечаток) диаметром и глубиной . При статическом вдавливании шарика в плоскую поверхность образца сначала происходит упругая деформация. Глубина упругого вдавливания зависит от нагрузки, с ростом которой в какой-то момент начинается пластическая деформация. Снятие нагрузки после любой деформации сопровождается упругим восстановлением отпечатка, так что

,

где - полная глубина вдавливания;

- доля упругой составляющей, снимающейся при снятии нагрузки;

- глубина восстановленного отпечатка (остаточная глубина).

Экспериментально установлено, что при вдавливании шарика глубина восстановленного отпечатка растет линейно с увеличением нагрузки. Это позволяет построить диаграмму пластического вдавливания шарового индентора, проведя испытания при двух нагрузках и.

Рис. 2. Диаграмма пластического вдавливания шарового индентора

Экстраполяция диаграммы вдавливания до дает нагрузку, по достижении которой в центре отпечатка только начинается пластическая деформация. Величина этой нагрузки определяется пределом текучести материала. Для развития пластической деформации необходимо повышение нагрузки относительно . Это - проявление деформационного упрочнения или наклепа.

Угол наклона диаграммы вдавливания характеризует интенсивность деформационного упрочнения.

.

Испытание на вдавливание при значительных нагрузках (и, следовательно, при больших остаточных деформациях) дает информацию о временном сопротивлении.

Путем измерения твердости можно определить характеристику пластичности при вдавливании, сходную с сужением поперечного сечения при испытании на растяжение.

,

где - площадь поверхности лунки;

- площадь проекции отпечатка;

- пластичность при вдавливании.

Как показано на рис. 2, глубина вдавливания зависит от нагрузки на индентор. Поэтому для оценки механических свойств по результатам измерения твердости условия испытания должны быть строго стандартизированы. ГОСТами определены форма и размеры инденторов, величины нагрузок на индентор, а также длительность нагружения. При всех измерениях нагрузки должны быть такими, чтобы обеспечить значительную пластическую деформацию в зоне вдавливания индентора.

3. Методы измерения твердости вдавливанием индентора

При определении твердости измеряется сопротивление металла внедрению в него индентора, усредняющее сопротивление вдавливанию отдельных структурных составляющих. Следовательно, отпечаток должен быть значительно больше размеров зерен отдельных составляющих).

Из методов отвечающих этому требованию, наибольшее распространение получили два: метод Бринелля и метод Роквелла.

4. Метод Бринелля

Рис. 3. Зависимость отношений сопротивлений пластической деформации и деформации при растяжении () и вдавливании () (М.П. Марковец)

Определение твердости по Бринеллю производится согласно ГОСТу 9012-59 на приборе ТШ-2

Твердость по Бринеллю HB определяется как нагрузка на единицу поверхности шаровой лунки:

,

где - нагрузка в кгс; - диаметр шарика в мм; - диаметр отпечатка в мм.

Прибор предусматривает возможность использования в качестве индентора шариков диаметром 2,5; 5,0; 10,0 мм. Для получения одинаковых значений твердости одного и того же материала при вдавливании шариков различного материала необходимо постоянство отношений и. Это видно, если формулу (4.5) преобразовать:

Материал

Марка

материала

Hопр/?

Диаметр. отп

НВп

НRA

1

Углеродистая сталь

45

3000/10

4,9

149,25

537

49ч47

2

Титановая сталь

В13

3000/10

3,3

318

1050

61ч62

2

Алюминий

Д16

1250/5

2,4

52,7

200,2

43ч42

5. Метод Роквелла

Твердость по методу Роквелла определяется согласно ГОСТу 9013-59 на приборе ТК-2. Индентором служит стандартный алмазный конус с углом при вершине 1200 и радиусом закругления вершины 0,2 мм или стальной закаленный шарик диаметром 1,558 мм (1/16 дюйма).

6. Выполнение работы

Даны образцы из углеродистой стали, титана, алюминия.

Определяем твердость данных образцов на приборах Бринелля и Роквелла, полученные данные заносим в таблицу.

Метод Бринелля

D=10мм

Р=3000 кг*с

1)Алюминий

=52.67

=0,38*26.5=20.017=200.2 мПа

2)Углеродистая сталь

=149.25

=0,36*149.25=53.7=537.3мПа

3) Титан

=318

=0,33*318=105=1050 мПа

Метод Роквелла

В данном методе индентор в образец вдавливается нагрузкой 10кгс, а затем полной, представляющей сумму предварительной и основной нагрузок, глубина вдавливания отмечается движением большой стрелки индикатора. При снятии основной нагрузки упругая часть деформации снимается, что отмечается вращением стрелки индикатора в обратном направлении. После остановки стрелки величина твердости отсчитывается по индикатору, и затем образец разгружается полностью, снимается предварительная нагрузка.

Таким образом, наличие предварительной нагрузки позволяет измерить глубину вдавливания в процессе самого испытания.

1). Для углеродистой стали 45: HRА=49ч47

2). Для титана: НRА=61ч62

3).Для алюминиевого сплава: НRA=43ч42

Вывод: На лабораторной работе мы ознакомились с устройством приборов для измерения твердости-приборяы Бринелля и Роквелла, а также получили навыки работы на этих приборах.

Используя эти приборы, мы определили твердость данных образцов из углеродистой стали, титаном и алюминием.

Зная диаметр углубления в образце, можно рассчитать временное сопротивление металла, а значит и его прочность по формуле

твердость металл индентор сопротивление

где к- коэффициент, величина которого различна для каждого материала. Это различие определяется разной степенью пластической деформации, достигаемой при измерении твердости и испытании на растяжение.

Метод Роквелла отличается от метода Бринелля тем, что предварительная нагрузка позволяет измерить глубину вдавливания в процессе всего испытания.

7. Контрольные вопросы

1. Чем обусловлены ограничения в использовании метода Бринелля при измерении твердости очень твердых и очень мягких материалов?

Испытание Бринелля не может применяться к очень мягким или очень твердым материалам. В первом случае размер отпечатка будет равен диаметру шара, а во втором отпечатка либо не будет, либо он будет настолько малым, что невозможно будет провести на нем измерения.

2. Все методы измерения твердости вдавливанием предусматривают размещение отпечатков на расстоянии не менее друг от друга. Чем обусловлены такие ограничения?

Образец для испытания на твердость должен быть плоскопараллельным, очищенным от окалины и других загрязнений. С целью повышения точности измерений количество отпечатков должно быть не менее 2, каждый отпечаток промеряется в двух перпендикулярных направлениях, и результат определяется как среднеарифметический. При этом расстояние от края образца до центра отпечатка должно быть не менее 2,5 d, а расстояние между отпечатками 4d.

3. На каком расстоянии от края образца можно нанести отпечаток при измерении твердости по Бринеллю? Почему?

Расстояние от центра отпечатка до края изделия должно быть не менее 2,5d, в обратном случае, образец может вылететь, либо получится не полный отпечаток, либо образец разрушится.

4. Испытываются два образца по методу Бринелля: первый - пластичный, второй - хрупкий. Что будет в обоих случаях, если отпечаток нанести слишком близко к краю образца - на расстоянии меньше?

В обоях случаях образец может вылететь. В первом случае образец мы не сможем измерить твердость, так как на поверхности образца невозможно измерить d. (шарик будет вдавливаться полностью). Во втором случае образец разрушится либо вылетит.

Размещено на Allbest.ru

...

Подобные документы

  • Понятие твердости как способности металла сопротивляться деформации на поверхности образца или изделия. Cущность методики измерения твердости на приборах Бринелля, Роквелла, Виккерса и микротвердомере. Порядок выбора прибора, нагрузки и наконечника.

    методичка [486,2 K], добавлен 27.11.2010

  • Определение твердости металлов методами Бринелля, Роквелла и Виккерса. Составление диаграммы состояния железо - карбид железа. Описание структуры доэвтектоидного сплава при комнатной температуре. Изучение процессов закалки и отпуска хромистой стали.

    контрольная работа [908,4 K], добавлен 21.07.2013

  • Сущность и основные этапы изучения метода Бринелля, его назначение и сферы применения. Критерии и показатели твердости тела согласно теории Бринелля. Вычисление числа твердости по значениям диаметра отпечатка исследуемого тела и силы вдавливания.

    лабораторная работа [12,4 K], добавлен 12.01.2010

  • Испытание на твердость по методу Роквелла посредством вдавливания наконечника алмазного конуса или стального закаленного шарика в образец или деталь. Углубление конуса под последовательно прилагаемыми предварительной и общей нагрузками, глубина внедрения.

    лабораторная работа [13,8 K], добавлен 12.01.2010

  • Зависимость твёрдости от нагрузки, прикладываемой к индентору, и его формы. Методы измерения твёрдости: статические, динамические (ударные). Методы Бринелля, Роквелла, Виккерса, Шора, Польди, Бухгольца. Электропроводность металлов, свойства проводников.

    контрольная работа [48,0 K], добавлен 21.04.2012

  • Строение металла. Макроструктура и микроструктура металла. Механические свойства металла. Процесс деформации. Разрушение металла. Ударная вязкость стали. Конструкционные стали. Высокопрочные и среднепрочные материалы.

    реферат [27,9 K], добавлен 24.01.2007

  • В работе рассчитывается металлургическая печь с двусторонним обогревом, предназначенная для нагрева изделий из углеродистой стали. Определение коэффициетов теплоотдачи продуктов сгорания. Расчет горения топлива, нагрева металла, основных размеров печи.

    курсовая работа [278,6 K], добавлен 07.07.2008

  • Электрическое сопротивление - основная электрическая характеристика проводника. Рассмотрение измерения сопротивления при постоянном и переменном токе. Изучение метода амперметра-вольтметра. Выбор метода, при котором погрешность будет минимальна.

    презентация [158,9 K], добавлен 21.01.2015

  • Расчет тепловой нагрузки аппарата, температуры парового потока, движущей силы теплопередачи. Зона конденсации паров. Определение термических сопротивлений стенки, поверхности теплопередачи. Расчет гидравлического сопротивления трубного пространства.

    контрольная работа [76,7 K], добавлен 16.03.2012

  • Стационарная теплопроводность шаровой (сферической) стенки. Обобщенный метод решения задач стационарной теплопроводности. Упрощенный расчет теплового потока через плоскую, цилиндрическую и шаровую стенки (ГУ 1 рода). Методы интенсификации теплопередачи.

    презентация [601,4 K], добавлен 15.03.2014

  • Магнитоэлектрические измерительные механизмы. Метод косвенного измерения активного сопротивления до 1 Ом и оценка систематической, случайной, составляющей и общей погрешности измерения. Средства измерения неэлектрической физической величины (давления).

    курсовая работа [407,8 K], добавлен 29.01.2013

  • Анализ кинематической схемы привода. Определение мощности, частоты вращения двигателя. Выбор материала зубчатых колес, твердости, термообработки и материала колес. Расчет закрытой цилиндрической зубчатой передачи. Силовая схема нагружения валов редуктора.

    курсовая работа [298,1 K], добавлен 03.03.2016

  • Общие сведения о шаровой молнии. Условия образования шаровой молнии. Случаи внезапного появления шаровой молнии. Разновидности шаровых молний, их вес, скорость передвижения, размер, время жизни, поведение, температура. Физическая природа шаровой молнии.

    презентация [3,0 M], добавлен 04.05.2011

  • Мостовой и косвенный методы для измерения сопротивления постоянного тока. Резонансный, мостовой и косвенный методы для измерения параметров катушки индуктивности. Решение задачи по измерению параметров конденсатора с использованием однородного моста.

    контрольная работа [156,9 K], добавлен 04.10.2013

  • Расчет осветительных установок цехов методом удельной нагрузки на единицу площади цеха. Расчет удельной плотности нагрузки низкого напряжения на территории размещения оборудования электроприемников предприятия и выбор номинальной мощности трансформаторов.

    курсовая работа [2,0 M], добавлен 21.02.2015

  • Построение принципиальной схемы эмиттерного повторителя. Расчет сопротивления резистора в цепи эмиттера и смещения повторителя. Определение входного сопротивления транзистора при включении его с общим эмиттером. Сопротивление нагрузки цепи эмиттера.

    презентация [1,9 M], добавлен 04.03.2015

  • Исследование шаровой молнии с точки зрения физики. Внешний вид, природа и свойства шаровой молнии: ее физическая и химическая характеристики. Гипотеза квантовой природы шаровой молнии. Основные правила безопасности при встречей с шаровой молнией.

    реферат [69,2 K], добавлен 22.10.2008

  • Определение эквивалентного сопротивления цепи и напряжения на резисторах. Расчет площади поперечного сечения катушки. Определение наибольших абсолютных погрешностей вольтметров. Расчет индуктивного сопротивления катушки и полного сопротивления цепи.

    контрольная работа [270,7 K], добавлен 10.10.2013

  • Расчет сопротивления внешнего шунта для измерения магнитоэлектрическим амперметром силового тока. Определение тока в антенне передатчика при помощи трансформатора тока высокой частоты. Вольтметры для измерения напряжения с относительной погрешностью.

    контрольная работа [160,4 K], добавлен 12.05.2013

  • Характеристика района строительства и назначения помещения. Теплотехнические характеристики материала стены. Расчет нормируемого сопротивления теплопередаче. Расчет и определение сопротивления паропроницанию и воздухопроницанию ограждающей конструкции.

    контрольная работа [94,2 K], добавлен 08.04.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.