Электрические генераторы
Изучение принципа действия генератора постоянного тока. Определение направления индуктированной электродвижущей силы по правилу правой руки. Применение пик-трансформаторов для преобразования синусоидального напряжения в импульсы пикообразной формы.
Рубрика | Физика и энергетика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 02.02.2020 |
Размер файла | 669,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
1. Принцип действия генератора постоянного тока
генератор электродвижущий сила напряжение
Генераторами называют электрические машины, преобразующие механическую энергию в электрическую. Принцип действия электрического генератора основан на использовании явления электромагнитной индукции, которое состоит в следующем. Если в магнитном поле постоянного магнита перемещать проводник так, чтобы он пересекал магнитный поток, то в проводнике возникнет электродвижущая сила (э.д.с.), называемая э.д.с. индукции (Индукция от латинского слова inductio - наведение, побуждение), или индуктированной э.д.с. Электродвижущая сила возникает и в том случае, когда проводник остается неподвижным, а перемещается магнит. Явление возникновения индуктированной э.д.с. в проводнике называется электромагнитной индукцией. Если проводник, в котором индуктируется э.д.с., включить в замкнутую электрическую цепь, то под действием э.д.с. по цепи потечет ток, называемый индуктированным током.
Опытным путем установлено, что величина индуктированной э.д.с., возникающей в проводнике при его движении в магнитном поле, возрастает с увеличением индукции магнитного поля, длины проводника и скорости его перемещения. Индуктированная э.д.с. возникает только тогда, когда проводник пересекает магнитное поле. При движении проводника вдоль магнитных силовых линий э.д.с. в нем не индуктируется. Направление индуктированной э.д.с. и тока проще всего определить по правилу правой руки (рис. 131): если ладонь правой руки держать так, чтобы в нее входили магнитные силовые линии поля, отогнутый большой палец показывал бы направление движения проводника, то остальные вытянутые пальцы укажут направление действия индуктированной э.д.с. и направление тока в проводнике. Магнитные силовые линии направлены от северного полюса магнита к южному.
Рис. 1. Определение направления индуктированной э.д.с. по правилу правой руки
Имея общее представление об электромагнитной индукции, рассмотрим принцип действия простейшего генератора (рис. 2). Проводник в виде рамки из медной проволоки укреплен на оси и помещен в магнитное поле. Концы рамки присоединены к двум изолированным одна от другой половинам (полукольцам) одного кольца. Контактные пластины (щетки) скользят по этому кольцу. Такое кольцо, состоящее из изолированных полуколец, называют коллектором, а каждое полукольцо - пластиной коллектора. Щетки на коллекторе должны быть расположены таким образом, чтобы они при вращении рамки одновременно переходили с одного полукольца на другое как раз в те моменты, когда э.д.с, индуктируемая в каждой стороне рамки, равна нулю, т. е. когда рамка проходит свое горизонтальное положение.
Рис. 2. Простейший генератор постоянного тока
С помощью коллектора переменная э.д.с, индуктируемая в рамке, выпрямляется, и во внешней цепи создается постоянный по направлению ток.
Присоединив к контактным пластинам внешнюю цепь с электроизмерительным прибором, фиксирующим величину индуктируемого тока, убедимся, что рассмотренное устройство действительно является генератором постоянного тока.
В любой момент времени t э.д.с. Е (рис. 3), возникающая в рабочей стороне Л рамки, противоположна по направлению э.д.с, возникающей в рабочей стороне Б. Направление э.д.с. в каждой стороне рамки легко определить, воспользовавшись правилом правой руки. э.д.с, индуктируемая всей рамкой, равна сумме э.д.с., возникающих в каждой ее рабочей стороне. Величина э.д.с. в рамке непрерывно изменяется. В то время, когда рамка подходит к своему вертикальному положению, количество силовых линий, пересекаемых проводниками в 1 с, будет наибольшим и в рамке индуктируется максимальная э.д.с. Когда рамка проходит горизонтальное положение, ее рабочие стороны скользят вдоль силовых линий, не пересекая их, и э.д.с. не индуктируется. В период движения стороны Б рамки к южному полюсу магнита (рис. 3 а, б) ток в ней направлен на нас. Этот ток проходит через полукольцо, щетку 2, измерительный прибор к щетке и в сторону А рамки. В этой стороне рамки ток индуктируется в направлении от нас. Своего наибольшего значения э.д.с. в рамке достигает тогда, когда стороны ее расположены непосредственно под полюсами (рис. 3 б).
Рис. 3. Схема работы генератора постоянного тока
При дальнейшем вращении рамки э.д.с. в ней убывает и через четверть оборота становится равной нулю (рис. 3 в). В это время щетки переходят с одного полукольца на другое. Таким образом, за первую половину оборота рамки каждое полукольцо коллектора соприкасалось только с одной щеткой. Ток проходил по внешней цепи в одном направлении от щетки 2 к щетке 1. Будем продолжать вращать рамку. Электродвижущая сила в рамке снова начинает возрастать, так как ее рабочие стороны будут пересекать магнитные силовые линии. Однако направление э.д.с. изменяется на противоположное, потому что проводники пересекают магнитный поток в обратном направлении. Ток, индуктируемый в стороне А рамки, направлен теперь на нас. Но ввиду того, что рамка вращается вместе с коллектором, полукольцо, соединенное со стороной А рамки, соприкасается теперь не со щеткой 1, а со щеткой 2 (рис. 3 г) и по внешней цепи проходит ток того же направления, как и во время первой половины оборота. Следовательно, коллектор выпрямляет ток, т. е. обеспечивает прохождение индуктируемого тока во внешней цепи в одном направлении. К концу последней четверти оборота (рис. 3 д) рамка возвращается в первоначальное положение (см. рис. 3 а), после чего весь процесс изменения тока в цепи повторяется.
Таким образом, между щетками 2 и 1 действует постоянная по направлению э.д.с, и ток по внешней цепи всегда проходит в одном направлении - от щетки 2 к щетке 1. Хотя этот ток остается постоянным по направлению, он меняется по величине, т. е. пульсирует. Такой ток практически трудно использовать.
2. Пик-трансформаторы
Трансформаторы - наиболее распространенные устройства в современной электротехнике. Трансформаторы большой мощности на напряжение до сотен киловольт составляют основу систем передачи электроэнергии от электростанций в линии электропередачи. Эти трансформаторы повышают напряжение переменного тока до значений, необходимых для экономичной передачи электроэнергии на значительные расстояния. В местах распределения электроэнергии между потребителями применяют трансформаторы, понижающие напряжение до требуемых для потребителя значений. Наряду с этим трансформаторы являются элементами электроприводов, нагревательных и других установок, где они осуществляют преобразование напряжения питающей сети до значений, необходимых для работы электродвигателей, нагревательных печей и других электроустройств.
Пик-трансформаторы применяются для преобразования синусоидального напряжения в импульсы пикообразной формы. Такие импульсы напряжения с крутым фронтом необходимы для управления тиристорами либо другими полупроводниковыми или электронными устройствами.
Принцип работы пик-трансформатора основан на явлении магнитного насыщения ферромагнитного материала. Существует несколько конструктивных исполнений пик-трансформаторов.
Для обеспечения удовлетворительных энергетических показателей пик-трансформаторов их магнитопроводы изготавливают из сплава типа пермаллой.
3. Режимы работы трехфазной асинхронной машины
Асинхронный двигатель, согласно принципу обратимости электрических машин, может работать как в двигательном, так и в генераторном режимах. Для работы асинхронного двигателя в любом режиме требуется источник реактивной мощности.
В двигательном режиме при подключении двигателя к трехфазной сети переменного тока в обмотке статора образуется вращающееся магнитное поле, под действием которого в короткозамкнутой обмотке ротора наводятся токи, образующие электромагнитный момент вращения, стремящийся провернуть ротор вокруг его оси. Ротор преодолевает момент нагрузки на валу и начинает вращаться, достигая подсинхронной скорости (она же и будет номинальной с учетом момента нагрузки на валу двигателя).
В генераторном режиме при наличии источника реактивной мощности, создающего поток возбуждения, асинхронная машина способна генерировать активную мощность. Источником реактивной мощности может служить конденсатор.
Режимы работы (подробно):
Пуск - вектор результирующего магнитного поля статора равномерно вращается с частотой питающей сети, деленной на количество отдельных обмоток каждой фазы (в простейшем случае - по одной). Таким образом, через любое сечение ротора проходит магнитный поток, изменяющийся во времени по синусу. Изменение магнитного потока в роторе порождает в его обмотках ЭДС. Так как обмотки замкнуты накоротко и сделаны из проводника большого сечения («беличье колесо»), ток в обмотках ротора достигает значительных величин и, в свою очередь, создает магнитное поле. Так как ЭДС в обмотках пропорциональна скорости изменения магнитного потока (то есть - производной по времени от синусной зависимости - косинусу), наведенная ЭДС беличьего колеса и соответственно результирующее магнитное поле (вектор) ротора на 90 градусов «опережает» вектора статора (если смотреть на направления векторов и направление их вращения). Взаимодействие магнитных полей создает вращающий момент ротора.
Электроэнергия, подводимая к электродвигателю в режиме пуска и полного торможения, тратится на перемагничивание ротора и статора, а также на активное сопротивление току в обмотке ротора. (Эквивалентно работе понижающего трансформатора с коротким замыканием вторичной обмотки).
Холостой ход - после начала движения, с увеличением оборотов ротора, его скорость относительно вектора магнитного поля статора будет уменьшаться. Соответственно будет уменьшаться и скорость изменения магнитного потока через (любое) сечение ротора, соответственно уменьшится наведенная ЭДС и результирующий магнитный момент ротора. В отсутствие сил сопротивления (идеальный холостой ход) угловая скорость ротора будет равна угловой скорости магнитного поля статора, соответственно разница скоростей, наведенная ЭДС и результирующее магнитное поле ротора будут равны нулю.
Электроэнергия, подводимая к электродвигателю в режиме холостого хода, не потребляется (индуктивная нагрузка). Эквивалентно работе понижающего трансформатора на холостом ходу (или короткозамкнутыми вторичными обмотками, расположенными вдоль сердечника).
Двигательный режим - среднее между полным торможением и холостым ходом. Полезная нагрузка и механические потери не позволяют ротору достичь скорости магнитного поля статора, возникающее их относительное скольжение наводит некоторую ЭДС и соответствующее магнитное поле ротора, которое своим взаимодействием с полем статора компенсирует тормозной момент на валу.
Механическая характеристика асинхронного двигателя является «жесткой», то есть при незначительном уменьшении оборотов крутящий момент двигателя возрастает очень сильно - «стремится поддерживать номинальные обороты». Это хорошее свойство для приводов, требующих поддержания заданной скорости независимо от нагрузки (транспортеры, погрузчики, подъемники, вентиляторы).
Электроэнергия, подводимая к электродвигателю в двигательном режиме, потребляется (частью, обозначаемой «косинус фи») на совершение полезной работы и нагрев двигателя, остальная часть возвращается в сеть как индуктивная нагрузка. «Косинус фи» зависит от нагрузки на двигатель, на холостом ходу он близок к нулю. В характеристике двигателя указывается «косинус фи» для номинальной нагрузки.
Генераторный режим возникает при принудительном увеличении оборотов выше «идеального холостого хода». При наличии источника реактивной мощности, создающего поток возбуждения, магнитное поле ротора наводит ЭДС в обмотках статора и двигатель превращается в источник активной мощности (электрической).
4. Работа синхронного генератора на холостом ходе
Под холостым ходом автономного синхронного генератора понимается такой режим его работы, при котором ротор вращается приводным двигателем, а обмотка якоря разомкнута. В этом случае магнитное поле машины создается только током возбуждения. Это поле можно разложить на две составляющие: основное поле, магнитные линии которого проходят через воздушный зазор и сцепляются с обмоткой якоря, и поле рассеяния полюсов, магнитные линии которого сцепляются только с обмоткой возбуждения.
Магнитный поток основного поля при вращении полюсов индуктирует в обмотке якоря ЭДС. К этой ЭДС и к напряжению на выводах генератора предъявляется требование, чтобы их форма приближалась к синусоидальной. Это требование обусловлено тем, что при синусоидальных ЭДС и напряжении ток в якоре при линейном характере подключенной цепи также синусоидален. Вследствие этого суммарные потери в генераторе и у потребителей минимальны, так как отсутствуют добавочные потери от высших гармонических. Критерием для оценки кривой ЭДС служит коэффициент искажения синусоидальности этой кривой, под которым понимается выраженное в процентах отношение корня квадратного из суммы квадратов амплитудных (или действующих) значений высших гармонических составляющих данной кривой к амплитудному (или действующему) значению основной гармонической этой кривой.
Размещено на Allbest.ru
...Подобные документы
Основные определения и технические данные электрических машин. Электрические двигатели постоянного тока: устройство, краткие теоретические основы. Электрические генераторы постоянного тока. Обеспечение безыскровой коммутации. Электрическое равновесие.
реферат [37,4 K], добавлен 24.12.2011Исследование основных особенностей электромагнитных процессов в цепях переменного тока. Характеристика электрических однофазных цепей синусоидального тока. Расчет сложной электрической цепи постоянного тока. Составление полной системы уравнений Кирхгофа.
реферат [122,8 K], добавлен 27.07.2013Понятие и сущность классической теории о коммутации. Особенности влияния электродвижущей силы. Экспериментальная проверка настройки коммутации. Определение и уменьшение реактивной электродвижущей силы. Исследование коммутации датчиком тока разрыва.
презентация [784,7 K], добавлен 21.10.2013Синусоидальные токи и напряжения. Максимальные значения тока и напряжения и угол сдвига фаз между напряжением и током. Тепловое действие в линейном резистивном элементе. Действующее значение гармонического тока. Действия с комплексными числами.
презентация [777,5 K], добавлен 16.10.2013Прямые и косвенные измерения напряжения и силы тока. Применение закона Ома. Зависимость результатов прямого и косвенного измерений от значения угла поворота регулятора. Определение абсолютной погрешности косвенного измерения величины постоянного тока.
лабораторная работа [191,6 K], добавлен 25.01.2015Решение задач: линейные электрические цепи постоянного и синусоидального тока и трехфазные электрические цепи синусоидального тока. Метод контурных токов и узловых потенциалов. Условия задач, схемы электрических цепей, поэтапное решение и проверка.
курсовая работа [86,5 K], добавлен 23.10.2008Повышение устойчивости питающего напряжения посредством применения специальных стабилизаторов напряжения. Изучение принципа действия параметрических и компенсационных стабилизаторов постоянного напряжения, определение и расчет их основных параметров.
лабораторная работа [1,8 M], добавлен 12.05.2016Условия существования разности потенциалов (напряжения) между полюсами источника тока. Понятие и методика определения электродвижущей силы (ЭДС) источника. Измерение и сравнение ЭДС двух батарей с помощью компенсационной схемы, проверка их исправности.
лабораторная работа [346,3 K], добавлен 13.01.2013Параметры трансформатора тока (ТТ). Определение токовой погрешности. Схемы включения трансформатора тока, однофазного и трехфазного трансформатора напряжения. Первичная и вторичная обмотки ТТ. Определение номинального первичного и вторичного тока.
практическая работа [710,9 K], добавлен 12.01.2010Электромагнитная мощность генератора постоянного тока, выбор числа пар полюсов и коэффициента полюсной дуги. Расчет обмотки якоря и магнитной цепи, построение характеристики холостого хода. Определение магнитодвижущей силы возбуждения при нагрузке.
курсовая работа [2,6 M], добавлен 27.10.2011Основные понятия, определения и законы в электротехнике. Расчет линейных электрических цепей постоянного тока с использованием законов Ома и Кирхгофа. Сущность методов контурных токов, узловых потенциалов и эквивалентного генератора, их применение.
реферат [66,6 K], добавлен 27.03.2009Метод контурных токов и узловых потенциалов. Составление баланса электрических мощностей. Построение потенциальной диаграммы для контура, который включает источники электродвижущей силы. Нахождение тока в ветви с помощью метода эквивалентного генератора.
контрольная работа [730,5 K], добавлен 27.03.2013Генераторы и электродвигатели постоянного тока, якоря которых снабжены коллекторами и содержат совокупность обмоток, связанных с коллекторами. Действие заявляемого бесколлекторного генератора постоянного тока. Движения вихревого электрического поля.
доклад [14,9 K], добавлен 25.10.2013Переменные электрические величины, их значения в любой момент времени. Изменение синусоидов тока во времени. Элементы R, L и C в цепи синусоидального тока и фазовые соотношения между их напряжением и током. Диаграмма изменения мгновенных значений тока.
курсовая работа [403,1 K], добавлен 07.12.2011Устройство и назначение генератора постоянного тока. Основные характеристики и принципиальная электрическая схема генераторной установки. Материалы, применяемые при изготовлении, техническом обслуживании и ремонте. Безопасность организации труда.
курсовая работа [1,0 M], добавлен 25.06.2015Упорядоченное движение электронов в металлическом проводнике. Цепь постоянного тока. Зависимость силы тока от напряжения. Перемещение единичного положительного заряда по цепи постоянного тока. Применение закона Ома для неоднородного участка цепи.
реферат [168,3 K], добавлен 02.12.2010Конструкция и принцип действия машины постоянного тока. Характеристики генератора независимого возбуждения. Внешняя характеристика генератора параллельного возбуждения. Принцип обратимости машин постоянного тока. Электромагнитная обмотка якоря в машине.
презентация [4,1 M], добавлен 03.12.2015Назначение, технические характеристики и устройство измерительных трансформаторов напряжения. Описание принципа действия трансформаторов напряжения и способов их технического обслуживания. Техника безопасности при ремонте и обслуживании трансформаторов.
контрольная работа [258,1 K], добавлен 27.02.2015Применение метода междуузлового напряжения при анализе многоконтурной электрической схемы, имеющей два потенциальных узла. Нелинейные электрические цепи постоянного тока. Цепи с параллельным, последовательно-параллельным соединением резистивных элементов.
презентация [1,8 M], добавлен 25.07.2013Основные законы и методы анализа линейных цепей постоянного тока. Линейные электрические цепи синусоидального тока. Установившийся режим линейной электрической цепи, питаемой от источников синусоидальных ЭДС и токов. Трехфазная система с нагрузкой.
курсовая работа [777,7 K], добавлен 15.04.2010