Электрический ток в цепи

Химическое действие электрического тока. Основные электрические величины: напряжение, сопротивление, сила тока, энергия, мощность, работа. Законы Кирхгофа и Ома для магнитной цепи. Устройство, принцип действия и область применения асинхронных двигателей.

Рубрика Физика и энергетика
Вид шпаргалка
Язык русский
Дата добавления 27.02.2020
Размер файла 2,3 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Роторы синхронных машин могут быть явнополюсными (с явновыраженными полюсами) и неявнополюсными (с неявновыраженными полюсами). На рис. а изображен сердечник 1 явнополюсного ротора с выступающими полюсами. На полюсах размещены катушки возбуждения 2. На рисунке 1б изображен неявнополюсной ротор, представляющий собой ферромагнитный цилиндр 1. На поверхности ротора в осевом направлении фрезеруют пазы, в которые укладывают обмотку возбуждения 2.

Рассмотрим принцип работы синхронного двигателя на модели (рис. ).

Вращающееся магнитное поле статора представим в виде магнита 1. Намагниченный ротор изобразим в виде магнита 2. Повернем магнит 1 на угол б. Северный магнитный полюс магнита 1 притянет южный полюс магнита 2, а южный полюс магнита 1 - северный полюс магнита 2. Магнит 2 повернется на такой же угол б. Будем вращать магнит 1. Магнит 2 будет вращаться вместе с магнитом 1, причем частоты вращения обоих магнитов будут одинаковыми, синхронными, n2 = n1.

Синхронный реактивный двигатель - это синхронный двигатель, на роторе которого отсутствует обмотка возбуждения.

Ротор синхронного реактивного двигателя изготавливается из ферромагнитного материала и должен иметь явновыраженные полюсы. Вращающееся магнитное поле статора намагничивает ротор. Явнополюсный ротор имеет неодинаковые магнитные сопротивления по продольной и поперечной осям полюса. Силовые линии магнитного поля статора изгибаются, стремясь пройти по пути с меньшим магнитным сопротивлением. Деформация магнитного поля вызовет, вследствие упругих свойств силовых линий, реактивный момент, вращающий ротор синхронно с полем статора. Если к вращающемуся ротору приложить тормозной момент, ось магнитного поля ротора повернется на угол и относительно оси магнитного поля статора.

С увеличением нагрузки этот угол возрастает. Если нагрузка превысит некоторое допустимое значение, двигатель остановится, выпадет из синхронизма. У синхронных двигателей отсутствует пусковой момент. Это объясняется тем, что электромагнитный вращающий момент, воздействующий на неподвижный ротор, меняет свое направление два раза за период Т переменного тока. Из-за своей инерционности, ротор не успевает тронуться с места и развить необходимое число оборотов.

В настоящее время применяется асинхронный пуск синхронного двигателя. В пазах полюсов ротора укладывается дополнительная короткозамкнутая обмотка. Вращающее магнитное поле статора индуктирует в короткозамкнутой пусковой обмотке вихревые токи. При взаимодействии этих токов с магнитным полем статора образуется асинхронный электромагнитный момент, приводящий ротор во вращение. Когда частота вращения ротора приближается к частоте вращения статорного поля, двигатель втягивается в синхронизм и вращается с синхронной скоростью. Короткозамкнутая обмотка не перемещается относительно поля, вихревые токи в ней не индуктируются, асинхронный пусковой момент становится равным нулю.

22. Уравнение равновесия фазы синхронного двигателя и синхронного генератора

Сами по себе векторные диаграммы синхронных двигателей не представляют особого интереса.

Особый интерес представляют так называемые «»-образные характеристики синхронного двигателя, аналогичные -образным характеристикам генератора по внешнему виду, однако имеют совершенно другой смысл.

Если произвести изменение тока возбуждения синхронного двигателя с неявно выраженными полюсами, то векторная диаграмма изменится при постоянстве напряжения сети так, как это показано на векторной диаграмме (рис.). При недовозбужденной машине ток двигателя отстает от напряжения на некоторый угол. Конец вектора тока находится на прямой. При постоянной развиваемой мощности и при увеличении тока возбуждения ЭДС двигателя увеличится до значения. При таком значении ЭДС ток двигателя совпадает с напряжением сети по фазе. Это оптимальное значение тока возбуждения.

При дальнейшем увеличении тока возбуждения ЭДС двигателя увеличится. Одновременно увеличится ток двигателя. При этом ток будет опережать напряжение на некоторый угол. Трем значениям тока возбуждения на векторной диаграмме соответствуют векторы с одним штрихом, двумя и тремя штрихами.

Для синхронных двигателей обычно строят -образные характеристики, которые показывают, каким образом необходимо изменять ток возбуждения для получения номинального режима работы двигателя.

Необходимо отметить, что в области недовозбуждения имеется ограничение механической стабильности, когда двигатель не может обеспечить необходимого механического момента.

Максимальный момент, развиваемый двигателем, может быть определен из выражения (для) и зависит от величины ЭДС. Уменьшая ток возбуждения, уменьшают и соответствующим образом сокращают максимальный момен. Точка, для которой равен моменту сопротивления, определяет предел механической стабильности.

23. Способы пуска синхронного двигателя и генератора

Для пуска его используют следующие способы:

1. Пуск с помощью вспомогательного двигателя.

2. Асинхронный пуск двигателя.

1. Пуск с помощью вспомогательного двигателя.

Пуск в ход синхронного двигателя с помощью вспомогательного двигателя может быть произведен только без механической нагрузки на его валу, т.е. практически вхолостую. В этом случае на период пуска двигатель временно превращается в синхронный генератор, ротор которого приводится во вращение небольшим вспомогательным двигателем. Статор этого генератора включается параллельно в сеть с соблюдением всех необходимых условий этого соединения. После включения статора в сеть вспомогательный приводной двигатель механически отключается. Этот способ пуска сложен и имеет к тому же вспомогательный двигатель.

2. Асинхронный пуск двигателя.

Наиболее распространенным способом пуска синхронных двигателей является асинхронный пуск, при котором синхронный двигатель на время пуска превращается в асинхронный. Для возможности образования асинхронного пускового момента в пазах полюсных наконечников явнополюсного двигателя помещается пусковая короткозамкнутая обмотка. Эта обмотка состоит из латунных стержней, вставленных в пазы наконечников и соединяемых накоротко с обоих торцов медными кольцами.

При пуске в ход двигателя обмотка статора включается в сеть переменного тока. Обмотка возбуждения (3) на период пуска замыкается на некоторое сопротивление Rг, рис., ключ К находится в положении 2, сопротивление Rг = (8-10)Rв. В начальный момент пуска при S=1, из-за большого числа витков обмотки возбуждения, вращающее магнитное поле статора наведет в обмотке возбуждения ЭДС Ев, которая может достигнуть весьма большого значения и если при пуске не включить обмотку возбуждения на сопротивление Rг произойдет пробой изоляции.

Процесс пуска синхронного двигателя осуществляется в два этапа. При включении обмотки статора (1) в сеть в двигателе образуется вращающее поле, которое наведет в короткозамкнутой обмотке ротора (2) ЭДС. Под действием, которой будет протекать в стержнях ток. В результате взаимодействия вращающего магнитного поля с током в коротко замкнутой обмотке создается вращающий момент, как у асинхронного двигателя. За счет этого момента ротор разгоняется до скольжения близкого к нулю (S=0,05), рис. 46. На этом заканчивается первый этап.

Чтобы ротор двигателя втянулся в синхронизм, необходимо создать в нем магнитное поле включением в обмотку возбуждения (3) постоянного тока (переключив ключ К в положение 1). Так как ротор разогнан до скорости близкой к синхронной, то относительная скорость поля статора и ротора небольшая. Полюса плавно будут находить друг на друга. И после ряда проскальзываний противоположные полюса притянутся, и ротор втянется в синхронизм. После чего ротор будет вращаться с синхронной скоростью, и частота вращения его будет постоянной, рис. 46. На этом заканчивается второй этап пуска.

24. Синхронные двигатели автоматических устройств

Конструкция синхронного двигателя такая же, как и у синхронного генератора. При подаче тока в трехфазную обмотку статора в нем возникает вращающееся магнитное поле. Частота вращения его определяется формулой:

где f - частота тока питающей сети, р - число пар полюсов на статоре. Ротор, являющийся часто электромагнитом, будет строго следовать за вращающимся магнитным полем, т.е. его частота вращения n2= n1. Рассмотрим принцип действия синхронного двигателя на следующей условной модели (рис.). Пусть магнитное поле статора будет смоделировано системой вращающихся магнитных полюсов N - S.

Ротор двигателя тоже представляет собой систему электромагнитов S - N, которые "сцеплены" с полюсами на статоре. Если нагрузка на двигателе отсутствует, то оси полюсов статора будут совпадать с осями полюсов ротора ( = 0). Если же к ротору подключена механическая нагрузка, то оси полюсов статора и ротора могут расходиться на некоторый угол. Однако "магнитное сцепление" ротора со статором будет продолжаться, и частота вращения ротора будет равна синхронной частоте статора (n2= n1). При больших значениях ротор может выйти из "сцепления" и двигатель остановится. Главное преимущество синхронного двигателя перед асинхронным - это обеспечение синхронной скорости вращения ротора при значительных колебаниях нагрузки.

25. Классификация аппаратов управления и защиты электроустановок

Электрическая аппаратура, применяемая в осветительных и силовых сетях для целей управления или защиты, может быть классифицирована по различным признакам.

В зависимости от природы явления, которое положено в основу действия аппаратов, их можно разделить на:

· аппараты ручного управления (рубильники, переключатели, выключатели, контроллеры), действие которых происходит в результате механического воздействия на них внешних сил;

· электромагнитные аппараты (магнитные пускатели, контакторы, электромагнитные реле), работа которых основана на электромагнитных силах, возникающих при работе аппарата.

В зависимости от выполняемых функций аппараты подразделяют на:

· коммутационные, предназначенные для включения и отключения различных цепей. Коммутационная аппаратура может быть неавтоматического управления (рубильники, переключатели, магнитные пускатели) и автоматического управления (реле, контакторы, автоматические выключатели);

· токоограничивающие и пускорегулирующие (реостаты, контролеры);

· аппараты защиты электрических цепей (реле защиты, предохранители).

Аппаратура может работать в различных режимах: длительно, кратковременно или в условиях повторно-кратковременной нагрузки.

Аппараты различаются также по следующим признакам:

· номинальному току и напряжению;

· числу полюсов (фаз);

· роду тока (постоянный или переменный);

· виду присоединения (с передним или задним присоединением проводов);

· способу защиты от воздействия окружающей среды (открытое исполнение, защищенное, пылезащищенное) и другим признакам.

26. Аппараты ручного управления

К аппаратам дистанционного управления относятся контакторы, магнитные пускатели и реле, коммутация контактов которых осуществляется при подаче на их катушки электрического сигнала (напряжения или тока) и снятии этого сигнала. Другими словами, это двух позиционные коммутационные аппараты с самовозвратом, включение и выключение которых осуществляется электрическим сигналами.

Устройство контактора (а), графическое обозначение электромагнитной катушки (б), контактов силовых замыкающихся и размыкающихся без дугогашения (в) и с дугогашением (г)

27. Аппараты защиты электроустановок

Простейшая схема асинхронного двигателя

Технические способы и средства защиты (заземление, зануление, применение пониженного напряжения):

защитное заземление - это преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением;

зануление - это преднамеренное электрическое соединение с нулевым защитным проводником металлических нетоковедущих частей, которые могут оказаться под напряжением.

Размещено на Allbest.ru

...

Подобные документы

  • Понятие электрического тока, выбор его направления, действие и сила. Движение частиц в проводнике, его свойства. Электрические цепи и виды соединений. Закон Джоуля-Ленца о количестве теплоты, выделяемое проводником, закон Ома о силе тока на участке цепи.

    презентация [194,6 K], добавлен 15.05.2009

  • Условия, необходимые для существования электрического тока. Достоинства и недостатки параллельного соединения проводников. Единица силы тока. Работа электрического тока в замкнутой электрической цепи. Закон Ома для участка цепи. Химическое действие тока.

    презентация [398,2 K], добавлен 07.02.2015

  • Понятие электрической цепи и электрического тока. Что такое электропроводность и сопротивление, определение единицы электрического заряда. Основные элементы цепи, параллельное и последовательное соединения. Приборы для измерения силы тока и напряжения.

    презентация [4,6 M], добавлен 22.03.2011

  • Характеристика электрического поля как вида материи. Исследование особенностей проводников, полупроводников и диэлектриков. Движение тока в электрической цепи. Изучение законов Ома, Джоуля-Ленца и Кирхгофа. Изоляционные материалы. Электродвижущая сила.

    презентация [4,5 M], добавлен 19.02.2014

  • Свободные колебания в электрическом контуре без активного сопротивления. Свободные затухающие и вынужденные электрические колебания. Работа и мощность переменного тока. Закон Ома и вытекающие из него правила Кирхгофа. Емкость в цепи переменного тока.

    презентация [852,1 K], добавлен 07.03.2016

  • Расчет сложной электрической цепи постоянного тока. Определение тока в ветвях по законам Кирхгофа. Суть метода расчета напряжения эквивалентного генератора. Проверка выполнения баланса мощностей. Расчет однофазной электрической цепи переменного тока.

    контрольная работа [542,1 K], добавлен 25.04.2012

  • Переменные электрические величины, их значения в любой момент времени. Изменение синусоидов тока во времени. Элементы R, L и C в цепи синусоидального тока и фазовые соотношения между их напряжением и током. Диаграмма изменения мгновенных значений тока.

    курсовая работа [403,1 K], добавлен 07.12.2011

  • Основные физические законы Кирхгофа: сущность и содержание, направления практического применения. Баланс мощностей. Емкостное сопротивление в цепи переменного тока. Переходные процессы в линейных цепях, их характер, принципы и направления реализации.

    контрольная работа [115,6 K], добавлен 07.08.2013

  • Явление резонанса в цепи переменного тока. Проверка закона Ома для цепи переменного тока. Незатухающие вынужденные электрические колебания. Колебательный контур. Полное сопротивление цепи.

    лабораторная работа [46,9 K], добавлен 18.07.2007

  • Основные понятия о трехфазной цепи, соединения по схемам "звезда" и "треугольник". Построение векторных диаграмм токов и напряжений. Расчёт тока в нейтральном проводе. Последовательность обозначения фаз генератора. Преимущества асинхронных двигателей.

    презентация [931,1 K], добавлен 09.04.2019

  • Наиболее известные работы Ома. Сила тока, напряжение и сопротивление. Физический закон, определяющий связь между напряжением, силой тока и сопротивлением проводника в электрической цепи. Закон Ома в интегральной форме, для участка цепи и переменного тока.

    презентация [152,6 K], добавлен 21.02.2013

  • Основные величины электрического тока и принципы его измерения: закон Ома, Джоуля-Ленца, электромагнитной индукции. Электрические цепи и формы их построения: последовательное и параллельное соединение в цепи, катушка индуктивности и конденсатор.

    реферат [170,9 K], добавлен 23.03.2012

  • Расчет линейной электрической цепи постоянного тока с использованием законов Кирхгофа, методом контурных токов, узловых. Расчет баланса мощностей цепи. Определение параметров однофазной линейной электрической цепи переменного тока и их значений.

    курсовая работа [148,1 K], добавлен 27.03.2016

  • Сила тока в резисторе. Действующее значение силы переменного тока в цепи. График зависимости мгновенной мощности тока от времени. Действующее значение силы переменного гармонического тока и напряжения. Сопротивление элементов электрической цепи.

    презентация [718,6 K], добавлен 21.04.2013

  • Понятие и разновидности электрических схем, их отличительные признаки, изображение тех или иных предметов. Идеальные и реальные источники напряжения и тока. Законы Ома и Кирхгофа для цепей постоянного тока. Баланс мощности в цепи постоянного тока.

    презентация [1,5 M], добавлен 25.05.2010

  • Причины электрического тока. Закон Ома для неоднородного участка цепи. Закон Ома в дифференциальной форме. Работа и мощность. Закон Джоуля–Ленца. Плотность тока, уравнение непрерывности. КПД источника тока. Распределение напряженности и потенциала.

    презентация [991,4 K], добавлен 13.02.2016

  • Эквивалентное сопротивление всей цепи. Закон Ома для участка цепи. Законы Кирхгофа для электрической цепи. Короткое замыкание резистора. Определение показаний измерительных приборов, включенных в цепь. Активная и реактивная мощность полной цепи.

    контрольная работа [401,6 K], добавлен 31.05.2012

  • Определение силы, направления и плотности электрического тока. Основные параметры детерминированных периодических сигналов. Резистивное сопротивление и проводимость. Индуктивность, ее свойства и единицы измерения. Законы Ома и Кирхгофа. Метод наложения.

    курс лекций [1,1 M], добавлен 26.02.2014

  • Вычисление численного значения токов электрической цепи и потенциалов узлов, применяя Законы Ома, Кирхгофа и метод наложения. Определение баланса мощностей и напряжения на отдельных элементах заданной цепи. Расчет мощности приемников (сопротивлений).

    практическая работа [1,4 M], добавлен 07.08.2013

  • Основные законы и методы анализа линейных цепей постоянного тока. Линейные электрические цепи синусоидального тока. Установившийся режим линейной электрической цепи, питаемой от источников синусоидальных ЭДС и токов. Трехфазная система с нагрузкой.

    курсовая работа [777,7 K], добавлен 15.04.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.