Типы аккумуляции и пути расходования энергии в биосистемах
Исследование термодинамики биологических систем. Анализ термодинамического равновесия. Характеристика внутренней энергии, работы и тепла. Первый закон термодинамики живых организмов. Распределение ионов между внешней средой и внутренним объемом клетки.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 27.02.2020 |
Размер файла | 85,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ
УО «ПОЛЕССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСТИТЕТ»
Реферат
На тему: «Типы аккумуляции и пути расходования энергии в биосистемах»
По дисциплине: «Биофизика»
Выполнил:
Кемеж С.С.
Проверил:
Минюк О.Н.
ПИНСК 2018
Содержание
Введение
1. Типы Аккумуляции и пути расходования энергии в биосистемах
2. Термодинамика биологических систем
2.1 Термодинамическое равновесие
2.2 Внутренняя энергия, работа и тепло
3. Первый закон термодинамики
3.1 Первый закон термодинамики живых организмов
4. Второй закон термодинамики
4.1 Второй закон и живые организмы
Заключение
Список использованных источников
Введение
Биофизика - наука о наиболее простых и фундаментальных взаимодействиях, лежащих в основе биологических процессов. Теоретическое построение и модели биофизики основаны на физических понятиях энергии, силы, типов взаимодействия, на общих понятиях физической и формальной кинетики, термодинамики, теории информации. Эти понятия отражают природу основных взаимодействий и законов движения материи, что как известно, составляет предмет физики - фундаментальной естественной науки. В центре внимания биофизики как биологической науки лежат биологические процессы и явления. Основная тенденция современной биофизики - проникновение в самые глубокие, элементарные уровни, составляющие молекулярную основу структурной организации живого.
Основной итог начального периода развития биофизики - это вывод о принципиальной приложимости в области биологии основных законов физики как фундаментальной естественной науки о законах движения материи. Важное общеметодологическое научное значение для развития разных областей биологии имеют полученные в этот период экспериментальные доказательства закона сохранения энергии (первый закон термодинамики), утверждение принципов химической кинетики как основы динамического поведения биологических систем, концепции открытых систем и второго закона термодинамики в биологических системах, наконец, вывод об отсутствии каких-либо особых «живых» форм энергии.
Важнейшее свойство живых организмов заключается в их способности улавливать, преобразовывать и запасать энергию в различных формах. Общие законы, определяющие превращения энергии, изучаются термодинамикой.
1. Типы Аккумуляции и пути расходования энергии в биосистемах
В процессе энергетического метаболизма происходит аккумуляция энергии, полученной в результате окислительно-восстановительных превращений субстратов в такую форму, которая может быть использована для роста клеток и осуществления всех их функций.
Основными типами аккумуляции энергии в клетки являются:
1. трансмембранная разность электрохимических потенциалов ионов;
2. макроэргические химические соединения.
Поступление веществ в организм происходит в результате дыхания (кислород) и питания. В ЖКТ продукты питания расщепляются до простых веществ. При расщеплении происходит гидролиз полимеров (белков, полисахаридов и других сложных органических веществ) до мономеров, всасывающихся в кровь и включающихся в промежуточный обмен.
Промежуточный обмен (внутриклеточный метаболизм) включает 2 типа реакций: катаболизм и анаболизм.
1. Катаболизм - процесс расщепления органических молекул до конечных продуктов. Реакции катаболизма сопровождаются выделением энергии (экзергонические реакции).
2. Анаболизм объединяет биосинтетические процессы, в которых простые строительные блоки соединяются в сложные макромолекулы, необходимые для организма. В анаболических реакциях используется энергия, освобождающаяся при катаболизме (эндергонические реакции).
Процессы катаболизма в клетках животных сопровождаются потреблением кислорода, который необходим для реакций окисления. В результате этих реакций происходит освобождение энергии, которая необходима организмам в процессах жизнедеятельности для осуществления различных видов работы.
Живые организмы с точки зрения термодинамики - открытые системы. Между системой и окружающей средой возможен обмен энергии, который происходит в соответствии с законами термодинамики.
Первый закон - закон сохранения энергии; его можно сформулировать так: общая энергия системы и окружающей среды - величина постоянная.
Второй закон гласит, что все физические и химические процессы в системе стремятся к необратимому переходу полезной энергии в хаотическую, неуправляемую форму. Мерой перехода или неупорядоченности системы служит величина, называемая энтропией (S), она достигает максимума, когда система приходит в истинное равновесие с окружающей средой.
Направление химической реакции определяется значением ДG. Если эта величина отрицательна, то реакция протекает самопроизвольно и сопровождается уменьшением свободной энергии. Такие реакции называют экзергоническими. Если при этом абсолютное значение ДG велико, то реакция идёт практически до конца, и её можно рассматривать как необратимую.
Если ДG положительно, то реакция будет протекать только при поступлении свободной энергии извне; такие реакции называют эндергоническими.
Если абсолютное значение ДG велико, то система устойчива, и реакция в таком случае практически не осуществляется. При ДG, равном нулю, система находится в равновесии.
В клетках самопроизвольно протекают только те химические процессы, которые приводят к уменьшению свободной энергии системы.
В биологических системах термодинамически невыгодные (эндергонические) реакции могут протекать лишь за счёт энергии экзергонических реакций. Такие реакции называют энергетически сопряжёнными. Многие из этих реакций происходят при участии аденозинтрифосфата (АТФ), играющего роль сопрягающего фактора. Сопряжение двух реакций возможно при наличии общего промежуточного продукта.
Например, фосфорилирование глюкозы (1). Реакция фосфорилирования глюкозы свободным фосфатом с образованием глюкозо-6-фосфата является эндергонической:
Глюкоза + Н3РО4 > Глюкозо-6-фосфат + Н2О (ДG = +13,8 кДж/моль) (1).
Для протекания такой реакции в сторону образования глюкозо-6-фосфата необходимо её сопряжение с другой реакцией (2), величина свободной энергии которой больше, чем требуется для фосфорилирования глюкозы.
АТФ > АДФ + Н3РО4 (2)
(ДG = -30,5 кДж/моль).
При сопряжении процессов (1) и (2) в реакции, катализируемой гексокиназой фосфорилирование глюкозы, легко протекает в физиологических условиях; равновесие реакции сильно сдвинуто вправо, и она практически необратима:
Глюкоза + АТФ > Глюкозо-6-фосфат + АДФ (ДG = -16,7 кДж/моль).
Пример 2, реакции с участием глутаминсинтетазы. Сначала концевая фосфатная группа переносится с АТФ на глутамат с образованием высокоэнергетического смешанного ангидрида. Далее фосфатная группа промежуточного продукта вытесняется NH3 с образованием глутамина и свободного фосфата. Баланс и величина ДGo суммарной реакции соответствуют сумме балансов и значений свободных энергий отдельных реакций.
Биологические мембраны содержат «ионные каналы», по которым отдельные ионы избирательно проникают через мембрану. Проницаемость и полярность мембраны зависят от электрохимического градиента, т. е. от концентраций ионов по обе стороны мембраны (концентрационного градиента) и от разности электрических потенциалов между внутренней и внешней сторонами мембраны (мембранного потенциала). На внутренней стороне плазматической мембраны преобладает избыток отрицательных зарядов. Потенциал покоя обеспечивается, прежде всего, катионами Na+ и K+, а также органическими анионами и ионом Cl-. Распределение ионов между внешней средой и внутренним объемом клетки описывается уравнением Нернста:
где ДШG - трансмембранный потенциал (в вольтах, В), т.е. разность электрических потенциалов между двумя сторонами мембраны при отсутствии транспорта ионов через мембрану (потенциал равновесия).
Ионы гидроксония («H+-ионы») также могут формировать электрохимический градиент. свободная энергия переноса протона (разность между электрохимическими потенциалами протонов на двух сторонах мембраны) зависит от градиента концентрации, т. е. от разности рН (ДpH) по ту и другую стороны мембраны. Кроме того, определенный вклад вносит и трансмембранный потенциал ДШ. Обе эти величины формируют протондвижущую силу Дp, являющуюся мерой работы ДШG , которую может совершать H+-градиент.
Образование протонного градиента в дыхательной цепи также сопряжено с окислительно-восстановительным процессом:
Механизм регуляции образования и потребления АТФ называется дыхательным контролем. Он основан на сопряжении упомянутых процессов с общими коферментами и другими факторами. В отсутствие АДФ АТФ-синтаза не в состоянии использовать протонный градиент на внутренней митохондриальной мембране. Это в свою очередь тормозит электронный перенос в дыхательной цепи, вследствие чего НАДН не может быть вновь окислен в НАД+. Возникающее в результате высокое соотношение НАДН/НАД+ тормозит цитратный цикл. И наоборот, высокие скорости потребления АТФ стимулируют усвоение пищи и дыхательную цепь по тому же механизму.
Если создание протонного градиента подавлено, процессы окисления субстрата и переноса электронов протекают значительно быстрее, чем обычно. При этом вместо синтеза АТФ выделяется тепло.
2. Термодинамика биологических систем
Термодинамика является разделом физики, в котором изучают энергию, её передачу из одного места в другое и преобразование из одной формы в другую. Термодинамика основана на наиболее общих принципах, которые являются универсальными и базируются на опытных данных многих наук.
Одним из основных специфических свойств живых существ является их способность превращать и хранить энергию в различных формах. Все биологические объекты для поддержания жизни требуют поступления энергии. Все биологические процессы связаны с передачей энергии. Растения способны получаемую ими энергию солнца накапливать в процессе фотосинтеза в форме энергии химических связей органических веществ. Животные используют энергию химических связей органических веществ, получаемых с пищей. Все процессы превращения энергии в растениях и животных происходят в пределах ограничений термодинамических принципов. Основные принципы термодинамики универсальны для живой и неживой природы.
Термодинамика использует понятие системы. Любая совокупность изучаемых объектов может быть названа термодинамической системой. Примерами систем могут служить клетка, сердце, организм, биосфера и т.п.
Существует три вида термодинамических систем в зависимости от их взаимодействия с окружающей средой:
Изолированные системы не обмениваются с внешней средой ни энергией, ни веществом. Таких систем в реальных условиях не существует, но понятие изолированной системы используют для понимания главных термодинамических принципов.
Закрытые системы обмениваются со средой энергией, но не веществом. Примером такой системы может служить закрытый термос с налитым в него чаем.
Открытые системы обмениваются с внешней средой как энергией, так и веществом. Все живые существа относятся к открытым термодинамическим системам. Классическая термодинамика не рассматривает поведение отдельных атомов и молекул, а стремится описать состояние термодинамических систем с помощью макроскопических переменных величин, которые называются параметрами состояния. Такими параметрами являются температура, объем, давление, химический состав, концентрация и т.п., то есть такие физические величины, с помощью которых можно описать состояние конкретной термодинамической системы в данное время.
2.1 Термодинамическое равновесие
Термодинамическое равновесие является состоянием системы, в котором параметры состояния не изменяются во времени. Это полностью стабильное состояние, в котором система может находиться в течение неограниченного периода времени. Если изолированная система выведена из равновесия, она стремится возвратиться к этому состоянию самопроизвольно.
Например, если в термос, заполненный горячей водой, температура которой в каждой точке одинакова, бросить кусочек льда, то температурное равновесие нарушится и появится различие температур в объёме жидкости. Известно, что передача тепла будет происходить из области с более высокой температуры в область с более низкой температурой, пока постепенно во всём объёме жидкости не установится одинаковая температура. Таким образом, разница температур исчезнет, и равновесие восстановится.
Другим примером является концентрационное равновесие. Предположим, что в изолированной системе существует различие концентрации некоторого вещества. Оно вызывает перемещение вещества, которое продолжается до тех пор, пока не установится состояние равновесия, при котором концентрация вещества в пределах всей системы будет одинаковой.
2.2 Внутренняя энергия, работа и тепло
Для понимания термодинамических принципов очень важными являются понятия энергии, работы и теплоты.
Энергия в широком значении - способность системы выполнять некоторую работу. Существует механическая, электрическая, химическая энергия и т.п.
Внутренняя энергия системы - сумма кинетической и потенциальной энергии всех молекул, составляющих систему. Величина внутренней энергии газа зависит от его температуры и числа атомов в молекуле газа. В одноатомных газах (например, гелии) внутренняя энергия является действительно суммой кинетической энергии молекул. В полиатомных газовых молекулах атомы могут вращаться и вибрировать. Такая молекула будет обладать дополнительной кинетической энергией.
В твердых веществах и жидкостях взаимодействие между молекулами также способствует увеличению внутренней энергии. Общая энергия системы складывается из её внутренней энергии и кинетической и потенциальной энергии системы, взятой в целом. Величина внутренней энергии зависит от параметров состояния термодинамической системы. Абсолютная величина внутренней энергии не может быть определена, но физический смысл имеет изменение внутренней энергии, которое может быть измерено.
Энергия может накапливаться и отдаваться системой. Она может передаваться от одной системы к другой. Есть две формы передачи энергии: работа и теплота. Эти величины не являются параметрами состояния системы, так как зависят от пути процесса, в ходе которого изменяется энергия системы.
Теплота является энергией, переданной от одной системы другой из-за разницы их температур. Есть несколько путей теплопередачи: теплопроводность, конвекция и излучение.
Теплопроводность - процесс теплопередачи между объектами при их непосредственном контакте. Процесс происходит из-за столкновения молекул, в результате чего они передают избыточную энергию друг другу.
Конвекция - это процесс теплопередачи с одного объекта на другой движением жидкости или газа. Как электропроводность, так и конвекция требуют присутствия некоторого вещества.
Однако теплота может передаваться и через вакуум. Примером этому служит передача солнечной энергии через космическое пространство к Земле. Этот процесс называется излучением, при котором теплота передаётся электромагнитными волнами разной длины волны.
Другой формой передачи энергии от одной термодинамической системы другой является работа, которая совершается над системой при действии определённых сил или в самой системе. Путь совершения работы может быть различным. Например, газ в цилиндре может быть сжат поршнем или совершать расширение против сил давления поршня; жидкость может быть приведена в движение, а по твердому телу можно колотить молотом.
В биологических системах совершаются различные формы работы: механическая работа, выполняемая против механических сил; осмотическая работа, состоящая в транспорте различных веществ благодаря разности их концентраций; электрическая работа, заключающаяся в ионном транспорте в электрическом поле и т.п.
3. Первый закон термодинамики
Первый закон термодинамики является законом сохранения энергии. Он указывает, что общая энергия в изолированной системе - величина постоянная и не изменяется во времени, а лишь переходит из одной формы другую. Когда в системе происходит некоторый процесс, сумма всей энергии, переданной через границу системы (теплотой или работой), равна общему изменению энергии этой системы.
Первый закон термодинамики (1) связывает изменение внутренней энергии системы dU, теплоту ДQ, переданную системе, и работу ДA, совершённую системой:
ДQ =ДU + ДA (1)
Это уравнение является математическим выражением первого закона термодинамики. При передаче теплоты в систему ДQ положительно (при передаче теплоты системой ДQ отрицательно). Работа, совершённая системой считается положительной (работа, совершённая над системой - отрицательна).
Смысл первого закона термодинамики можно понять, используя в качестве простого примера газ, закрытый в цилиндре с установленным подвижным поршнем. Если мы добавляем теплоту к газу, но не допускаем перемещения поршня, внутренняя энергия и, следовательно, температура газа возрастёт. Внутренняя энергия газа может быть повышена при его сжатии поршнем. Если при нагревании газа мы позволяем ему расширяться (не удерживаем поршень), теплота, которую мы сообщаем газу, частично расходуется на увеличение его внутренней энергии, а частично - на совершение внешней работы, в результате которой поршень будет подниматься.
3.1 Первый закон термодинамики живых организмов
В 19 столетии было доказано экспериментально, что первый закон термодинамики применим к процессам, которые происходят в биологических системах. термодинамика энергия тепло организм
Поступление пищи обеспечивает энергию, которая используется для выполнения различных функций организма или сохраняется для последующего использования. Энергия высвобождается из пищевых продуктов в процессе их биологического окисления, которое является многоступенчатым процессом.
Энергия пищевых продуктов используется в клетках первоначально для синтеза макроэргических соединений - например, аденозинтрифосфорной кислоты (ATФ). ATФ, в свою очередь, может использоваться как источник энергии почти для всех процессов в клетке.
Пищевые вещества окисляются вплоть до конечных продуктов, которые выделяются из организма. Например, углеводы окисляются в организме до углекислого газа и воды. Такие же конечные продукты образуются при сжигании углеводов в калориметре:
C6H12O6 + 6O2 = 6CO2 + 6H2O
Величина энергии, высвобождаемой из каждого грамма глюкозы в этой реакции, составляет 4,1 килокалории (кКал). Столько же энергии, образуется при окислении глюкозы в живых клетках, несмотря на то, что процесс окисления в них является многоступенчатым процессом и происходит в несколько стадий. Этот вывод основан на принципе Гесса, который является следствием первого закона термодинамики: тепловой эффект многоступенчатого химического процесса не зависит от его промежуточных этапов, а определяется лишь начальным и конечным состояниями системы.
Таким образом, исследования с помощью калориметра показали среднюю величину физиологически доступной энергии, которая содержится в 1грамме трех пищевых продуктов (в килокалориях): углеводы - 4,1; белки - 4,1; жиры - 9,3.
С другой стороны, в конечном итоге вся энергия, поступившая в организм, превращается в теплоту. Также при образовании АТФ лишь часть энергии запасается, большая - рассеивается в форме тепла. При использовании энергии ATФ функциональными системами организма большая часть этой энергии также переходит в тепловую.
Оставшаяся часть энергии в клетках идёт на выполнении ими функции, однако, в конечном счёте, превращается в теплоту. Например, энергия, используемая мышечными клетками, расходуется на преодоление вязкости мышцы и других тканей. Вязкое перемещение вызывает трение, что приводит к образованию тепла.
Другим примером является расход энергии, передаваемой сокращающимся сердцем крови. При течении крови по сосудам вся энергия превращается в тепло вследствие трения между слоями крови и между кровью и стенками сосудов.
Следовательно, по существу вся энергия, потраченная организмом, в конечном счете, преобразуется в теплоту. Из этого принципа существует лишь единственное исключение: в случае, когда мышцы выполняют работу над внешними телами.
Если человек не выполняет внешней работы, то уровень высвобождения организмом энергии можно определить по величине общего количества теплоты, выделенной телом. Для этого применяют метод прямой калориметрии, для реализации которого используют большой, специально оборудованный калориметр. Организм помещают в специальную камеру, которая хорошо изолирована от среды, то есть не происходит обмена энергией с окружающей камеру средой. Количество теплоты, выделенной исследуемым организмом, можно точно измерить. Эксперименты, выполненные этим методом, показали, что количество энергии, поступающей в организм, равно энергии, выделяющейся при проведении калориметрии.
Прямая калориметрия в проведении трудоёмка, поэтому в настоящее время используют метод непрямой калориметрии, который основан на вычислении энергетического выхода организма по использованию им кислорода.
4. Второй закон термодинамики
Первый закон термодинамики утверждает только о сохранении энергии, но не указывает направления, в котором могут осуществляться термодинамические процессы. Возможное направление термодинамических процессов является предметом второго закона термодинамики.
Второй закон термодинамики указывает, что все реальные процессы (в том числе в биологических системах), сопровождаются рассеянием некоторой части энергии в теплоту. Все формы энергии (механическая, химическая, электрическая и т.п.) могут быть превращены в теплоту без остатка. Но сама теплота не может превращаться полностью в другие формы энергии. Не существует двигателя или процесса, который бы преобразовывал теплоту в другую форму энергию с 100% эффективностью. Как известно, рассеяние теплоты означает энергетическое разложение. Теплота - деградированная форма энергии, поскольку термическое движение молекул беспорядочный и вероятностный процесс. Таким образом, энергетическое рассеивание в форме теплоты необратимо.
Согласно второму закону термодинамики, каждый реальный процесс, происходящий в термодинамической системе, может осуществляться только в одном направлении. Противоположный процесс, при котором как система, так и окружающая среда возвращались бы в их первоначальные состояния, невозможен.
Одна из формулировок второго закон термодинамики (Клазиуса) указывает, что теплота не может передаваться самопроизвольно от тела, обладающего более низкой температурой, телу с более высокой температурой.
Любой реальный процесс является в той или иной мере необратимым.
4.1 Второй закон и живые организмы
В живых организмах в ходе их роста и развития может происходить увеличение упорядоченности, которое, казалось бы, противоречит второму закону термодинамики. Однако противоречие это кажущееся.
С одной стороны, понятие энтропии вообще целесообразно использовать, когда речь идет о порядке в макроскопическом смысле о дифференциации клеток, специализации клеточных структур и т.д. С другой стороны, организм постоянно совершает работу и растет, следовательно, общее количество свободной энергии в нем должно увеличиваться, что на первый взгляд противоречит второму закону термодинамики. Свободная энергия не может увеличиваться лишь в изолированных системах. Ни один живой организм не является изолированной системой. Организм питается и с пищей (а растения и со светом) потребляют свободную энергию, которую потом расходует. В полном смысле изолированной можно считать систему организм - среда. Внутри такой системы в её «живой» части, т.е. в организме, свободная энергия может увеличиваться, а энтропия - соответственно уменьшаться, но при непременном условии одновременного его увеличения в неживой части системы. Так, например, развитие зеленых растений на Земле происходило благодаря увеличению энтропии в системе Солнце - Земля. Известно, что и в состоянии покоя, и при выполнении работы может происходить рост и развитие организма, но одновременно идет непрерывное выделение тепла живыми организмами. Это теплота диссипации представляет собой результат окисления веществ, заключенных в пище, которое сопровождается ростом энтропии, значительно большим, чем снижение энтропии за счет роста организма и дифференцировки его клеток.
Направление спонтанных процессов в изолированных системах характеризуется параметром состояния, который называется энтропией (из греч."преобразование"). Изменение энтропии (2) системы dS определяется отношением теплоты dQ, введённой в систему или выведенного из системы, к абсолютной температуре T системы, при которой этот процесс происходит:
dS = dQ/T (2)
Энтропия изолированной системы возрастает, если система стремится в состояние равновесия, и достигает своей максимальной величины в этом состоянии. Энтропия возрастает во всех реальных термодинамических процессах.
Энтропия системы имеет тесное отношение к показателю упорядоченности или беспорядка составляющих системы. Согласно принципу Больцмана (3), энтропия системы S в данном состоянии пропорциональна термодинамической вероятности W этого состояния:
S = k ln W (3), где k - константа Больцмана.
Термодинамическая вероятность является числом микросостояний системы, посредством которых реализуется данное макросостояние системы. Чем больше возможно микросостояний (вариантов расположения частиц), тем более неупорядочена система, тем больше - величины W и S.
Каждая система стремится к переходу из менее вероятного высокоупорядоченного состояния в статистически более вероятные состояния, характеризующиеся беспорядочным расположением молекул. Можно сказать, что каждая система характеризуется тенденцией самопроизвольного перехода к состоянию максимального молекулярного беспорядка или хаоса.
Состояние каждой термодинамической системы может полностью определяться с помощью термодинамических потенциалов. Каждому из них приписывается определенный набор независимых параметров состояния. Кроме упомянутой выше внутренней энергии U, к термодинамическим потенциалам относят: энтальпию Н, свободную энергию Гельмгольца F, свободную энергию Гиббса G. Они могут быть определены с помощью формул, где P - давление, V - объем, S - энтропия и T - температура.
H = U + PV (4)
F = U - ST (5)
G = U + PV - ST (6)
Свободная энергия Гиббса соответствует состоянию системы, при котором давление и температура являются постоянными. Поэтому этот термодинамический потенциал употребляют для описания биологических систем. Полезная работа в таких системах выполняется за счет уменьшения потенциала Гиббса.
Величина свободной энергии Гиббса, приходящейся на один ион вещества, называется электрохимическим потенциалом, который включает химическую, осмотическую и электрическую составляющие энергии:
м~ = м0 + RT ln C + zFц (7)
здесь м0 - стандартный электрохимический потенциал, зависящий от химической природы вещества; C - концентрация вещества, R - универсальная газовая постоянная, T - термодинамическая температура, z - электрический заряд частицы, F - константа Фарадея, ц - электрический потенциал.
Электрохимический потенциал натрия, калия и некоторых других веществ играет решающую роль в таком важном процессе как перенос веществ в мембранах клеток.
Термодинамика равновесных систем основана на принципах, которые в известной мере идеализируются. Биологические объекты не находятся в состоянии равновесия. Процессы, проходящие в таких системах, являются необратимыми. Термодинамика неравновесных процессов основана на таких принципах и понятиях как линейные соотношения, производство энтропии, стационарное состояние, теорема Пригожина.
Заключение
Любой организм постоянно совершает работу: синтез молекул, входящих в состав его клеток, поглощение извне необходимых ему веществ и выброс различных шлаков; многие организмы способны также к перемещению в пространстве, активному восприятию внешнего мира и воздействию на него. Для совершения любой работы требуется энергия. Способ получения энергии связан с типом питания, по которому группы организмов делят на автотрофов и гетеротрофов. При всех типах энергетического обмена энергия запасается в живой клетке в виде макроэргических соединений. В клетке постоянно происходит метаболизм. Метаболизмом называется вся совокупность химических реакций в клетке. Метаболизм представляет собой высококоординированную и целенаправленную клеточную активность, обеспечиваемую участием многих мультиферментных систем.
Энергия макроэргических связей используется для совершения любой работы: активации соединений (например, глюкозы, чтобы могла начаться цепь ее окислительных превращений), синтеза биополимеров (нуклеиновых кислот, белков, полисахаридов), избирательного поглощения веществ из окружающей клетку среды и выброса из клетки ненужных продуктов, мышечного сокращения и восстановления активного состояния организма и т.д. Запас этих соединений позволяет организму быстро реагировать на изменение внешних условий и совершать физическую работу. При спортивной тренировке содержание макроэргических соединений в мышцах и скорость их образования возрастают. Есть и другие формы запасания энергии. Во-первых, это разность электрических потенциалов на биологических мембранах, которая может быть использована для синтеза макроэргических соединений и на поддержание которой клетке приходится расходовать энергию. Во-вторых, поскольку любой организм способен окислять углеводы и жиры с образованием макроэргических соединений, то можно считать, что жировые капли, зерна крахмала, частицы гликогена - это не только запасы пластического («строительного») материала, но и запасы энергии, только в более инертной и менее доступной для быстрого использования форме, чем макроэргические соединения.
Список использованных источников
1. Антонов В.Ф. Физика и биофизика. Курс лекций для студентов медицинских вузов / В.Ф. Антонов, А.В. Коржуев. - М.: ГЭОТАР-МЕД, 2004. - 192 с.
2. Волькенштейн, М.В. Биофизика / М.В. Волькенштейн. - М.: Наука. Гл. ред. физ.-мат. лит., 1988. - 592 с.
3. Волькенштейн, М.В. Молекулярная биофизика / М.В. Волькенштейн. - М.: Наука. Гл. ред. физ.-мат. лит., 1975. - 615 с.
4. Волькенштейн, М.В. Общая биофизика / М.В. Волькенштейн. - М.: Наука. Гл. ред. физ.-мат. лит., 1978. - 598 с.
5. Волькенштейн, М.В. Физика и биология / М.В. Волькенштейн. - М.: Наука, 1980. - 152 с.
6. Ремизов, А.Н. Медицинская и биологическая физика: учебник / А.Н. Ремизов. - М.: ГЭОТАР-Медиа, 2013. - 648 с.
7. Рубин, А.Б. Биофизика / А.Б. Рубин. - М.: МГУ, 1999. - 448 с.
8. Черныш, А.М. Биофизика / А.М. Черныш, В.И. Пасечник. - М.: Гуманит. изд. центр ВЛАДОС, 2003. - 288 с.
Размещено на Allbest.ru
...Подобные документы
Первое начало термодинамики. Однозначность внутренней энергии как функции термодинамического состояния. Понятие энтропии. Второе начало термодинамики для равновесных систем. Третье начало термодинамики.
лекция [197,4 K], добавлен 26.06.2007Кинетическая энергия беспорядочного движения частиц. Зависимость внутренней энергии от макроскопических параметров. Передача энергии от одного тела к другому без совершения работы. Удельная теплота плавления и парообразования. Первый закон термодинамики.
контрольная работа [563,0 K], добавлен 14.10.2011Основные понятия. Температура. Первый закон термодинамики. Термохимия. Второй закон термодинамики. Равновесие в однокомпонентных гетерогенных системах. Термодинамические свойства многокомпонентных систем. Растворы. Химический потенциал.
лекция [202,7 K], добавлен 03.12.2003История развития термодинамики. Свойства термодинамических систем, виды процессов. Первый закон термодинамики, коэффициент полезного действия. Содержание второго закона термодинамики. Сущность понятия "энтропия". Особенности принципа возрастания энтропии.
реферат [21,5 K], добавлен 26.02.2012Работа идеального газа. Определение внутренней энергии системы тел. Работа газа при изопроцессах. Первое начало термодинамики. Зависимость внутренней энергии газа от температуры и объема. Основные способы ее изменения. Сущность адиабатического процесса.
презентация [1,2 M], добавлен 23.10.2013Первый закон термодинамики. Обратимые и необратимые процессы. Термодинамический метод их исследования. Изменение внутренней энергии и энтальпии газа. Графическое изображение изотермического процесса. Связь между параметрами газа, его теплоемкость.
лекция [438,5 K], добавлен 14.12.2013Вариационная формулировка первого начала термодинамики. Вариационное уравнение Седова и Лагранжа в механике сплошной среды. Принцип минимума потенциальной энергии и дополнительной работы. Малые отклонения от положения термодинамического равновесия.
курсовая работа [815,3 K], добавлен 05.01.2013Первый закон термодинамики. Изотермический, изобарический, изохорический и адиабатический процессы. Первое начало термодинамики. Электролиты. Причины диссоциации. Факторы, влияющие на степень диссоциации. Электропроводность стекла при нагревании.
реферат [1,1 M], добавлен 11.02.2009Изучение истории формирования термодинамики как научной дисциплины на основе молекулярно-кинетической теории. Ознакомление с содержанием теоремы сохранения, превращения энергии (Гельмгольц, Майер, Джоуль) и законом возрастания энтропии (Клаузиус, Томсон).
контрольная работа [44,4 K], добавлен 03.05.2010Использование энергии топлива в работе различных машин, аппаратов, энергетических и технологических установок. Определения термодинамики: второй закон, энтропия, расчет ее изменения. Абсолютная энтропия, постулат Планка; необратимость тепловых процессов.
курсовая работа [520,7 K], добавлен 08.01.2012Второй закон термодинамики: если в системе нет равновесия, процессы протекают в направлении, при котором система приблизится к равновесию. Превращение работы в теплоту. Два источника теплоты – с высокой температурой и с низкой. Сжатие газа в компрессорах.
реферат [143,4 K], добавлен 25.01.2009Термодинамика - раздел физики об общих свойствах макроскопических систем с позиций термодинамических законов. Три закона (начала) термодинамики в ее основе. Теплоемкость газа, круговые циклы, энтропия, цикл Карно. Основные формулы термодинамики.
реферат [1,7 M], добавлен 01.11.2013Передача энергии от одного тела к другому. Внутренняя энергия и механическая работа. Первое начало термодинамики. Формулировки второго закона термодинамики. Определение энтропии. Теоремы Карно и круговые циклы. Процессы, происходящие во Вселенной.
реферат [136,5 K], добавлен 23.01.2012История развития термодинамики, ее законы. Свойства термодинамических систем, виды основных процессов. Характеристика первого и второго законов термодинамики. Примеры изменения энтропии в системах, принцип ее возрастания. Энтропия как стрела времени.
реферат [42,1 K], добавлен 25.02.2012Понятие теплообмена как физического процесса передачи тепловой энергии от более горячего тела к холодному либо непосредственно, либо через разделяющую (тела или среды) перегородку из какого-либо материала. Первый закон термодинамики. Закон Джоуля–Ленца.
презентация [687,8 K], добавлен 10.09.2014Анализ механической работы силы над точкой, телом или системой. Характеристика кинетической и потенциальной энергии. Изучение явлений превращения одного вида энергии в другой. Исследование закона сохранения и превращения энергии в механических процессах.
презентация [136,8 K], добавлен 25.11.2015Исторические аспекты термодинамики, ее основные понятия. Закон состояния (закон постоянства субстанции). Закон связи причины и действия. Закон взаимодействия. Современные проблемы термодинамики. Синергетика Хакена. Разбегание галактик, открытое Хабблом.
курсовая работа [70,2 K], добавлен 27.02.2013Взаимосвязь внутренней энергии и теплоты газа. Первое начало термодинамики. Общее понятие о теплоемкости тела. Энтропия как мера необратимого рассеяния энергии или беспорядка. Адиабатический процесс: уравнение, примеры. Политропные и циклические процессы.
презентация [889,7 K], добавлен 29.09.2013Понятие и предмет термодинамики. Определение объемного состава и средней молярной массы смеси, а также вычисление парциальных объемов компонентов. Характеристика фазового равновесия и фазовых переходов. Основы введения в химическую термодинамику.
контрольная работа [328,4 K], добавлен 29.03.2015Термодинамика - учение об энергии и фундаментальная общеинженерная наука. Термодинамическая система и параметры ее состояния: внутренняя энергия, энтальпия. Закон сохранения энергии. Смеси идеальных газов. Задачи по тематике для самостоятельного решения.
дипломная работа [59,9 K], добавлен 25.01.2009