Электрические источники света: люминесцентные лампы

Принцип работы газоразрядной ртутной лампы низкого давления. Анализ принципа запуска лампы дневного света с электромагнитным балластом. Международная маркировка по цветопередаче и цветовой температуре. Характеристика основных причин выхода из строя.

Рубрика Физика и энергетика
Вид контрольная работа
Язык русский
Дата добавления 30.03.2020
Размер файла 256,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Частное учреждение профессионального образования

Юридический полицейский колледж

Якутский филиал

Контрольная работа

На тему: «Электрические источники света: люминесцентные лампы. Их устройство и пожарная опасность»

Выполнил:

Михайлов А.А.

2020 г

Введение

Люминесцемнтная лампа -- газоразрядный источник света, в котором видимый свет излучается в основном люминофором, который в свою очередь светится под воздействием ультрафиолетового излучения разряда; сам разряд тоже излучает видимый свет, но в значительно меньшей степени. Световая отдача люминесцентной лампы в несколько раз больше, чем у ламп накаливания аналогичной мощности. Срок службы люминесцентных ламп может в 20 раз превышать срок службы ламп накаливания при условии обеспечения достаточного качества электропитания, балласта и соблюдения ограничений по числу включений и выключений.

Наиболее распространены газоразрядные ртутные лампы высокого и низкого давления. Лампы высокого давления применяют в основном в уличном освещении и в осветительных установках большой мощности, в то время как лампы низкого давления применяют для освещения жилых и производственных помещений.

Первым предком лампы дневного света были газоразрядные лампы. Впервые свечение газов под воздействием электрического тока наблюдал Михаил Ломоносов, пропуская ток через заполненный водородом стеклянный шар. Считается что первая газоразрядная лампа изобретена в 1856 году. Генрих Гайсслер получил синее свечение от заполненной газом трубки, которая была возбуждена при помощи соленоида. В СССР считается изобретателем лампы академик С.И.Вавилов.

1. Принцип работы

Принцип запуска ЛДС (лампа дневного света) с электромагнитным балластом.

При работе люминесцентной лампы между двумя электродами, находящимися в противоположных концах лампы, возникает низкотемпературный дуговой разряд[3]. Лампа заполнена инертным газом и парами ртути, проходящий ток приводит к появлению УФ излучения. Это излучение невидимо для человеческого глаза, поэтому его преобразуют в видимый свет с помощью явления люминесценции. Внутренние стенки лампы покрыты специальным веществом -- люминофором, которое поглощает УФ излучение и излучает видимый свет. Изменяя состав люминофора, можно менять оттенок свечения лампы. В качестве люминофора используют в основном галофосфаты кальция и ортофосфаты кальция-цинка.

2. Маркировка

Трёхцифровой код на упаковке лампы содержит, как правило информацию относительно качества света (индекс цветопередачи и цветовой температуры).

Первая цифра -- индекс цветопередачи в 1х10 Ra (компактные люминесцентные лампы имеют 60-98 Ra, таким образом чем выше индекс, тем достоверней цветопередача)

Вторая и третья цифры -- указывают на цветовую температуру лампы.

Таким образом маркировка «827» указывает на индекс цветопередачи в 80 Ra, и цветовую температуру в 2700 К (что соответствует цветовой температуре лампы накаливания)

Кроме того, индекс цветопередачи может обозначаться в соответствии с DIN 5035, где диапазон цветопередачи 20-100 Ra поделён на 6 частей-- от 4 до 1А. ртутный лампа давление электромагнитный

Международная маркировка по цветопередаче и цветовой температуре

Код

Определение

Особенности

Применение

530

Basic warmweiЯ / warm white

Свет тёплых тонов с плохой цветопередачей. Объекты кажутся коричневатыми и малоконтрастными. Посредственная светоотдача.

Гаражи, кухни. В последнее время встречается всё реже.

640/740

Basic neutralweiЯ / cool white

«Прохладный» свет с посредственной цветопередачей и светоотдачей

Весьма распространён, должен быть заменён на 840

765

Basic Tageslicht / daylight

Голубоватый «дневной» свет с посредственной цветопередачей и светоотдачей

Встречается в офисных помещениях и для подсветки рекламных конструкций (ситилайтов)

827

Lumilux interna

Похожий на свет лампы накаливания с хорошей цветопередачей и светоотдачей

Жильё

830

Lumilux warmweiЯ / warm white

Похожий на свет галогеновой лампы с хорошей цветопередачей и светоотдачей

Жильё

840

Lumilux neutralweiЯ / cool white

Белый свет для рабочих поверхностей с очень хорошей цветопередачей и светоотдачей

Общественные места, офисы, ванные комнаты, кухни. Внешнее освещение

865

Lumilux Tageslicht / daylight

«Дневной» свет с хорошей цветопередачей и посредственной светоотдачей

Общественные места, офисы. Внешнее освещение

880

Lumilux skywhite

«Дневной» свет с хорошей цветопередачей

Внешнее освещение

930

Lumilux Deluxe warmweiЯ / warm white

«Тёплый» свет с отличной цветопередачей и плохой светоотдачей

Жильё

940

Lumilux Deluxe neutralweiЯ / cool white

«Холодный» свет с отличной цветопередачей и посредственной светоотдачей.

Музеи, выставочные залы

954, 965

Lumilux Deluxe,

Tageslicht / daylight

«Дневной» свет с непрерывным спектром цветопередачи и посредственной светоотдачей

Выставочные залы, освещение аквариумов

3. Особенности восприятия

Может показаться, что лучше всего применить для искусственного освещения лампу с высокой цветовой температурой около 6000 К, такой же, как у дневного света, однако это далеко не всегда так. Дело в том, что восприятие цвета у человека меняется в зависимости от времени суток. И лампа на 6500 К, которая прекрасно добавляет свет днем, вечером будет казаться неестественно синеватой, и тут подойдет лампа с цветностью 827 или 830. Кроме того, цветность освещения влияет и на наше настроение и на физиологию организма.

Теплый белый свет 827 лампы подготавливает наш организм к отдыху, в то время как 830 или 840 лампа будет уместна в рабочем офисе. Итальянская фирма iGuzzini даже производит специальный программируемый потолочный светильник Sivra, который меняет в течение дня яркость и спектральный состав. На общую световую обстановку в помещении влияет даже цвет обоев и покрытия пола. Например, более теплый оттенок 827 лампы в одном помещении зрительно может показаться холоднее 830 лампы в другом помещении и т.д.

4. Причины выхода из строя

Проверка электродов одной стороны на целостность. Сопротивление 9,9Щ говорит о том, что нить электрода на этой стороне цела.

Проверка электродов одной стороны на целостность. Бесконечно большое сопротивление говорит о том, что нить электродов разорвана. Вторым признаком является потемнение вблизи электрода.

Электроды люминесцентной лампы представляют собой вольфрамовые нити, покрытые пастой (активной массой) из щелочноземельных металлов. Эта паста и обеспечивает стабильный дуговой разряд и предохраняет вольфрамовые нити от перегрева. В процессе работы она постепенно осыпается с электродов, выгорает и испаряется. Особенно интенсивно она осыпается во время запуска, когда некоторое время разряд происходит не по всей площади электрода, а на небольшом участке его поверхности, что приводит к локальным перепадам температур. Отсюда потемнение на концах лампы, часто наблюдаемое ближе к окончанию срока службы. Когда паста выгорит полностью, ток лампы начинает падать, а напряжение, соответственно, возрастать.

5. Безопасность и утилизация

Все люминесцентные лампы содержат ртуть (в дозах от 1 до 70 мг), ядовитое вещество 1-го класса опасности («чрезвычайно опасные»). Эта доза может причинить вред здоровью, если лампа разбилась, и если постоянно подвергаться пагубному воздействию паров ртути, то они будут накапливаться в организме человека, нанося вред здоровью. По истечении срока службы лампу, как правило, выбрасывают куда попало. На проблемы утилизации этой продукции в России индивидуальные потребители не обращают внимания, а производители стремятся отстраниться от проблемы.

Существует несколько фирм по утилизации ламп, и юридические лица, а также индивидуальные предприниматели обязаны сдавать лампы на переработку и разрабатывать паспорт опасного отхода. Кроме того в ряде городов существуют полигоны по утилизации токсичных отходов, принимающие отходы от частных лиц бесплатно. В Москве перегоревшие люминесцентные лампы бесплатно принимаются для дальнейшей переработки в районных ДЕЗ или РЭУ, где установлены специальные контейнеры. Если лампы не принимают в ДЕЗ и РЭУ, необходимо жаловаться в управу или префектуру.

В России 3 сентября 2010 г. Председатель Правительства Владимир Путин подписал Постановление № 681 «Об утверждении Правил обращения с отходами производства и потребления в части осветительных устройств, электрических ламп, ненадлежащие сбор, накопление, использование, обезвреживание, транспортирование и размещение которых может повлечь причинение вреда жизни, здоровью граждан, вреда животным, растениям и окружающей среде».

Согласно этим правилам,

Правила ликвидации аварийных ситуаций при обращении с ртутьсодержащими отходами. В случае боя ртуть, содержащей лампы (ламп) физическим лицом в бытовых условиях, либо в случае сложного ртутного загрязнения в организации, загрязненное помещение должно быть людьми покинуто и, одновременно, должен быть организован вызов соответствующих подразделений (специализированных организаций) через Министерство Российской Федерации по делам гражданской обороны, чрезвычайным ситуациям и ликвидации последствий стихийных бедствий. После эвакуации людей должны быть приняты достаточные меры к исключению доступа на загрязненный участок посторонних лиц, а также возможные меры по локализации границ распространения ртути и ее паров. В случае единичного разрушения ртутьсодержащих ламп в организации устранение ртутного загрязнения может быть выполнено персоналом, самостоятельно с помощью, созданного для этих целей демеркуризационного комплекта состав демеркуризационного комплекта утверждается Правительством Российской Федерации по представлению Министерства Российской Федерации по делам гражданской обороны, чрезвычайным ситуациям и ликвидации последствий стихийных бедствий совместно с Федеральной службой по экологическому, технологическому и атомному надзору и Федеральной службой по надзору в сфере защиты прав потребителей и благополучия человека.

6. Пожарная опасность люминесцентных ламп

Насчет современных люминесцентных ламп и всех люминесцентных ламп с электронными ПРА(пускорегулирующий аппарат) сведений об их больших тепловых воздействиях, пока нет. Если рассмотреть возможные причины появления больших температур на люминесцентных лампах со стандартными электромагнитными ПРА. Несмотря на то, что такие ПРА в Европе уже практически полностью под запретом, у нас они еще очень и очень распространены и до их полной замены на электронные ПРА пройдет еще довольно много времени.

С точки зрения физического процесса получения света люминесцентные лампы более значительную часть электроэнергии превращают в видимый световое излучение, нежели лампы накаливания. Однако при определенных условиях, связанных с неисправностями пускорегулирующей аппаратуры люминесцентных ламп («залипание» стартера и др.), возможен их сильный нагрев (в отдельных случаях нагрев ламп возможен до 190 - 200 градусов, а дросселей - до 120).

Такие температуры на лампах являются следствием оплавления электродов. Причем, если электроды сместятся ближе к стеклу лампы, нагрев может быть еще более значительным (температура плавления электродов, в зависимости от их материал, составляет 1450 - 3300 оС). Что же касается возможной температуры на дросселе (100 - 120 оС), то она тоже является опасной, так как температура размягчения для заливочной массы по нормам - 105 оС.

Определенную пожарную опасность представляют стартеры: внутри них находятся легкосгораемые материалы (бумажный конденсатор, картонные прокладки и др.).

Правила пожарной безопасности требуют, чтобы максимальный перегрев опорных поверхностей светильников не превышал 50 градусов.

Список используемой литературы

1. Александр Гореславец Анализ рынка электронных балластов. Компания "Додэка Электрик" (20 сентября 2005).

2. Источники оптического излучения -- статья из Физической энциклопедии

3. Выбор, применение и ремонт компактных электронных люминесцентных ламп.

4. Параметры люминесцентных ламп для аквариума

5. [Денисов В.П., Мельников Ю.Ф. Технология и производство электрических источников света - М., Энергоатомиздат, 1983]

6. Освещение, которое продает

7. Каталог Osram: Источники света, стр. 6.06

8. Лампа сгорела -- выбросить некуда // KP.RU -- Москва

Размещено на Allbest.ru

...

Подобные документы

  • Характеристика особенностей и видов источников искусственного света. Принцип действия галогеновых ламп, в баллон которых добавлен буферный газ: пары галогенов. Лампы накаливания и люминесцентные лампы. Принцип запуска ЛДС с электромагнитным балластом.

    презентация [1,1 M], добавлен 14.06.2013

  • Классификация и основные параметры электрических источников света. Лампы накаливания. Люминесцентные лампы низкого и высокого давления. Схемы питания люминесцентных ламп. Основные светотехнические величины. Техника безопасности.

    курсовая работа [710,5 K], добавлен 21.09.2006

  • Установки электрического освещения в помещениях. Принцип действия и недостатки источников света. Ламы накаливания, люминесцентные лампы низкого и высокого давления, галогенные лампы, светодиодные лампы. Обслуживание осветительных электроустановок.

    курсовая работа [265,1 K], добавлен 03.01.2013

  • Сущность и физическое обоснование явления люминесценции как свечения вещества, возникающего после поглощения им энергии возбуждения, основные факторы, оказывающие на него непосредственное влияние. Люминесцентные источники света - газоразрядные лампы.

    реферат [149,4 K], добавлен 25.04.2014

  • Энергоэффективные источники света. Механизм работы энергосберегающей лампы и лампы накаливания. Преимущества использования электронных пускорегулирующих устройств. Способы экономии электроэнергии на предприятиях. Экономия электроэнергии при отоплении.

    реферат [228,4 K], добавлен 28.03.2012

  • История возникновения и устройство ламп накаливания и люминесцентной: принцип действия, устройство, условные обозначения и разновидности. Определение срока службы лампы и причин выхода ее из строя. Сравнение электронного и электромагнитного балласта.

    курсовая работа [399,5 K], добавлен 22.12.2010

  • Основные сведения о природе и свойствах ультрафиолетового излучения. Обозначение области применения УФ-света в медицине в лечебных, профилактических и бактерицидных целях. Рассмотрение источников излучения и принципа работы ртутно-кварцевой лампы.

    методичка [175,8 K], добавлен 30.04.2014

  • Принцип действия светодиода и лампы накаливания. Вывод света из полупроводника. Физические основы работы лампы накаливания. Явление инжекции неосновных носителей. Основные преимущества светильника на светоизлучающих диодах перед ламповыми светильниками.

    реферат [361,2 K], добавлен 03.07.2015

  • Исследование основных первичных источников света. Типичные источники излучения. Прямой солнечный свет. Виды ламп накаливания общего и специального назначения. Сущность и основные показатели световой отдачи. Излучение черного тела. Лампы с отражателем.

    презентация [552,0 K], добавлен 26.10.2013

  • Основные преимущества люминесцентных ламп перед лампами накаливания. Параметры и виды люминесцентных ламп, правила их утилизации и особенности маркировки. Запуск и подключение, область применения. История и принцип работы. Причины выхода из строя.

    реферат [344,3 K], добавлен 06.01.2011

  • Определение цветовой температуры кинопроекционной лампы, напряжение на которой меняется с помощью переменного резистора. Снятие показаний фотоэлемента для синего и красного фильтров. Построение зависимости цветовой температуры лампы от напряжения.

    лабораторная работа [241,0 K], добавлен 10.10.2013

  • Источники тепла и энергий химической природы, их неэффективность. Изобретение восковой свечи и развитие электрических источников света. Создание первой дуговой лампы. Разновидности ламп накаливания и их широкое применение, характеристика светодиодов.

    реферат [22,1 K], добавлен 16.01.2010

  • Путь развития искусственного освещения. Проектирование англичанином Деларю первой лампы накаливания (с платиновой спиралью). Г. Гебель - изобретатель электрической лампы накаливания. Томас Эдисон - запатентовал лампу накаливания с угольной нитью.

    презентация [1,6 M], добавлен 12.08.2012

  • История разработки лампы накаливания, описание ее физического принципа действия. Конструктивные особенности устройства, используемые материалы. Коэффициент полезного действия и срок службы лампы. Современные варианты ламп данного типа и их разнообразие.

    реферат [410,5 K], добавлен 19.04.2012

  • Лампы общего назначения, их принцип действия, конструкция. Преимущества и недостатки ламп накаливания. Декоративные и иллюминационные лампы. Ограничения импорта, закупок и производства ламп накаливания. Утилизация отработавших люминесцентных ламп.

    реферат [1020,9 K], добавлен 08.02.2012

  • Сущность и способы получения спектра, особенности его формы в изолированных атомах и разреженных газах. Принцип работы и назначение спектрографов, их структура и компоненты. Методика возбуждения излучения неоновой и ртутной ламп и лампы накаливания.

    лабораторная работа [402,2 K], добавлен 26.10.2009

  • Главные отличия лампы накаливания от энергосберегающей. Компактная люминисцентная лампа, устройство. Преимущества и недостатки энергосберегающих ламп. Главные характеристики и факторы, на которые необходимо обратить внимание при покупке лампочек.

    презентация [3,6 M], добавлен 28.01.2016

  • Лампы бегущей волны, основные принципы их работы. Параметры и особенности конструкции ЛБВ. Системы формирования магнитного поля в ЛБВ. Методы магнитной фокусировки электронного луча. Модуляция с помощью электрода "штырь-кольцо". Методы повышения КПД ЛБВ.

    лекция [297,8 K], добавлен 16.12.2010

  • Технические характеристики, конструкция и принцип действия лампы накаливания общего назначения "Искра". Преимущества энергосберегающих ламп Eurolamp: светоотдача, срок службы, низкая теплоотдача, распределение света и возможность выбора цвета освещения.

    лабораторная работа [1,5 M], добавлен 15.10.2013

  • Технико-эксплуатационные характеристики металлогалогенной лампы. Срок службы, безопасность и особенности эксплуатации. Структура рынка металлогалогенных ламп в РФ. Основные организации, которые занимаются продажей металлогалогенных ламп в г. Саранске.

    реферат [23,9 K], добавлен 27.12.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.