Парниковый газ

Удержание тепловой энергии у поверхности Земли. Распределение химических элементов в сухом воздухе атмосферы. Причины парникового эффекта на Венере. Роль в сохранении тепла у газов. Длительность излучения определенной порции инфракрасных тепловых фотонов.

Рубрика Физика и энергетика
Вид статья
Язык русский
Дата добавления 30.03.2020
Размер файла 24,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ПАРНИКОВЫЙ ГАЗ?

Семен А.

Николаев

Россия, Санкт-Петербург

Октябрь 13, 2010

Речь пойдёт только лишь о физических величинах (удельная теплоёмкость) и молекулярно-кинетической теории. Глобальное потепление - это другая тема.

С чего вдруг стал парниковым газом?

У какого “учёного” хватило ума назвать парниковым газом?

Парниковый эффект - это удержание тепловой энергии (инфракрасных фотонов) у поверхности Земли. Не дать тепловой энергии (инфракрасным фотонам) излучиться в космическое пространство.

Проанализируйте, что может удержать тепловую энергию (инфракрасные фотоны) у поверхности Земли.

Первый случай. У Вас безоблачная ночь. Утром посмотрите на градусник.

Второй случай. У Вас день был таким же, как и в первом случае, но к ночи набежали облака. Утром посмотрите на градусник.

Совершенно очевидно, что удерживают тепло (инфракрасные фотоны) облака, которые состоят из капелек воды.

А при чём тут ?

У воды (жидкости) самая большая удельная теплоёмкость, которая не идёт в сравнения со всеми газами, в том числе и .

Именно, теплоёмкость воды в облаках обязана тому, что облака сначала поглотили инфракрасные тепловые фотоны, излученные поверхностью Земли. А потом излучили их, как и положено, во все стороны. Получилось так, что половина инфракрасных тепловых фотонов вернулась к поверхности Земли.

А какова роль в сохранении тепла у газов, в том числе ?

Никакая.

Все газы прозрачны для инфракрасного и видимого диапазонов. Не прозрачны только облака, в виде капелек воды.

На основании этого с уверенностью можно сказать, что нынешнее потепление на Земле связано с периодом повышенной солнечной активности.

Приписывать нынешнее потепление на Земле другим причинам, в том числе, незначительному повышению процентного содержания СО2 в атмосфере (Киотский протокол), неправильно и невежественно.

С чего вдруг СО2 стал парниковым газом? У какого “учёного” хватило ума назвать СО2 парниковым газом?

Ведь эффектом удержания тепла на поверхности Земли обладают только облака, состоящие из капелек воды, так как самая большая удельная теплоёмкость у капелек воды и ни в какое сравнение не идёт с удельной теплоёмкостью газов.

Если в грамм-моле воды содержится молекул, то в капельке будет в тысячу или миллион раз меньше.

Тогда в капельке воды облаков содержится от до молекул. Кроме того, молекулы всех газов при 1 атм. имеют десятикратное расстояние между соседними молекулами газа. Как Вам нравится, тепло поглощает одна молекула газа или молекул в капельке воды. Это настолько смешно и невежественно.

ПРИМЕЧАНИЕ. “Содержание химических элементов в сухом воздухе атмосферы распределяется следующим образом. Состав сухого воздуха атмосферы по объёму:

Азот () - 78%.

Кислород () - 21%.

Аргон () - 0,9%.

Углекислый газ () - 0,03%.

Содержание водяного пара в атмосфере колеблется от 0,2% до 2,5% по объёму и зависит от широты…..”. (Из энциклопедии).

“….Азот поглощает радиацию только в ультрафиолетовой части спектра. тепловой энергия химический парниковый

В большей степени, но все же очень мало поглощает солнечную радиацию кислород - в двух узких участках видимой части спектра и в ультрафиолетовой его части.

Сильно поглощает радиацию в инфракрасной области спектра углекислый газ; но его содержание в атмосфере ничтожно, и поэтому поглощение им, в общем, очень незначительно.

Основным же поглотителем радиации в атмосфере является водяной пар, сосредоточивающийся в тропосфере и, особенно в нижней её части.

Из общего состава солнечной радиации только водяной пар поглощает значительную долю в инфракрасной области спектра……”. (Из энциклопедии).

Изложенный механизм удержания тепла объяснялся с позиций молекулярно-фотонной теории.

А как объяснить механизм удержания тепла с позиций молекулярно-кинетической теории, в которой переносчики тепловой энергии не инфракрасные фотоны, а “тепловое движение” молекул газа?

Может неправильные объяснения в пользу от этого?

Причины парникового эффекта на Венере

Оказывается, что в официальной науке доказательством парникового эффекта газа “учёные” считают высокую температуру поверхности Венеры. Чем не доказательство, атмосфера Венеры состоит на 95% из и от этого температура поверхности Венеры 450 градусов. Разве не логично?

Это не то, что не логично - это не научно.

С логикой нужно осторожно, если не в ладах с физикой.

В чём различия условий температурного режима на поверхности Венеры по сравнению с Землёй?

1. Венера находится ближе к Солнцу и получает в 2 раза больше тепла, чем Земля. Солнечная “постоянная” для Венеры 2610 Вт/м, а для Земли 1360 Вт/м.

2. Венера практически обращена только одной стороной к Солнцу. Вращение Венеры почти синхронное. Венерианский сидерический год длится 225 суток, а один оборот вокруг своей оси Венера совершает за 243 суток.

3. И, самое важное, масса атмосферы Венеры в 100 раз больше, чем у Земли. Почему это самое важное? Об этом в следующей статье “Причины удержания тепла в веществе”.

В силу этих перечисленных причин тепло, которого Венера получает больше, так как она ближе к Солнцу, да и обращена всё время одной стороной к Солнцу, а из-за большой массы атмосферы тепло не успевает излучиться в космическое пространство, и скапливается у поверхности. Установившийся тепловой режим, на стороне обращённой к Солнцу, получается 450 градусов.

При чём здесь ?

Ещё один пример не в пользу .

850 млн. лет назад в Криогении атмосфера Земли также содержала около 95% . И, как считают учёные, в это время на Земле было самое мощное похолодание, длившееся 250 млн. лет. Учёные считают также, что льдом была покрыта вся планета, в том числе и на экваторе.

Вот каков “парниковый” газ .

Ведь выходит, что от него ничего не зависит.

Причины удержания тепла в веществе

Чем больше масса тела, тем медленнее оно будет остывать.

В чём причина такого эффекта?

Причина кроется в механизме процесса теплопередачи в веществе.

1. Переизлучение инфракрасных тепловых фотонов происходит хаотично во всех направлениях.

2. Переизлучение инфракрасных тепловых фотонов происходит согласно второму началу термодинамики от более нагретого к менее нагретому.

Почему хаотично и во всех направлениях?

Итак, причина оказывается одна - излучение инфракрасных тепловых фотонов происходит хаотично во всех направлениях.

Но сначала рассмотрим один пример. Примером удержания тепла у поверхности Земли являются облака, состоящие из капелек воды. Облака поглощают инфракрасное тепловое излучение от поверхности Земли. Затем переизлучают их во все стороны. Половина инфракрасных тепловых фотонов вернётся обратно к поверхности Земли. Газ по сравнению с облаками (капельки воды) обладает очень малой теплоёмкостью и при давлении до 1 атм. довольно прозрачен для инфракрасного теплового излучения. Это доказывает то, что от Солнца сначала нагревается поверхность, а уже от поверхности конвекционным способом нагревается воздух.

Если этот механизм удержания тепла понятен, то можно переходить к рассмотрению вопроса, как протекает процесс охлаждения нагретых тел, в том числе обладающих большой массой.

Теплопередача в веществе связана с непрерывной нейтринной бомбардировкой атомов и молекул вещества.

Как происходит теплопередача в газах? Нейтрино ударяет ядро атома или молекулы газа. Молекула движется в направлении удара до столкновения с другой молекулой. При контакте они согласно второму началу термодинамики обмениваются инфракрасными тепловыми фотонами.

Аналогично теплопередача происходит в жидкостях и твёрдых телах. Нейтрино ударяет ядро атома или молекулы жидкости или твёрдого тела. Молекула совершает колебание в направлении удара. При контакте с соседней молекулой (атомом) они согласно второму началу термодинамики обмениваются инфракрасными тепловыми фотонами.

Так как нейтрино разных частот (масс, энергий) ударяют атомы и молекулы хаотично в разных направлениях, то обмен фотонами будет происходить во всех направлениях. Таким образом, движение инфракрасных тепловых фотонов из центра объекта (газообразного, жидкого или твёрдого) к поверхности объекта будет не постоянным. Около половины всегда будет переизлучаться назад к центру, то есть возвращаться.

Теперь рассмотрим динамику этого процесса.

Возьмём шар с большой массой. Разобьём его мысленно на несколько слоёв: центр, первый слой, второй слой и т.д.

Инфракрасные тепловые фотоны из центра будут излучаться в первый слой. Но половина фотонов будет возвращаться обратно в центр. Фотоны, оставшиеся в первом слое, излучатся во второй слой, но половина из них возвратится назад в первый слой. Фотоны, оставшиеся во втором слое, излучатся в третий слой, но половина их возвратится назад. Такой процесс будет происходить по всему объёму шара. Длительность излучения определённой порции инфракрасных тепловых фотонов, достигших поверхности шара и излученных вовне, будет зависеть от массы, плотности и состава вещества. Чем больше будет масса, тем дольше будет шар (тело) остывать.

Вот пример для очень массивного тела. Учёные считают, чтобы фотону из центра Солнца добраться до его поверхности требуется 1млн. лет.

Вы поняли, по какой причине стал “парниковым” газом, хотя парниковым эффектом не обладает.

Причина такова. Молекулярно-кинетическая теория, в которой подвижность молекул связана с температурой, но не связана с постулатами Н.Бора, не в состоянии объяснить причины удержания тепла. Пришлось всё свалить на .

Используемые источники

1. Николаев С.А. “Эволюционный круговорот материи во Вселенной”. 5-ое издание, СПб, 2009 г., 304 с.

Размещено на Allbest.ru

...

Подобные документы

  • Понятие солнечной радиации и ее распределение по поверхности Земли. История развития солнечной энергетики, достоинства и недостатки ее использования. Виды фотоэлектрического эффекта. Способы получения электричества и тепла из солнечного излучения.

    курсовая работа [939,1 K], добавлен 12.02.2014

  • Эффективное излучение, радиационный и тепловой баланс земной поверхности. Закономерности распространения тепла вглубь почвы. Пожарная опасность леса. Расчет температуры поверхности различных фоновых образований на основе радиационного баланса Земли.

    дипломная работа [1,9 M], добавлен 01.03.2013

  • Физико-химические основы горения, его основные виды. Характеристика взрывов как освобождения большого количества энергии в ограниченном объеме за короткий промежуток времени, его типы и причины. Источники энергии химических, ядерных и тепловых взрывов.

    контрольная работа [17,8 K], добавлен 12.06.2010

  • Принцип устройства и действия тепловой трубки Гровера. Основные способы передачи тепловой энергии. Преимущества и недостатки контурных тепловых труб. Перспективные типы кулеров на тепловых трубах. Конструктивные особенности и характеристики тепловых труб.

    реферат [1,5 M], добавлен 09.08.2015

  • Тепловой насос как компактная отопительная установка, его назначение и принцип действия, сферы и особенности применения. Внутреннее устройство теплового насоса, оценка его главных преимуществ перед традиционными методами получения тепловой энергии.

    реферат [83,3 K], добавлен 22.11.2010

  • Измерение расхода и количества тепла, поставляемого потребителю, его роль в системах энергосбережения и автоматизации тепловых сетей. Теплосчетчики как вид приборов учета тепловой энергии, общие принципы их работы. Типы теплосчетчиков и их характеристика.

    реферат [2,3 M], добавлен 24.07.2012

  • Производство электрической и тепловой энергии. Гидравлические электрические станции. Использование альтернативных источников энергии. Распределение электрических нагрузок между электростанциями. Передача и потребление электрической и тепловой энергии.

    учебное пособие [2,2 M], добавлен 19.04.2012

  • Концепция фотонов, предложенная А. Эйнштейном. Демонстрация эффекта Комптона на модели экспериментальной установке. Монохроматическое рентгеновское излучение. Объекты микромира и эффект Комптона. Биологическое действие рентгеновского излучения.

    реферат [947,7 K], добавлен 16.03.2011

  • Физика атмосферы. Спектральные исследования атмосферы Земли. Линии кислорода. Линии натрия. Линии водорода и гидроксила ОН. Атмосферный озон. Поляризационные исследования атмосферы Земли. Взаимодействии атмосферы Земли с излучением Солнца.

    реферат [44,6 K], добавлен 03.05.2007

  • Характеристика тепловой нагрузки. Определение расчётной температуры воздуха, расходов теплоты. Гидравлический расчёт тепловой сети. Расчет тепловой изоляции. Расчет и выбор оборудования теплового пункта для одного из зданий. Экономия тепловой энергии.

    курсовая работа [134,1 K], добавлен 01.02.2016

  • Жидкостные тепловые аккумуляторы. Физические основы для его создания. Аккумуляторы тепла, основанные на фазовых переходах. Особенности тепловых аккумуляторов с твёрдым теплоаккумулирующим материалом. Конструкция теплового аккумулятора фазового перехода.

    реферат [726,5 K], добавлен 18.01.2010

  • Исследование тепловых явлений, влияющих на установление температурного режима в квартире. Обзор способов теплообмена: теплопроводности, конвекции и излучения. Анализ влияния толщины стекла на скорость теплообмена. Источники тепла в современных квартирах.

    презентация [2,9 M], добавлен 13.02.2013

  • Природа и виды ионизирующих излучений. Взаимодействие электронов с веществом. Торможение атомных ядер. Зависимость линейного коэффициента ослабления гамма-излучения в свинце от энергии фотонов. Диффузия в структуре полупроводник-металл-диэлектрик.

    курсовая работа [1,2 M], добавлен 12.04.2012

  • Роль эффекта "накопления" в непрозрачном твердом теле под действием излучения лазера, с помощью регистрации ионизационного состава плазмы, эмитированных с поверхности твердых тел при многократном облучении. Использование метода масс-спектрометрии.

    статья [13,3 K], добавлен 22.06.2015

  • Расчет потребности в тепловой и электрической энергии предприятия (цеха) на технологический процесс, определение расходов пара, условного и натурального топлива. Выявление экономии энергетических затрат при использовании вторичных тепловых энергоресурсов.

    контрольная работа [294,7 K], добавлен 01.04.2011

  • Геотермальная энергия, ее получение из природного тепла Земли за счет расщепления радионуклидов в результате физико-химических процессов в земных недрах. Классификация источников геотермальной энергии. Развитие геотермальной энергетики в России.

    реферат [1,6 M], добавлен 14.08.2012

  • Характеристика возобновляемых источников энергии: основные аспекты использования; преимущества и недостатки в сравнении с традиционными; перспективы использования в России. Способы получения электричества и тепла из энергии солнца, ветра, земли, биомассы.

    курсовая работа [3,9 M], добавлен 30.07.2012

  • Общие сведения о солнце как источнике энергии. История открытия и использование энергии солнца. Способы получения электричества и тепла из солнечного излучения. Сущность и виды солнечных батарей. "За" и "против" использования солнечной энергии.

    реферат [999,0 K], добавлен 22.12.2010

  • Потребление тепловой и электрической энергии. Характер изменения потребления энергии. Теплосодержание материальных потоков. Расход теплоты на отопление и на вентиляцию. Потери теплоты с дымовыми газам. Тепловой эквивалент электрической энергии.

    реферат [104,8 K], добавлен 22.09.2010

  • Определение понятия тепловой энергии и основных ее потребителей. Виды и особенности функционирования систем теплоснабжения зданий. Расчет тепловых потерь, как первоочередной документ для решения задачи теплоснабжения здания. Теплоизоляционные материалы.

    курсовая работа [65,7 K], добавлен 08.03.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.