Кристаллическое строение химических веществ
Строение кристаллических веществ. Характеристика типов кристаллических решеток. Взаимосвязь кристаллических решеток со свойствами вещества. Типы связи между частицами в кристалле. Кристаллографические индексы Миллера. Действие межмолекулярных сил.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 10.04.2020 |
Размер файла | 931,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Введение
Любое химическое вещество образованно большим числом одинаковых частиц, которые связаны между собою. При низких температурах, когда тепловое движение затруднено, частицы строго ориентируются в пространстве и образуют кристаллическую решётку.
Кристаллическая решетка - это структура с геометрически правильным расположением частиц в пространстве. В самой кристаллической решетке различают узлы и межузловое пространство.
Одно и то же вещество в зависимости от условий (p, t,…) существует в различных кристаллических формах (т.е. имеют разные кристаллические решетки) - аллотропных модификациях, которые отличаются по свойствам.
Известно, что вещества в природе могут находиться в четырех агрегатных состояниях, а именно: в твердом, жидком, газообразном и плазменном. Два из этих состояний, жидкое и твердое, называются конденсированными. В этих состояниях возникают ансамбли сильно взаимодействующих частиц, а именно: атомов, ядер, электронов. Те из них, которые оказывают сопротивление изменению формы, называют твердыми телами. Но ощутимой границы между твердыми телами и жидкостями не существует, на их границе имеются, так называемые, аморфные тела.
В данной работе рассматриваются классификация кристаллов с разными типами связи и кристаллографические индексы Миллера. В кристаллографии принято обозначать положения атомов в узлах кристаллической решетки, кристаллографические направления и плоскости.
1.Кристаллические вещества
Твердые кристаллы - трехмерные образования, характеризующиеся строгой повторяемостью одного и того же элемента структуры (элементарной ячейки) во всех направлениях. Элементарная ячейка представляет собой наименьший объем кристалла в виде параллелепипеда, повторяющегося в кристалле бесконечное число раз.[1]
Геометрически правильная форма кристаллов обусловлена, прежде всего, их строго закономерным внутренним строением. Если вместо атомов, ионов или молекул в кристалле изобразить точки как центры тяжести этих частиц, то получится трехмерное регулярное распределение таких точек, называемое кристаллической решеткой. Сами точки называют узлами кристаллической решетки.В зависимости от того, из каких частицы построена кристаллическая решетка и каков характер химической связи между ними, выделяют различные типы кристаллов.
Атомные кристаллы состоят из отдельных атомов, объединенных ковалентными связями. Из простых веществ только бор и элементы IVA-группы имеют такие кристаллические решетки. Нередко соединения неметаллов друг с другом (например, диоксид кремния) также образуют атомные кристаллы.
Так же как и ионные, атомные кристаллы можно считать гигантскими молекулами. Они очень прочные и твердые, плохо проводят теплоту и электричество. Вещества, имеющие атомные кристаллические решетки, плавятся при высоких температурах. Они практически нерастворимы в каких-либо растворителях. Для них характерна низкая реакционная способность.
Молекулярные кристаллы построены из отдельных молекул, внутри которых атомы соединены ковалентными связями. Между молекулами действуют более слабые межмолекулярные силы. Они легко разрушаются, поэтому молекулярные кристаллы имеют низкие температуры плавления, малую твердость, высокую летучесть. Вещества, образующие молекулярные кристаллические решетки, не обладают электрической проводимостью, их растворы и расплавы также не проводят электрический ток.
Межмолекулярные силы возникают за счет электростатического взаимодействия отрицательно заряженных электронов одной молекулы с положительно заряженными ядрами соседних молекул. На силу межмолекулярного взаимодействия влияет много факторов. Важнейшими среди них является наличие полярных связей, то есть смещения электронной плотности от одних атомов к другим. Кроме того, межмолекулярное взаимодействие проявляется сильнее между молекулами с большим числом электронов. [3]
кристаллический решетка вещество
2.Характеристика кристаллических решеток
В природе существуют две разновидности твердых тел, различающиеся по своим свойствам: кристаллические и аморфные.
Кристаллические тела остаются твердыми, т.е. сохраняют приданную им форму до определенной температуры, при которой они переходят в жидкое состояние. При охлаждении процесс идет в обратном направлении. Переход из одного состояния в другие протекает при определенной температуре плавления.
Аморфные тела при нагреве размягчаются в большом температурном интервале, становятся вязкими, а затем переходят в жидкое состояние. При охлаждении процесс идет в обратном направлении.
Кристаллическое состояние твердого тела более стабильно, чем аморфное. В результате длительной выдержки при температуре, а в некоторых случаях при деформации, нестабильность аморфного состояния проявляется в частичной или полной кристаллизации. Пример: помутнение неорганических стекол при нагреве.
Кристаллические тела характеризуются упорядоченной структурой. В зависимости от размеров структурных составляющих и применяемых методов их выявления используют следующие понятия: тонкая структура, микро- и макроструктура.
Тонкая структура описывает расположение элементарных частиц в кристалле и электронов в атоме. Изучается дифракционными методами рентгенографии и электронографии. Большинство кристаллических материалов состоит из мелких кристалликов - зерен. Наблюдают такую микроструктуру с помощью оптических или электронных микроскопов. Макроструктуру изучают невооруженным глазом или при небольших увеличениях, при этом выявляют раковины, поры, форму и размеры крупных кристаллов. [1]
3.Типы кристаллических решеток
Итак, кристаллическая структура характеризуется правильным (регулярным) расположением частиц в строго определенных местах в кристалле. При мысленном соединении этих точек линиями получаются пространственный каркас, который называют кристаллической решеткой. Точки, в которых размещены частицы, называются узлами кристаллической решетки. Как мы уже знаем, в узлах могут находиться ионы, атомы или молекулы. Эти частицы колеблются в узлах решетки около своего положения равновесия. Если кристалл нагревать, амплитуда (размах) колебаний возрастает и кристаллическое тело расширяется.
Кристаллическая решетка - это воображаемая пространственная сетка, в узлах которой располагаются атомы (ионы), образующие металл. Частицы вещества (ионы, атомы), из которых построен кристалл, расположены в определенном геометрическом порядке, который периодически повторяется в пространстве. В отличие от кристаллов в аморфных телах (стекло, пластмассы) атомы располагаются в пространстве беспорядочно, хаотично
К каждой частице, находящейся в кристалле, примыкает вплотную только определенное число соседних частиц. Это число ближайших соседних частиц называется координационным числом.
Закономерности расположения элементарных частиц в кристалле задаются кристаллической решеткой. Для описания элементарной ячейки кристаллической решетки используют шесть величин: три отрезка - равные расстояния до ближайших элементарных частиц по осям координат a, b, c и три угла между этими отрезками. Соотношения между этими величинами определяют форму ячейки. По форме ячеек все кристаллы подразделяются на семь систем, типы кристаллических решеток которых представлены на рисунке 1.
Рисунок1. Типы кристаллических решеток
1 - кубическая; 2 - тетрагональная; 3 - ромбическая; 4 - ромбоэдрическая; 5 - гексагональная; 6 - моноклинная; 7 - триклинная
Отрезки a, b, c - периоды решетки, определяют размер элементарной ячейки. В большинстве случаев решетки сложнее, так как элементарные частицы находятся не только в узлах кристаллической решетки, но и на ее гранях или в центре решетки. Наиболее распространенные сложные кристаллические решетки металлов представлены на рисунке 2. [4]
Рисунок 2. Сложные кристаллические решетки металлов
а) объемно-центрированная кубическая (ОЦК); б) гране-центрированная кубическая (ГЦК); в) гексагональная плотноупакованная (ГПУ).
4.Типы связи между частицами в кристалле
Между частицами в кристалле могут существовать различные типы связи. Тип связи определяется электронным строением атомов, вступающих во взаимодействие. Элементарные частицы сближаются на определенное расстояние, которое обеспечивает наибольшую термодинамическую стабильность - минимум энергии связи.
Энергия связи определяет физические свойства материалов. Все кристаллы по характеру связи условно подразделяют на: молекулярные, ковалентные, металлические и ионные, но такое деление условно, т.к. может действовать и несколько типов связи. [2]
Молекулярные кристаллы - это кристаллы, в которых преобладает связь Ван-дер-Ваальса. Например, в кристаллах инертных газов при очень низких температурах и больших давлениях (твердое состояние) при сближении атомов обмен электронами невозможен, силы притяжения между ними объясняются мгновенной поляризацией атомов при сближении. При нормальных условиях к молекулярным относятся кристаллы J2, H2O, CO2, CH4. Для этих кристаллов характерна наиболее компактная кристаллическая решетка - ГЦК. Энергия связи невелика, поэтому кристаллические тела с молекулярным типом связи имеют низкие температуры плавления и испарения, большие температурные коэффициенты линейного расширения, обладают диэлектрическими свойствами.
Ковалентные кристаллы - это кристаллы, у которых преобладает ковалентный тип связи. Такие кристаллы образуют элементы 4, 5, 6 подгруппы в периодической системе. Атомы обобществляют свои валентные электроны с соседними атомами, достраивая валентную зону. Пример: углерод, кремний, германий, сурьма, висмут и др. Для этих материалов характерна направленность межатомных связей и неплотноупакованные кристаллические структуры. Материалы с ковалентным типом связи обладают низкой пластичностью и высокой твердостью, имеют высокую температуру плавления, по электрическим свойствам относятся к полупроводникам и диэлектрикам. Ионные кристаллы - характерны для сложных кристаллов, состоящих из элементов различной валентности.
Формирование кристаллической решетки в металле происходит следующим образом. При переходе металла из жидкого в твердое состояние расстояние между атомами сокращается, а силы взаимодействия между ними возрастают. Характер взаимодействия атомов определяется строением их внешних электронных оболочек. При сближении атомов электроны, находящиеся на внешних оболочках, теряют связь со своими атомами вследствие отрыва валентного электрона одного атома положительно заряженным ядром другого и т. д. Происходит образование свободных электронов, так как они не принадлежат отдельным атомам. Таким образом, в твердом состоянии металл представляет собой структуру, состоящую из положительно заряженных ионов, омываемых свободными электронами.
Связь в металле осуществляется электростатическими силами. Между ионами и свободными электронами возникают электростатические силы притяжения, которые стягивают ионы. Такую связь между частицами металла называют металлической.
Силы связи в металлах определяются силами отталкивания и силами притяжения между ионами и электронами. Ионы находятся на таком расстоянии один от другого, при котором потенциальная энергия взаимодействия минимальна. В металле ионы располагаются в определенном порядке, образуя кристаллическую решетку. Такое расположение ионов обеспечивается взаимодействием их с валентными электронами, которые связывают ионы в кристаллической решетке. [5]
Типы кристаллических решеток у различных металлов различны. Наиболее часто встречаются решетки: объемно-центрированная кубическая (ОЦК), гранецентрированная кубическая (ГЦК) и гексагональная плотноупакованная (ГПУ). Наименьший объем кристалла, дающий представление об атомной структуре металла в любом его объеме, называют элементарной кристаллической ячейкой (рис. 3). Кристаллическая решетка характеризуется ее параметрами, например длиной ребра куба для ОЦК и ГЦК, которая составляет для разных металлов 2,8610-8 см. [2]
Рисунок 3. Элементарные ячейки кристаллических решёток:
I - кубическая объёмно-центрированная (-железо), II - кубическая гранецентрированная (медь); III - гексагональная плотноупакованная; а и с - параметры решёток
5.Кристаллографические индексы Миллера
В кристаллографии принято обозначать положения атомов в узлах кристаллической решетки, кристаллографические направления и плоскости с помощью так называемых индексов Миллера.
Индексы узла. Положение любого узла кристаллической решетки относительно произвольно выбранного начала координат определяют заданием его координат (х, у, z)- Для транслируемой элементарной ячейки эти координаты равны периодам решетки а, Ь, с соответственно. Для удаленной от начала координат ячейки координаты узла определяют как х = та, у -nb,z --рс, где т, п,р -- целые числа.
Если за единицу измерения длин вдоль осей принять величины а, Ь, с, то координаты узла будут т, п, р.Они называются индексами узла и записываются как [тпр.
Индексы плоскости. Для какой-либо плоскости индексы Миллера представляют собой обратные отношения величин отрезков, отсекаемых искомой плоскостью на координатных осях, к трансляциям (единичным отрезкам) элементарной ячейки.
Порядок определения индексов Миллера для любой кристаллографической плоскости следующий:
1) выбирают начало координат (не в данной плоскости);
2) определяют точки пересечения плоскости с координатными осями, измеряют длины отрезков т, п, р, отсекаемых плоскостью на этих осях, в масштабе элементарной трансляции вдоль соответствующей оси;
3) находят обратные значения величин 1 /т, /п, 1 /р
4) приводят их к виду наименьших дробей с обшим знаменателем;
5) отбрасывают общий знаменатель и записывают полученные индексы Миллера h, к, I в круглых скобках (hkl).
Если плоскость отсекает на координатных осях отрицательные отрезки, то над соответствующим индексом ставится знак минус.
Индексы направления. Индексы Миллера для какого-либо направления представляют собой отношения проекций искомой прямой на координатные оси к трансляциям (единичным отрезкам) элементарной ячейки. Если данное направление не проходит через начало координат, то его переносят параллельно самому себе в начало координат. Далее из любой его точки опускают перпендикуляры на координатные оси и полученные значения уменьшают до простых целых чисел, как в случае нахождения индексов плоскостей.
Рисунок 4. Индицирование с помощью индексов Миллера плоскостей и направлений в простой кубической решетке
Индексы направлений обозначают (в соответствии с координатными осями х, у и z) через и, v, w и заключают в квадратные скобки: [uvw. В случае отрицательного значения над индексом ставится знак минус.
Для записи с помощью индексов Миллера группы кристаллографически эквивалентных плоскостей и направлений используют соответственно фигурные {} и угловые < > скобки.
Например, семейство плоскостей (100), (010), (001), (100) может быть обозначено как {100}, а направлений [111], [111], [11 1], [И 1] -- как < 111 >.
На рисунке 4 даны примеры индицирования кристаллографических плоскостей и направлений в простой кубической решетке. [3]
Заключение
Кристаллы - одни из самых красивых и загадочных творений природы. Изучением многообразия кристаллов занимается наука кристаллография. Она всесторонне рассматривает кристаллические вещества, исследует их свойства и строение. В давние времена считалось, что кристаллы представляют собой редкость. Действительно, нахождение в природе крупных однородных кристаллов - явление нечастое.
Однако мелкокристаллические вещества встречаются весьма часто. Так, например, почти все горные породы: гранит, песчаники, известняк - кристалличны. Даже некоторые части организма кристалличны, например, роговица глаза, витамины, оболочка нервов. Долгий путь поисков и открытий, от измерения внешней формы кристаллов вглубь, в тонкости их атомного строения еще не завершен. Но теперь исследователи довольно хорошо изучили его структуру и учатся управлять свойствами кристаллов.
Кристаллы могут иметь от четырех до нескольких сотен граней. Но при этом они обладают замечательным свойством - какими бы ни были размеры, форма и число граней одного и того же кристалла, все плоские грани пересекаются друг с другом под определенными углами. Углы между соответственными гранями всегда одинаковы. На форму оказывают влияние такие факторы, как температура, давление, частота, концентрация и направление движения раствора. Поэтому кристаллы одного и того же вещества могут обнаруживать большое разнообразие форм.
Также кристаллы имеют определенные индексы, индексы Миллера -- кристаллографические индексы, характеризующие расположение атомных плоскостей в кристалле. Индексы Миллера связаны с отрезками, отсекаемыми выбранной плоскостью на трёх осях кристаллографической системы координат (не обязательно декартовой). Таким образом, возможны три варианта относительного расположения осей и плоскости:
· плоскость пересекает все три оси
· плоскость пересекает две оси, а третьей параллельна
· плоскость пересекает одну ось и параллельна двум другим
Список литературы
1. Киттель Ч. Введение в физику твердого тела./ Пер. с англ.; Под ред. А.А. Гусева. - М.: Наука, 1978.
2. Епифанов Г.И. Физика твердого тела: Учеб.пособие для втузов. - М.: Высш. школ, 1977.
3. Жданов Г.С., Хунджуа Ф.Г., Лекции по физике твердого тела - М: Изд-во МГУ, 1988.
4. Бушманов Б.Н., Хромов Ю. А. Физика твердого тела: Учеб.пособие для втузов. - М.: Высш. школ, 1971.
5. Кацнельсон А.А. Введение в физику твердого тела - М: Изд-во МГУ, 1984.
Размещено на Allbest.ru
...Подобные документы
Структура кристаллов. Роль, предмет и задачи физики твердого тела. Кристаллические и аморфные тела. Типы кристаллических решеток. Типы связей в кристаллах. Кристаллические структуры твердых тел. Жидкие кристаллы. Дефекты кристаллов.
лекция [2,0 M], добавлен 13.03.2007История открытия явления электризации. Свойства полярных, неполярных и кристаллических диэлектриков. Интенсивность электризации, диэлектрическая проницаемость веществ. Причины накопления зарядов в производственных условиях. Удельная проводимость жидкости.
реферат [352,6 K], добавлен 16.09.2014Сведения о колебаниях кристаллических решёток, функции, описывающие их физические величины. Кристаллографические системы координат. Расчет энергии взаимодействия атомов в ковалентных кристаллах, спектра колебаний кристаллической решётки вольфромата бария.
дипломная работа [566,1 K], добавлен 09.01.2014Система обозначения граней и направлений. Индексы граней и ребер кристаллов. Символы ребер. Основные кристаллографические соотношения. Углы между двумя направлениями, между направлением и плоскостью. Межплоскостное расстояние и индексы плоскости.
лабораторная работа [29,4 K], добавлен 20.03.2007Интерференция двух наклонных плоских монохроматических волн. Построение 3D-изображения дифракционных решеток в плоскости y-z. Определение значения параметров решеток в средах с показателями преломления n2 и n1 для каждого угла падения сигнальных волн.
курсовая работа [1,0 M], добавлен 11.05.2022Планетарная модель атома Резерфорда. Состав и характеристика атомного ядра. Масса и энергия связи ядра. Энергия связи нуклонов в ядре. Взаимодействие между заряженными частицами. Большой адронный коллайдер. Положения теории физики элементарных частиц.
курсовая работа [140,4 K], добавлен 25.04.2015Понятие межмолекулярного взаимодействия как связи между электрически нейтральными молекулами или атомами. Типы Ван-дер-Ваальсовых сил: ориентационные, дисперсионные и индукционные. Уравнение состояния газа. Характеристика сил притяжения и отталкивания.
контрольная работа [147,3 K], добавлен 03.03.2012Технология изготовления, свойства и сферы применения квантовых ям, нитей и точек. Метод молекулярно-лучевой эпитаксии для выращивания кристаллических наноструктур. Использование двойной гетероструктуры полупроводниковых лазеров для генерации излучения.
дипломная работа [290,4 K], добавлен 05.04.2016Сущность молекулы как наименьшей частицы вещества, обладающей всеми его химическими свойствами, экспериментальное доказательство их существования. Строение молекул, взаимосвязь атомов и их прочность. Методы измерения размеров молекул, их диаметра.
лабораторная работа [45,2 K], добавлен 11.02.2011Физические свойства и область применения монокристаллов лангатата. Производственная структура предприятия ОАО "Фомос-Материалс", задачи и функции службы технического контроля. Технологический процесс изготовления пьезоэлектрических подложек из лангасита.
отчет по практике [511,6 K], добавлен 19.07.2012Решение экспериментальных задач по определению плотности твердых веществ и растворов, с различной массовой долей растворенного вещества. Измерение плотности веществ, оценка границ погрешностей. Установление зависимости плотности растворов от концентрации.
курсовая работа [922,0 K], добавлен 17.01.2014Молекула как мельчайшая частица вещества, сохраняющая все его химические свойства. Броуновское движение. Модель взаимодействия между частицами вещества. Закон Авогадро. Размер молекул. Способы описания процессов, происходящих в макроскопических телах.
презентация [7,5 M], добавлен 23.10.2013Понятие и основные этапы кристаллизации как процесса фазового перехода вещества из жидкого состояния в твердое кристаллическое с образованием кристаллов. Физическое обоснование данного процесса в природе. Типы кристаллов и принципы их выращивания.
презентация [464,0 K], добавлен 18.04.2015Характеристика процессов структурообразования новой фазы и разрушения связи между частицами, элементами однородных и разнородных систем, как одной из важных проблем физики твердого тела и физико-химической механики. Электроактивационные нанотехнологии.
научная работа [1,7 M], добавлен 17.03.2011Расчет выброса и концентрации загрязняющих веществ в атмосферу при сжигании топлива в котельных агрегатах и высоты источника рассеивания. Определение системы подавления вредных веществ и системы очистки дымовых газов в зависимости от вида топлива.
реферат [54,3 K], добавлен 16.05.2012Характеристика результатов исследований нестационарной детонации взрывчатых веществ в зарядах конечного диаметра. Определение зависимости скорости неидеальной детонации взрывчатых веществ от их плотности и диаметра заряда на основе октогена и гексогена.
статья [115,4 K], добавлен 22.11.2016Изучение особенностей распространения световой волны с помощью принципа Гюйгенса-Френеля. Характеристика разных видов дифракции Фраунгофера. Структура и методы изготовления дифракционных решеток. Конструкция дифракционных спектрографов и монохроматоров.
курсовая работа [3,0 M], добавлен 24.03.2013Определение понятия "газ" как агрегатного состояния вещества, характеризующегося очень слабыми связями между молекулами, атомами и ионами. Основные состояния жидкостей: испарение, конденсация, кипение, смачивание и смешиваемость. Свойства твердых тел.
презентация [711,7 K], добавлен 31.03.2012Возникновение представлений о строении вещества: молекула - мельчайшая частица; понятие диффузии. Притяжение и отталкивание молекул, агрегатные состояния веществ. Особенности молекулярного строения твердых тел, жидкостей и газов, кристаллическая решетка.
реферат [19,6 K], добавлен 10.12.2010Намагниченность, напряженность магнитного поля. Факторы, характеризующие степень намагничивания магнетика. Понятие относительной магнитной проницаемости вещества. Ферромагнетики - твердые вещества, которые могут обладать спонтанной намагниченностью.
лекция [303,4 K], добавлен 24.09.2013