Принцип действия асинхронного трехфазного двигателя

Изучение скорости вращения ротора асинхронного двигателя. Особенность преобразования электрической энергии, поступающей в обмотку статора из сети, в механическую энергию. Принцип действия синхронного двигателя. Характеристика закона Джоуля-Ленца.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 26.04.2020
Размер файла 123,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Неподвижная часть асинхронного двигателя - статор имеет трехфазную обмотку, при включении которой в сеть возникает вращающееся магнитное поле. Скорость вращения этого поля

В расточке статора расположена вращающаяся часть двигателя - ротор, который состоит из вала, сердечника и обмотки. Обмотка ротора состоит из стержней, уложенных в пазы сердечника и замкнутых с двух сторон кольцами.

n1=f1•60/p.

Вращающееся поле статора пересекает проводники (стержни) обмотки ротора и наводит в них э. д. с. Но так как обмотка ротора замкнута, то в стержнях возникают токи. Взаимодействие этих токов с полем статора создает на проводниках обмотки ротора электромагнитные силы Fпр, направление которых определяется по правилу «левой руки». Силы Fпрстремятся повернуть ротор в направлении вращения магнитного поля статора. Совокупность сил Fпр, приложенных к отдельным проводникам, создает на роторе электромагнитный момент М, приводящий его во вращение со скоростью n2. Вращение ротора через вал передается исполнительному механизму.

Таким образом, электрическая энергия, поступающая в обмотку статора из сети, преобразуется в механическую.

Направление вращения магнитного поля статора, а следовательно, и направление вращения ротора, зависит от порядка следования фаз напряжения, подводимого к обмотке статора. При необходимости изменить направление вращения ротора асинхронного двигателя следует поменять местами любую пару проводов, соединяющих обмотку статора с сетью. Например, порядок следования фаз АВС заменить порядком СВА. Скорость вращения ротора n2асинхронного двигателя всегда меньше скорости вращения поля n1, так как только в этом случае возможно наведение э.д.с. в обмотке ротора. Разность скоростей ротора и вращающегося поля статора характеризуется величиной, называемой скольжением,

s=(n1 - n2)/n1.

Часто скольжение выражается в процентах:

s=[(n1 - n2)/n1]•100.

Скольжение асинхронного двигателя может изменяться в пределах от 0 до 1. При этом s?0 соответствует режиму холостого хода, когда ротор двигателя не испытывает противодействующих моментов, а s?1 соответствует режиму короткого замыкания, когда противодействующий момент двигателя превышает вращающий момент и поэтому ротор двигателя неподвижен (n2=0).

Скольжение, соответствующее номинальной нагрузке двигателя, называется номинальным скольжением. Так, например, для двигателей нормального исполнения мощностью от 1 до 1000 кВт номинальное скольжение приблизительно составляет соответственно 0,06-0,01, т.е. 6-1%.

Скорость вращения ротора асинхронного двигателя равна

n2=(1-s)•n1.

На щитке двигателя указывается номинальная скорость вращения nн. Эта величина дает возможность определить синхронную скорость вращения n1, номинальное скольжение sн, а также число полюсов обмотки статора 2р.

17.Регулирование частоты вращения трехфазного асинхронного двигателя

Частота вращения асинхронного двигателя определяется формулой

n2 = n1(1 - s) = 60f1 (1 - s)/p,

из которой следуют три принципиально возможных метода регулирования асинхронных двигателей -- изменение частоты f1 (частотное регулирование), числа полюсов и скольжения s. Скольжение s обычно изменяют путем изменения потерь в цепи ротора с помощью реостата, но в некоторых случаях для этого изменяют величину питающего напряжения.

Частотное регулирование. Этот способ регулирования частоты вращения позволяет применять наиболее надежные и дешевые асинхронные двигатели с короткозамкнутым ротором. Однако для изменения частоты питающего напряжения требуется наличие источника электрического тока переменной частоты. В качестве последнего используют либо синхронные генераторы с переменной частотой вращения, либо преобразователи частоты -- электромашинные или статические, выполненные на управляемых полупроводниковых вентилях (тиристорах).

В настоящее время преобразователи частоты имеют довольно сложную схему и сравнительно высокую стоимость. Однако быстрое развитие силовой полупроводниковой техники позволяет надеяться на дальнейшее совершенствование преобразователей частоты, что открывает перспективы для широкого применения частотного регулирования. Подробное описание законов управления при частотном регулировании и анализ работы асинхронного двигателя при питании от преобразователя частоты даны в § 4.13 и 4.14.

Регулирование путем изменения числа полюсов. Такое регулирование позволяет получить ступенчатое изменение частоты вращения. На рис. 4.35 показана простейшая схема (для одной фазы), позволяющая изменять число полюсов обмотки статора в два раза. Для этого каждую фазу обмотки статора разделяют на две части, которые переключают с последовательного соединения на параллельное. Из рисунка видно, что при включении катушек 1-2 и 3-4 в две параллельные ветви число полюсов уменьшается в два раза, а следовательно, частота вращения магнитного поля увеличивается в два раза.

Схема переключения одной фазы обмотки статора для изменения числа полюсов: а - при 2р = 4; б - при 2р = 2

При переключении число последовательно включенных витков в каждой фазе уменьшается вдвое, но, так как частота вращения возрастает в два раза, ЭДС, индуцированная в фазе, остается неизменной. Следовательно, двигатель при обеих частотах вращения может быть подключен к сети с одинаковым напряжением. Чтобы не осуществлять переключения в обмотке ротора, последнюю выполняют короткозамкнутой. Если нужно иметь три или четыре частоты вращения, то на статоре располагают еще одну обмотку, при переключении которой можно получить дополнительно две частоты. Асинхронные двигатели с переключением числа полюсов называют многоскоростными.

На рис. 4.36 показаны наиболее часто употребляемые схемы соединений обмотки статора с переключением числа полюсов в отношении 2:1. Схемы, приведенные на рис. 4.36, а и б, обеспечивают переключение при постоянном моменте, а схемы, приведенные на рис. 4.36,в и г, - при приблизительно постоянной мощности.

Принципиальные схемы соединения обмотки статора с переключением числа полюсов в отношении 2:1 и механические характеристики двигателей при таком переключении

Рассмотрим отношение потребляемых мощностей P1 и моментов М для рассматриваемых схем при упрощенном предположении, что линейное напряжение , ток в каждой полуобмотке фазы статора, КПД з и cos ц остаются неизменными. При этом для схем, изображенных на рис. 4.36, а и б, имеем

(В уравнениях (4.63) и (4.64) индексы «1» обозначают меньшую частоту вращения, а индексы «2» -- большую частоту вращения.

При использовании схем, приведенных на рис. 4.36, в и г, обычно для обеих частот вращения указывают одинаковую мощность, т. е. принимают, что Р12 = Р11 и М2 = 0,5М1 . Механические характеристики двигателя при переключении полюсов двумя рассмотренными методами приведены на рис. 4.36, д, кривые 1 и 2 -- при постоянном моменте, кривые 3 и 4 -- при постоянной мощности.

Как видно из схем, приведенных на рис. 4.36, при переходе от меньшей частоты вращения к большей изменяется направление тока в половине полуобморок фаз статора. Для того чтобы направление вращения поля при этом осталось неизменным, необходимо также переключить концы двух фаз обмотки (например, фазы В и С).

Многоскоростные двигатели имеют следующие недостатки: большие габариты и массу по сравнению с двигателями нормального исполнения, а следовательно, и большую стоимость. Кроме того, регулирование осуществляется большими ступенями; при частоте f1 = 50 Гц частота вращения поля n1 при переключениях изменяется в отношении 3000:1500:1000:750. ротор асинхронный двигатель статор

Регулирование путем включения реостата в цепь ротора. При включении в цепь ротора добавочных активных сопро-тивлений Rдоб1 , Rдоб2 , Rдоб3 и других изменяется форма зависимости М = f(s) и механической характеристики n2 = f(M) двигателя (рис. 4.37, а). При этом некоторому нагрузочному моменту Мн соответствуют скольжения s1 , s2 , s3 , ..., большие, чем скольжения se , при работе двигателя на естественной

Изменение формы механической характеристики при регулировании частоты вращения с помощью добавочного активного сопротивления характеристике (при Rдоб = 0). Следовательно, установившаяся частота вращения двигателя уменьшается от до п1п2, п3,... (рис. 4.37,б).

Изменение формы механической характеристики при регулировании частоты вращения путем изменения питающего напряжения

Этот метод регулирования может быть использован только для двигателей с фазным ротором. Он позволяет плавно изменять частоту вращения в широких пределах. Недостатками его являются: а) большие потери энергии в регулировочном реостате; б) чрезмерно «мягкая» механическая характеристика двигателя при большом сопротивлении в цепи ротора. В некоторых случаях последнее является недопустимым, так как небольшому изменению нагрузочного момента соответствует существенное изменение частоты вращения.

Регулирование путем изменения величины питающего напряжения. Для двигателей нормального исполнения такое регулирование неприменимо, так как при уменьшении питающего напряжения резко уменьшается максимальный момент Мmax (рис. 4.38, кривые 1, 2 и 3). Критическое скольжение, определяющее зону устойчивой работы двигателя, остается при этом неизменным: sкp = 0,1 ч 0,2. Принципиально рассматриваемый метод можно было бы использовать для регулирования двигателей с большим активным сопротивлением ротора, так как в этом случае скольжение s'кp резко возрастает и максимум момента сдвигается в зону, близкую к s = 1 (кривые 1', 2' и 3'), и даже в область, где s > 1. Однако это ведет к значительному увеличению потерь мощности и снижению КПД, поэтому такой метод регулирования частоты вращения можно

Схемы включения двигателя при изменении направления вращения применять только в микродвигателях, для которых величина КПД не имеет решающего значения.

18 Принцип действия синхронного двигателя

Если в области вращающегося магнитного поля укрепить электромагнит постоянного тока, способный вращаться сносно с магнитным полем (рис.7.27), то сила взаимодействия полей в течение одного оборота вращающегося поля будет дважды менять свое направление (притягивание разноименных полюсов поля и магнита и отталкивание одноименных, когда они оказываются друг против друга). Такая пульсация момента по направлению действия и инерционность массы электромагнита, препятствующая мгновенному восприятию движения под действием силы, приводят к тому, что электромагнит остается неподвижным.

Упрощенная конструкция синхронного двигателя Однако если его привести во вращение посредством какого-либо устройства с частотой, близкой к частоте вращения поля, то сила взаимодействия полей окажется способной втянуть электромагнит (ротор) во вращение, синхронное с полем («втянуть в синхронизм»). Поле ротора и вращающееся магнитное поле окажутся друг относительно с другом неподвижными, и ротор будет следовать в своем движении за полем. Их частоты вращения будут одинаковы (синхронное вращение).

Синхронный двигатель имеет ряд преимуществ перед асинхронным:

1. Высокий коэффициент мощности cosФ=0,9.

2. Возможность использования синхронных двигателей на предприятиях для увеличения общего коэффициента мощности.

3. Высокий КПД он больше чем у асинхронного двигателя на (0,5-3%) это дастигается за счёт уменьшения потерь в меди и большого CosФ.

4. Обладает большой прочностью обусловленной увеличенным воздушным зазором.

5. Вращающий момент синхронного двигателя прямо пропорционален напряжению в первой степени. Т.е синхронный двигатель будет менее чувствителен к изменению величины напряжения сети.

Недостатки синхронного двигателя:

1. Сложность пусковой аппаратуры и большую стоимость.

2. Синхронные двигатели применяют для приведения в движение машин и механизмов, не нуждающихся в изменении частоты вращения, а так же для механизмов у которых с изменением нагрузки частота вращения остаётся постоянной: (насосы, компрессоры, вентиляторы.)

19. Электродвигатели переменного тока

Электродвигатели переменного тока - электрические машины, преобразующие электрическую энергию в механическую, а также являются наиболее совершенным и распространенным видом привода машин и механизмов, преобразующих электрическую энергию в механическую.

В основе работы электродвигателей лежит процесс электромагнитной индукции, которая возникает при движении проводящей среды в магнитном поле.

В качестве проводящей среды обычно используется обмотка, состоящая из достаточно большого количества проводников, соединенных между собой надлежащим способом. Магнитное поле в электродвигателе создается либо с помощью постоянных магнитов, либо возбуждающими обмотками, которые обтекаются токами. Электродвигатели обратимы, то есть могут работать по преобразованию электрической энергии в механическую и наоборот, в режиме генератора.

Электродвигатели состоят из защитного корпуса, в котором находится неподвижный полый цилиндрический статор, набранный из отдельных, изолированных друг от друга пластин электротехнической (магнитной) стали. На внутренней стороне статора в пазах расположены витки обмотки возбуждения из медной проволоки. Внутри статора располагается подвижный, вращающийся на валу ротор, состоящий тоже из стальных пластин, также изолированных друг от друга термостойким лаком. В пазах ротора располагаются витки медной обмотки. Обмотка статора подсоединяется к источнику переменного тока.

Электродвигатели переменного тока делятся на синхронные и асинхронные, в зависимости от того, в каком отношении находится скорость вращения к частоте.

Синхронные электрические двигатели - такие двигатели, скорость вращения которых находится в постоянном отношении к частоте электрической сети, для асинхронных - отношение непостоянно. Скорость вращения асинхронных двигателей изменяется с изменением нагрузки.

Асинхронные электродвигатели могут иметь преобразовательное устройство в виде коллектора (коллекторные машины), или быть без него (бесколлекторные).

Закона Джоуля-Ленца

В 1841 году английский физик Джеймс Джоуль экспериментально доказал наличие зависимости количества выделяемой теплоты от силы тока. А в 1842 году, независимо от него к тому же выводу пришел русский ученый Эмилий Ленц, измерявший в течение нескольких лет количество времени, необходимое для нагрева спирта в сосуде на 10°С. Окончательное же определение закона Джоуля-Ленца было опубликовано в 1843 году.

Формулировка закона Джоуля-Ленца, основанная на работах обоих ученых, звучит так: при прохождении электрического тока по проводнику количество теплоты, выделяемое в проводнике, прямо пропорционально квадрату тока, сопротивлению проводника и времени, в течение которого электрический ток протекал по проводнику. Формула для закона Джоуля-Ленца Q=I2Rt

· I - сила тока, [А];

· t - время, [с].

· R - сопротивление, [Ом].

Приведенная формула выражает закон Джоуля-Ленца для участка цепи. Единица измерения количества теплоты (Q) - джоуль (Дж), является производной единицей и может быть получена из формулы:

1Дж = 1Ом · (1А)2· 1с.

В неподвижном проводнике, по которому течет постоянный ток работа сторонних сил расходуется на его нагревание. Опытно доказано, что в любом проводнике выделяется количество теплоты, равное работе, совершаемой электрическими силами по переносу заряда вдоль проводника.

ц1-ц2=U - разность потенциалов на концах проводника, тогда для переноса заряда на этом участке совершается работа
A=q(ц1-ц2 )=qU,

· А - работа [Дж];

· q - заряд [Кл].

Из определения силы тока следует:

· q = It

· A = IUt

Учитывая формулу и сказанное выше, получим: Q = A = IUt - закон Джоуля-Ленца в интегральной форме.

Запишем закон Джоуля-Ленца в дифференциальной форме.

?W=I2R=I(ц1-ц2)=j?SE?l=j ?E ??V

· ?W - тепловая мощность тока в элементе проводника, [Вт];

· ?l - длина проводника, [мм];

· ?S - сечение проводника, [мм2];

· ?V - объем проводника, [мм3];

· j - плотность тока, j = ?E, ? = 1/с (удельная электропроводность);

· Е - напряженность поля, [В/м].

· щ=?W/?V=j ?E ? - удельная мощность тока.

Отсюда: щ=?E ? - дифференциальная запись закона Джоуля-Ленца, характеризующая плотность выделенной энергии

Закон Джоуля-Ленца имеет широкое практическое применение. Так, в электротехнике необходимо учитывать нагревание проводов при расчете теплопотери в линиях электропередач, температуры срабатывания автоматических выключателей, тепловыделения элементов радиотехники и электротехнических приборов, характеристик проводов сетей температуры плавления плавких предохранителей, тепловой мощности электронагревателей. Применение закона Джоуля-Ленца позволяет уменьшить потери при передаче электроэнергии на большие расстояния и поднять напряжения в линиях электропередач. Кроме этого на законе Джоуля-Ленца основана контактная и электродуговая сварка.

Размещено на Allbest.ru

...

Подобные документы

  • Устройство и принцип действия трехфазного асинхронного двигателя с короткозамкнутым ротором. Рабочие характеристики и свойства двигателя, его применение для преобразования электрической энергии трехфазного переменного тока в механическую энергию.

    лабораторная работа [117,9 K], добавлен 22.02.2013

  • Асинхронный двигатель: сущность и принцип действия. Электромагнитный, тепловой, вентиляционный и механический расчет двигателя. Увеличение срока службы токопроводящих щеток фазного ротора. Технология изготовления статорной обмотки асинхронного двигателя.

    дипломная работа [3,9 M], добавлен 20.08.2012

  • Назначение и описание конструкции трехфазного асинхронного двигателя. Разработка технологического процесса изготовления статора, обоснование типа производства. Применяемые приспособления и нестандартное оборудование. Испытания статора двигателя.

    курсовая работа [2,0 M], добавлен 13.03.2013

  • Принцип действия трехфазного асинхронного двигателя с короткозамкнутым ротором. Конструкция асинхронного двигателя с фазным ротором. Снижение тока холостого хода. Магнитопровод и обмотки. Направление электромагнитных сил. Генераторный режим работы.

    презентация [1,5 M], добавлен 09.11.2013

  • Разработка проекта трехфазного асинхронного двигателя с короткозамкнутым ротором по заданным данным. Электромагнитный и тепловой расчет. Выбор линейных нагрузок. Обмоточные параметры статора и ротора. Параметры рабочего режима, пусковые характеристики.

    курсовая работа [609,5 K], добавлен 12.05.2014

  • Определение трехфазного асинхронного двигателя и обмоточных данных, на которые выполнены схемы обмоток. Перерасчет обмоток на другие данные (фазное напряжение и частоту вращения магнитного поля статора). Установление номинальных данных электродвигателя.

    курсовая работа [1006,7 K], добавлен 18.11.2014

  • Расчет статора, ротора, магнитной цепи и потерь асинхронного двигателя. Определение параметров рабочего режима и пусковых характеристик. Тепловой, вентиляционный и механический расчет асинхронного двигателя. Испытание вала на жесткость и на прочность.

    курсовая работа [4,8 M], добавлен 10.10.2012

  • Обоснованный выбор типов и вариантов асинхронного двигателя. Пусковой момент механизма, определение установившейся скорости. Расчёт номинальных параметров и рабочего режима асинхронного двигателя. Параметры асинхронного двигателя пяти исполнений.

    реферат [165,2 K], добавлен 20.01.2011

  • Образование вращающегося магнитного поля. Подключение обмотки статора к цепи переменного трехфазного тока. Принцип действия асинхронного двигателя. Приведение параметров вторичной обмотки к первичной. Индукция магнитного поля. Частота вращения ротора.

    презентация [455,0 K], добавлен 21.10.2013

  • Асинхронный двигатель: строение и разновидности. Вращающееся магнитное поле. Принцип действия асинхронного двигателя с короткозамкнутым ротором. Регулирование частоты вращения путем вращения и скольжения. Тормозные режимы работы асинхронного двигателя.

    презентация [352,5 K], добавлен 19.10.2014

  • Расчет площади поперечного сечения провода обмотки статора, размера его зубцовой зоны, воздушного зазора, ротора, магнитной цепи, параметров рабочего режима, потерь, пусковых характеристик с целью проектирования трехфазного асинхронного двигателя.

    курсовая работа [945,2 K], добавлен 04.09.2010

  • Выбор основных размеров асинхронного двигателя. Определение размеров зубцовой зоны статора. Расчет ротора, магнитной цепи, параметров рабочего режима, рабочих потерь. Вычисление и построение пусковых характеристик. Тепловой расчет асинхронного двигателя.

    курсовая работа [1,9 M], добавлен 27.09.2014

  • Электромагнитный, тепловой и вентиляционный расчет шестиполюсного трехфазного асинхронного двигателя с короткозамкнутым ротором полезной мощности 45 кВт на напряжение сети 380/660 В. Механический расчет вала и подшипников. Элементы конструкции двигателя.

    курсовая работа [1,3 M], добавлен 25.09.2012

  • Принцип работы и устройство асинхронного двигателя. Способ измерения электромагнитного момента асинхронного двигателя. Регулирование частоты вращения асинхронных двигателей. Изменение скольжения, числа пар полюсов, частоты источника питания двигателя.

    реферат [397,1 K], добавлен 16.05.2016

  • Выбор главных размеров статора, ротора и короткозамыкающего кольца. Сопротивление обмотки короткозамкнутого ротора с закрытыми пазами. Масса двигателя и динамический момент инерции ротора. Вентиляционный расчет двигателя с радиальной вентиляцией.

    курсовая работа [1,6 M], добавлен 15.10.2012

  • Угловая скорость вращения магнитного поля. Математическая модель асинхронного двигателя в форме Коши, а также блок-схема его прямого пуска с использованием Power System Blockset. Зависимость угловой скорости ротора от величины электромагнитного момента.

    реферат [672,5 K], добавлен 03.01.2010

  • Ремонт трехфазного асинхронного двигателя с короткозамкнутым ротором. Основные неисправности асинхронного двигателя с фазным ротором. Объем и нормы испытаний электродвигателя. Охрана труда при выполнении работ, связанных с ремонтом электродвигателя.

    курсовая работа [1,7 M], добавлен 28.01.2011

  • Расчет и обоснование номинальной величины асинхронного двигателя. Размеры и зубцовая зона статора. Воздушный зазор и полюса ротора. Определение основных паромеров магнитной цепи. Превышение температуры обмотки статора. Характеристики синхронной машины.

    курсовая работа [585,7 K], добавлен 21.02.2016

  • Параметры обмотки асинхронного двигателя. Построение двухслойной статорной обмотки с оптимально укороченным шагом. Построение рабочих характеристик. Механические характеристики асинхронного двигателя при неноминальных параметрах электрической сети.

    курсовая работа [856,8 K], добавлен 14.12.2013

  • Определение главных размеров электромагнитных загрузок, числа пазов статора и ротора, витков в фазе обмотки и зубцовой зоны. Расчет магнитной цепи статора и ротора. Параметры асинхронного двигателя. Определение потерь и коэффициента полезного действия.

    курсовая работа [956,2 K], добавлен 01.06.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.