Влияние электрических и магнитных полей

Исследование влияния мощных постоянных и переменных электрических полей техногенного происхождения на живые организмы. Особенности влияние электрических и магнитных полей на живой организм, растения и животных. Метод электронного парамагнитного резонанса.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 10.05.2020
Размер файла 20,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Содержание

Введение

Влияние электрических и магнитных полей на живой организм

Влияние электрического поля на растения

Влияние электрического поля на животных

Метод электронного парамагнитного резонанса

Заключение

Литература

Введение

Технический прогресс, как известно, принес человечеству не только облегчение и удобство в производстве и быту, но и создал ряд серьезных проблем. В частности, возникла проблема защиты человека и других организмов от сильных электромагнитных, магнитных и электрических полей, создаваемых различными техническими устройствами. Позже появилась проблема защиты человека от длительного воздействия слабых электромагнитных полей, которое, как оказалось, также наносит вред жизнедеятельности человека. И только в последнее время стали обращать внимание и проводить соответствующие исследования по оценке влияния на живые организмы экранирования естественных геомагнитных и электрических полей.

Влияние мощных постоянных и переменных электрических полей техногенного происхождения на живые организмы изучается сравнительно давно. Источниками таких полей являются, прежде всего, высоковольтные линии электропередач (ЛЭП).

Влияние электрических и магнитных полей на живой организм

Биологическое влияние электрических и магнитных полей на организм людей и животных достаточно много исследовалось. Наблюдаемые при этом эффекты, если они и возникают, до сих пор не ясны и трудно поддаются определению, поэтому эта тема остается по-прежнему актуальной.

Электрическое поле Земли - это естественное электрическое поле Земли как планеты, которое наблюдается в твёрдом теле Земли, в морях, в атмосфере и магнитосфере. Электрическое поле 3емли обусловлено сложным комплексом геофизических явлений. Существование электрического поля в атмосфере Земли связано в основном с процессами ионизации воздуха и пространственным разделением возникающих при ионизации положительных и отрицательных электрических зарядов. Ионизация воздуха происходит под действием космических лучей ультрафиолетового излучения Солнца; излучения радиоактивных веществ, имеющихся на поверхности Земли и в воздухе; электрических разрядов в атмосфере и т. д. Многие атмосферные процессы: конвекция образование облаков, осадки и другие - приводят к частичному разделению разноимённых зарядов и возникновению атмосферных электрических полей. Относительно атмосферы поверхность Земли заряжена отрицательно.

Магнитные поля на нашей планете имеют двоякое происхождение - естественное и антропогенное. Естественные магнитные поля, так называемые магнитные бури, зарождаются в магнитосфере Земли. Антропогенные магнитные возмущения охватывают меньшую территорию, чем природные, зато их проявление значительно интенсивнее, а следовательно, приносит и более ощутимый ущерб. В результате технической деятельности человек создает искусственные электромагнитные поля, которые в сотни раз сильнее естественного магнитного поля Земли. Источниками антропогенных излучений являются: мощные радиопередающие устройства, электрифицированные транспортные средства, линии электропередачи.

Один из наиболее сильных возбудителей электромагнитных волн - токи промышленной частоты (50 Гц). Так, напряженность электрического поля непосредственно под линией электропередачи может достигать нескольких тысяч вольт на метр почвы, хотя из-за свойства снижения напряженности почвой уже при удалении от линии на 100 м напряженность резко падает до нескольких десятков вольт наметр.

Исследования биологического воздействия электрического поля обнаружили, что уже при напряженности 1 кВ/м оно оказывает неблагоприятное влияние на нервную систему человека, что в свою очередь ведет к нарушениям эндокринного аппарата и обмена веществ в организме (меди, цинка, железа и кобальта), нарушает физиологические функции: ритм сердечных сокращений, уровень кровяного давления, активность мозга, ход обменных процессов и иммунную активность.

Электрическое поле, создаваемое линиями высоковольтных ЛЭП, оказывает неблагоприятное влияние на живые организмы. Наиболее чувствительны к электрическим полям копытные животные и человек в обуви, изолирующей его от земли. Копыто животных также является хорошим изолятором. В этом случае на изолированном от земли проводящем объемном теле наводится потенциал, зависящий от соотношения емкости тела на землю и на провода ЛЭП. Чем меньше емкость на землю (чем толще, например, подошва обуви), тем больше наведенный потенциал, который может составлять несколько киловольт и даже достигать 10 кВ.

В опытах, проведенных многими исследователями, обнаружено четкое пороговое значение напряженности поля, при котором наступает разительное изменение реакции подопытного животного. Оно определено равным 160 кВ/м, меньшая напряженность поля сколько-нибудь заметного вреда живому организму не наносит.

Напряженность электрического поля в рабочих зонах ЛЭП 750 кВ на высоте человеческого роста примерно в 5-6 раз меньше опасных значений. Выявлено неблагоприятное воздействие электрического поля промышленной частоты на персонал ЛЭП и подстанций напряжением 500 кВ и выше; при напряжении 380 и 220 кВ это действие выражено слабо. Но при всех напряжениях действие поля зависит от продолжительности нахождения в нем.

На основании исследований разработаны соответствующие санитарные нормы и правила, где указываются минимально допустимые расстояния расположения жилых построек от стационарных излучающих объектов, как, например, линий электропередач. Эти нормы предусматривают также и максимально допустимые (предельные) уровни излучения для других энергоопасных объектов. В ряде случаев, для защиты человека применяются громоздкие металлические экраны, в виде листов, сеток и других приспособлений.

Однако многочисленные исследования ученых в различных странах (Германия, США, Швейцария и др.) показали, что такие меры безопасности не могут полностью защитить человека от влияния вредных электромагнитных излучений (ЭМИ). При этом было установлено, что слабые электромагнитные поля (ЭМП), мощность которых измеряется тысячными долями Ватт, не менее опасны, а в ряде случаев и более опасны, чем излучения большой мощности. Ученые объясняют это тем, что интенсивность слабых электромагнитных полей соизмерима с интенсивностью излучений самого человеческого организма, его внутренней энергетики, которая формируется в результате функционирования всех систем и органов, включая клеточный уровень. Такими низкими (нетепловыми) интенсивностями характеризуются излучения электронных бытовых приборов, имеющихся сегодня в каждом доме. Это, главным образом, компьютеры, телевизоры, мобильные телефоны, СВЧ-печи и т.п. Они то и являются источниками вредных, т.н. техногенных ЭМИ, которые обладают свойством накапливаться в организме человека, нарушая при этом его биоэнергетическое равновесие, и в первую очередь, т.н. энергоинформационный обмен (ЭНИО). А это, в свою очередь, приводит к нарушению нормального функционирования основных систем организма. Многочисленные исследования в области биологического действия электромагнитных полей (ЭМП) позволили определить, что наиболее чувствительными системами организма человека являются: нервная, иммунная, эндокринная и половая. Биологический эффект ЭМП в условиях длительного многолетнего воздействия может привести к развитию отдаленных последствий, включая дегенеративные процессы центральной нервной системы, рак крови (лейкозы), опухоли мозга, гормональные заболевания и др.

Исследования показали, что максимальный ток в теле человека, индуцированный электрическим полем, намного выше, чем ток, вызванный магнитным полем. Так, вредное воздействие магнитного поля проявляется лишь при его напряженности около 200 А/м, что бывает на расстоянии 1-1,5 м от проводов фазы линии и опасно только для обслуживающего персонала при работах под напряжением. Это обстоятельство позволило сделать вывод об отсутствии биологического влияния магнитных полей промышленной частоты на людей и животных, находящихся под ЛЭП Таким образом, электрическое поле ЛЭП является главным биологически действенным фактором протяженной электропередачи, который может оказаться барьером на пути миграции движения разных видов водной и сухопутной фауны.

В действии электрического поля на человека доминирующую роль играют протекающие через его тело токи. Это определяется высокой проводимостью тела человека, где преобладают органы с циркулирующей в них кровью и лимфой.

В настоящее время экспериментами на животных и людях-добровольцах установлено, что плотность тока проводимостью 0,1 мкА/см и ниже не влияет на работу мозга, так как импульсные биотоки, обычно протекающие в мозгу, существенно превышают плотность такого тока проводимости.

При плотности тока проводимостью 1 мкА/см в глазах человека наблюдается мелькание световых кругов, более высокие плотности токов уже захватывают пороговые значения стимуляции сенсорных рецепторов, а также нервных и мышечных клеток, что ведет к появлению испуга, непроизвольным двигательным реакциям.

В случае касания человека к изолированным от земли объектам в зоне электрического поля значительной интенсивности, плотность тока в зоне сердца сильно зависит от состояния «подстилающих» условий (вида обуви, состояния почвы и т. д.), но уже может достигать этих величин.

электрический магнитный живой организм

Влияние электрического поля на растения

Опыты проводились в специальной камере в неискаженном поле с напряженностью от 0 до 50 кВ/м. Было выявлено небольшое повреждение ткани листьев при экспозиции от 20 до 50 кВ/м, зависящее от конфигурации растения и первоначального содержания влаги в нем. Омертвление ткани наблюдалось в частях растений с острыми краями. Толстые, с гладкой закругленной поверхностью растения не повреждались при напряженности 50 кВ/м. Повреждения являются следствием короны на выступающих частях растений. У наиболее слабых растений повреждения наблюдались уже через 1 - 2 ч после экспозиции. Важно, что у сеянцев пшеницы, имеющих очень острые концы, корона и повреждения были заметны при сравнительно низкой напряженности, равной 20 кВ/м. Это был самый низкий порог появления повреждений в исследованиях.

Наиболее вероятный механизм повреждения ткани растений - тепловой. Поражение ткани появляется тогда, когда напряженность поля становится достаточно высокой, чтобы вызвать коронирование, и через кончик листка течет ток короны высокой плотности. Тепло, выделяемое при этом на сопротивлении ткани листа, приводит к гибели узкого слоя клеток, которые сравнительно быстро теряют воду, высыхают и сжимаются. Однако этот процесс имеет предел и процент высохшей поверхности растения невелик.

Влияние электрического поля на животных

Исследования проводились по двум направлениям: изучение на уровне биосистемы и изучение порогов обнаруженных влияний. Среди цыплят, помещенных в поле с напряженностью 80 кВ/м, отмечалась прибавка массы, жизнеспособность, низкая смертность. Порог восприятия поля измерялся на домашних голубях. Было показано, что голуби обладают каким-то механизмом для обнаружения электрических полей малой напряженности. Генетических изменений не наблюдалось. Отмечено, что животные, пребывающие в электрическом поле большой напряженности, могут испытывать мини-шок из-за посторонних факторов, зависящих от условий эксперимента, которые могут привести к некоторому беспокойству и возбуждению испытываемых.

В ряде стран имеются нормативные документы, ограничивающие предельные значения напряженности поля в зоне трасс воздушных ЛЭП. Максимальная напряженность 20 кВ/м была рекомендована в Испании, и такое же значение рассматривается в настоящее время как предельное в Германии.

Общественная осведомленность о влиянии электромагнитного поля на живые организмы продолжает расти, и некоторый интерес и беспокойство в связи с этим влиянием будут приводить к продолжению соответствующих медицинских исследований, особенно на людях, проживающих вблизи воздушных линий электропередачи.

Метод электронного парамагнитного резонанса

Метод электронного парамагнитного резонанса является основным методом для изучения парамагнитных частиц. К парамагнитным частицам, имеющим важное биологическое значение, относятся два основных типа - это свободные радикалы и комплексы металлов переменной валентности (таких, как Fe, Cu, Co, Ni, Mn).

Метод электронного парамагнитного резонанса был открыт в 1944 г. Е. К. Завойским при исследовании взаимодействия электромагнитного излучения микроволнового диапазона с солями металлов.

В основе метода ЭПР лежит поглощение электромагнитного излучения радиодиапазона неспаренными электронами, находящимися в магнитном поле.

Суть метода

Суть явления электронного парамагнитного резонанса заключается в резонансном поглощении электромагнитного излучения неспаренными электронами. Электрон имеет спин S = 1 / 2 и ассоциированный с ним магнитный момент.

Если поместить свободный радикал с результирующим моментом количества движения J в магнитном поле с напряжённостью B0, то для J, отличного от нуля, в магнитном поле снимается вырождение, и в результате взаимодействия с магнитным полем возникает 2J+1 уровней, положение которых описывается выражением:

W = gвB0M, (где М = +J, +J-1, …-J)

и определяется Зеемановским взаимодействием магнитного поля с магнитным моментом J. Расщепление энергетических уровней электрона показано на рисунке.

Энергетические уровни и разрешенные переходы для атома с ядерным спином 1 в постоянном (А) и переменном (В) поле.

Если теперь к парамагнитному центру приложить электромагнитное поле с частотой н, поляризованное в плоскости, перпендикулярной вектору магнитного поля B0, то оно будет вызывать магнитные дипольные переходы, подчиняющиеся правилу отбора ДМ = 1. При совпадении энергии электронного перехода с энергией фотона электромагнитной волны будет происходить резонансное поглощение СВЧ излучения. Таким образом, условие резонанса определяются фундаментальным соотношением магнитного резонанса:

hн = gвB0

Поглощение энергии СВЧ поля наблюдается в том случае, если между уровнями существует разность заселённостей.

При тепловом равновесии существует небольшая разность заселённостей зеемановских уровней, определяемая больцмановским распределением N + / N ? = exp(gвB0/kT). В такой системе при возбуждении переходов очень быстро должно наступить равенство заселённостей энергетических подуровней и исчезнуть поглощение СВЧ поля. Однако, в действительности существует много различных механизмов взаимодействия, в результате которых электрон безызлучательно переходит в первоначальное состояние. Эффект неизменности интенсивности поглощения при увеличении мощности возникает за счёт электронов, не успевающих релаксировать, и называется насыщением.

Заключение

Результаты многочисленных исследований показывают, что невидимые, неосязаемые электромагнитные, магнитные и электрические поля оказывают серьезное воздействие на человеческий и другие организмы. Влияние сильных полей изучено достаточно широко. Влияние слабых полей, на которое раньше не обращали внимание, оказалось ничуть не менее важным для живых организмов. Но исследования в этой области только начались.

Современный человек все больше времени проводит в помещениях железобетонного типа, в кабинах автомобилей. Но практически нет исследований, связанных с оценкой влияния на здоровье людей экранирующего действия помещений, металлических кабин автомобилей, самолетов и т.п. Особенно это касается экранирования естественного электрического поля Земли. Следовательно, такие исследования в настоящее время являются весьма актуальными.

«Современное человечество, как и все живое, обитает в своеобразном электромагнитном океане, поведение которого определяется теперь не только естественными причинами, но и искусственным вмешательством. Нам нужны опытные лоцманы, досконально знающие скрытые течения этого океана, его отмели и острова. И требуются еще более строгие навигационные правила помогающие оберегать путников от электромагнитных бурь», - так образно описал нынешнюю ситуацию один из первопроходцев отечественной магнитобиологии Ю.А. Холодов.

Литература

1. М.В.Головко, Ю.С.Мельник, Л.В.Непорожня., В.В.Сіпій. Фізика і астрономія (рівень стандарту, за навчальною програмою авторського колективу під керівництвом О. І. Ляшенка). Підручник для 11 класу закладів загальної середньої освіти, 2019

2. Т. М. Засєкіна, Д. О. Засєкін., Фізика і астрономія (рівень стандарту, за навчальною програмою авторського колективу під керівництвом О. І. Ляшенка). Підручник для 11 класу закладів загальної середньої освіти, 2019

3. Сиротюк В.Д. Фізика (рівень стандарту, за навчальною програмою авторського колективу під керівництвом О. І. Ляшенка). Підручник для 11 класу закладів загальної середньої освіти, 2019

1. Дмитрієва В.Ф. Фізика. Навчальний посібник для студентів вищих навчальних закладів 1-2 рівнів акредитації, 2008

2. Жданов Л.С., Жданов Г.Л. Фізика. Підручник для середніх спеціальних навчальних закладів. - К.: Высшая школа, 1983

3. Альошина М.О. Фізика. Типові тестові завдання, 2011

4. Непорожня Л.В., Петренко А.М., Овсянніков О.А., Селезнев Ю.О Збірник завдань для державної підсумкової атестації з фізики. 11 клас - К.: Освіта, 2011

5. Гельфгат І.М. та ін. Збірник різнорівневих завдань для державної підсумкової атестації з фізики. - Харків: Гімназія, 2003.

6. Римкевич А.П. Збірник задач з фізики. - Харків: Олант, 2007.

Размещено на Allbest.ru

...

Подобные документы

  • Биологическое влияние электрических и магнитных полей на организм людей и животных. Суть явления электронного парамагнитного резонанса. Исследования с помощью ЭПР металлсодержащих белков. Метод ядерного магнитного резонанса. Применение ЯМР в медицине.

    реферат [28,2 K], добавлен 29.04.2013

  • Процессы в электрических цепях с сосредоточенными параметрами. Четырехполюсники при переменных токах. Расчет электрических полей. Теорема Гаусса и ее применение. Расчет симметричных магнитных полей. Моделирование плоскопараллельного магнитного поля.

    методичка [4,4 M], добавлен 16.10.2012

  • Примеры расчета магнитных полей на оси кругового тока. Поток вектора магнитной индукции. Теорема Гаусса-Остроградского для вектора: основное содержание, принципы. Теорема о циркуляции вектора. Примеры расчета магнитных полей: соленоида и тороида.

    презентация [522,0 K], добавлен 24.09.2013

  • Исследование электрических полей нестандартных многоцепных высоковольтных линий электропередач. Инструкция по ликвидации аварийных режимов работы на подстанции 110/35/10 кВ. Программа расчета электрических полей трехфазной линии на языке Turbo Pascal.

    дипломная работа [1,6 M], добавлен 29.04.2010

  • Изучение конструкции волноводов. Классификация волн в волноводе. Создание электрических и магнитных полей различной структуры. Уравнения Максвелла для диэлектрика. Уменьшение потерь энергии внутри волновода. Распространение поперечно-электрических волн.

    презентация [267,3 K], добавлен 25.12.2014

  • Закон полного тока. Единая теория электрических и магнитных полей Максвелла. Пояснения к теории классической электродинамики. Система уравнений Максвелла. Скорость распространения электромагнитного поля. Релятивистская трактовка магнитных явлений.

    презентация [1,0 M], добавлен 14.03.2016

  • Вихревое электрическое поле. Интегральная форма уравнений Максвелла. Единая теория электрических и магнитных явлений. Понятие о токе смещения. Постулат Максвелла, выражающий закон создания электрических полей действием зарядов в произвольных средах.

    презентация [361,3 K], добавлен 24.09.2013

  • Формы электрических полей. Симметричная и несимметричная система электродов. Расчет максимальной напряженности кабеля. Виды и схема развития пробоя твердого диэлектрика. Характеристики твердой изоляции. Зависимость пробивного напряжения от температуры.

    контрольная работа [91,5 K], добавлен 28.04.2016

  • Анализом действующих на дипольную частицу сил. Изучение диполь-дипольного взаимодействия однодоменных дисперсных частиц. Формула расчета эффективных полей при разных формах зависимости, когда выполняется требование однородности среды.

    доклад [47,9 K], добавлен 20.03.2007

  • Основные критерии классификации магнитных материалов. Магнитомягкие материалы для постоянных и низкочастотных магнитных полей. Свойства ферритов и магнитодиэлектриков. Магнитные материалы специального назначения. Анализ магнитных цепей постоянного тока.

    курсовая работа [366,4 K], добавлен 05.01.2017

  • Характеристики магнитного поля и явлений, происходящих в нем. Взаимодействие токов, поле прямого тока и круговой ток. Суперпозиция магнитных полей. Циркуляция вектора напряжённости магнитного поля. Действие магнитных полей на движущиеся токи и заряды.

    курсовая работа [840,5 K], добавлен 12.02.2014

  • Определение наличия и направления магнитного поля метки. Создание постоянного магнитного поля, компенсирующего действие постоянных внешних магнитных полей. Принципиальная схема зарядно-разрядного узла устройства. Определение разряда накопительной емкости.

    лабораторная работа [1,2 M], добавлен 18.06.2015

  • Влияние электромагнитного поля (ЭМП) на иммунную, гуморальную, половую и нервную систему. Механизм функциональных нарушений при воздействии ЭМП. Исследования о влиянии ЭМП на развитие эмбриона. Способы и методы защиты от электромагнитных излучений.

    доклад [16,2 K], добавлен 03.12.2011

  • Ускорители заряженных частиц как устройства, в которых под действием электрических и магнитных полей создаются и управляются пучки высокоэнергетичных заряженных частиц. Общая характеристика высоковольтного генератора Ван-де-Граафа, знакомство с функциями.

    презентация [4,2 M], добавлен 14.03.2016

  • Геомагнитное поле земли. Причины возникновения магнитных аномалий. Направление вектора напряженности земли. Техногенные и антропогенные поля. Распределение магнитного поля вблизи воздушных ЛЭП. Влияние магнитных полей на растительный и животный мир.

    курсовая работа [326,4 K], добавлен 19.09.2012

  • Исследование капиллярного подъема магнитной жидкости при воздействии электрического и магнитного полей. Изучение проявления действия пондеромоторных сил на жидкие намагничивающиеся среды и процессы релаксации заряда в тонких слоях магнитных жидкостей.

    лабораторная работа [1,9 M], добавлен 26.08.2009

  • Закономерности влияния внешних электрических полей на макроскопические характеристики горения органических топлив. Схемы наложения внешнего электрического поля на пламя. Воздействие организованных внешних полей на процесс горения углеводородных топлив.

    курсовая работа [42,6 K], добавлен 14.03.2008

  • Основные понятия люминесценции кристаллов. Квантовый и энергетический выход люминесценции. Способы возбуждения электролюминесценции. Влияние внешних электрических полей и высоких гидростатических давлений на характеристики галофосфатных люминофоров.

    дипломная работа [1,7 M], добавлен 07.07.2015

  • Расчет структуры электромагнитных полей внутри и вне бесконечного проводящего цилиндра и в волноводе методом разделения переменных при интегрировании дифференциальных уравнений для получения аналитических выражений потенциалов и напряженностей полей.

    курсовая работа [860,6 K], добавлен 14.12.2013

  • Этапы развития науки об электричестве. Теории электрических явлений. Физика и живые организмы, их связь. Электричество в различных классах живых организмах. Исследование протекания электричества в земноводных, опыты Гальвани, Александра Вольта.

    реферат [17,9 K], добавлен 20.12.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.