Одноканальные и многоканальные системы управления выпрямителями

Выпрямление электрического тока. Детектирование высокочастотного сигнала. Вентильные блоки преобразовательных подстанций систем энергоснабжения. Управление выпрямителями электросиловых установок. Типовые схемы. Полный мост Гретца. Однофазные выпрямители.

Рубрика Физика и энергетика
Вид контрольная работа
Язык русский
Дата добавления 12.06.2020
Размер файла 353,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МИНИСТЕРСТВО ВЫСШЕГО И СРЕДНЕСПЕЦИАЛЬНОГО ОБРАЗОВАНИЯ

РЕСПУБЛИКИ УЗБЕКИСТАН

ТАШКЕНТСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ ИСЛАМА КАРИМОВА

ЭНЕРГЕТИЧЕСКИЙ ФАКУЛЬТЕТ

Контрольная работа

По предмету: Электроника

На тему: Одноканальные и многоканальные системы управления выпрямителями

Выполнил:

Хайдаров А.

ТАШКЕНТ 2020

План

Введение

1. Классификация

2. Применение

2.1 Выпрямление электрического тока

2.1.1 Блоки питания аппаратуры

2.1.2 Выпрямители электросиловых установок

2.1.3 Сварочные аппараты

2.1.4 Вентильные блоки преобразовательных подстанций систем энергоснабжения

2.1.5 Выпрямители высокочастотных колебаний

2.2 Детектирование высокочастотного сигнала

3. Характеристики

4. Типовые схемы

4.1 Двухполупериодный выпрямитель

5. Однофазные выпрямители

5.1 Однополупериодный выпрямитель (четвертьмост)

5.2 Полумост

5.3 Полный мост (Гретца)

6. Двухфазные выпрямители со сдвигом фаз 180°

6.1 Два четвертьмоста параллельно ("двухполупериодный со средней точкой")

6.2 Два полных моста параллельно

7. Двухфазные выпрямители со сдвигом фаз 90°

7.1 Два четвертьмоста параллельно

7.2 Два полумоста параллельно

7.3 Два полумоста последовательно

7.4 Два полных моста параллельно

7.5 Два полных моста последовательно

8. Трёхфазные выпрямители

8.1 Три четвертьмоста параллельно (схема Миткевича)

8.2 Три разделённых полумоста параллельно (три «с удвоением напряжения» параллельно)

8.3 Три полумоста параллельно, объединённые кольцом/треугольником («треугольник-Ларионов»)

Литература

Введение

Силовой диодный выпрямитель электровоза ВЛ80С, построенный по схеме полного моста

Выпрямитель (электрического тока) -- преобразователь электрической энергии; механическое, электровакуумное, полупроводниковое или другое устройство, предназначенное для преобразования переменного входного электрического тока в постоянный выходной электрический ток.[1][2]

Большинство выпрямителей создаёт не постоянные, а пульсирующие однонаправленные напряжение и ток, для сглаживания пульсаций которых применяют фильтры.

Устройство, выполняющее обратную функцию -- преобразование постоянных напряжения и тока в переменные напряжение и ток -- называется инвертором.

Из-за принципа обратимости электрических машин выпрямитель и инвертор являются двумя разновидностями одной и той же электрической машины (справедливо только для инвертора на базе электрической машины).

1. Классификация

Рисунок 1. Ртутный выпрямитель

Выпрямители классифицируют по следующим признакам:

· по виду переключателя выпрямляемого тока

o механические синхронные с щёточно-коллекторным коммутатором тока[3];

o механические синхронные с контактным переключателем (выпрямителем) тока;

o с электронной управляемой коммутацией тока (например, тиристорные);

§ электронные синхронные (например, транзисторные) -- как разновидность выпрямителей с управляемой коммутацией;

o с электронной пассивной коммутацией тока (например, диодные);

· по мощности

o силовые выпрямители[4];

o выпрямители сигналов[5];

· по степени использования полупериодов переменного напряжения

o однополупериодные -- пропускают в нагрузку только одну полуволну[6];

o двухполупериодные -- пропускают в нагрузку обе полуволны;

o неполноволновые -- не полностью используют синусоидальные полуволны;

o полноволновые -- полностью используют синусоидальные полуволны;

· по схеме выпрямления -- мостовые, с умножением напряжения, трансформаторные, с гальванической развязкой, бестрансформаторные и пр.;

· по количеству используемых фаз -- однофазные, двухфазные, трёхфазные и многофазные;

· по типу электронного вентиля -- полупроводниковые диодные, полупроводниковые тиристорные, ламповые диодные (кенотронные), газотронные, игнитронные, электрохимические и пр.;

· по управляемости -- неуправляемые (диодные), управляемые (тиристорные);

· по количеству каналов -- одноканальные, многоканальные;

· по величине выпрямленного напряжения -- низковольтные (до 100В), средневольтовые (от 100 до 1000В), высоковольтные (свыше 1000В);

· по назначению -- сварочный, для питания микроэлектронной схемы, для питания ламповых анодных цепей, для гальваники и пр.;

· по степени полноты мостов -- полномостовые, полумостовые, четвертьмостовые;

· по наличию устройств стабилизации -- стабилизированные, нестабилизированные;

· по управлению выходными параметрами -- регулируемые, нерегулируемые;

· по индикации выходных параметров -- без индикации, с индикацией (аналоговой, цифровой);

· по способу соединения -- параллельные, последовательные, параллельно-последовательные;

· по способу объединения -- раздельные, объединённые звёздами, объединённые кольцами;

· по частоте выпрямляемого тока -- низкочастотные, среднечастотные, высокочастотные.

2. Применение

2.1 Выпрямление электрического тока

Выпрямители обычно используются там, где нужно преобразовать переменный ток в постоянный ток.

2.1.1 Блоки питания аппаратуры

Применение выпрямителей в блоках питания радио- и электроаппаратуры обусловлено тем, что обычно в системах электроснабжения зданий или транспортных средств (самолётов, поездов) применяется переменный ток, и выходной ток любого электромагнитного трансформатора, применённого для гальванической развязки цепей или для понижения напряжения, всегда переменный, тогда как в большинстве случаев электронные схемы и электродвигатели целевой аппаратуры рассчитаны на питание током постоянного напряжения.

· Блоки питания промышленной и бытовой радио- и электроаппаратуры (в т.ч. так называемые адаптеры (англ. AC-DC adaptor)).

· Блоки питания бортовой радиоэлектронной аппаратуры транспортных средств.

2.1.2 Выпрямители электросиловых установок

· Выпрямители питания главных двигателей постоянного тока автономных транспортных средств и буровых станков.

Как правило, на автономных транспортных средствах (автомобилях, тракторах, тепловозах, теплоходах, атомоходах, самолётах) для получения электроэнергии применяют генераторы переменного тока, так как они имеют большую мощность при меньших габаритах и весе, чем генераторы постоянного тока. Но для приводов движителей транспорта обычно применяются двигатели постоянного тока, так как они позволяют простым переключением полюсов питающего тока управлять направлением движения. Это позволяет отказаться от сложных, тяжёлых и ненадёжных коробок переключения передач. Также применяется и для привода бурильных станков буровых вышек.

· Преобразователи бортового электроснабжения постоянного тока автономных транспортных средств: автотракторной, железнодорожной, водной, авиационной и другой техники.

Генерация электроэнергии на транспортном средстве обычно производится генератором переменного тока, но для питания бортовой аппаратуры необходим постоянный ток. Например, в легковых автомобилях применяются электромеханические или полупроводниковые выпрямители.

2.1.3 Сварочные аппараты

В сварочных аппаратах постоянного тока применяются чаще всего мостовые схемы на мощных кремниевых выпрямительных диодах -- вентилях, с целью получения постоянного сварочного напряжения и тока. Он отличается от переменного тем, что при использовании его сильнее нагревается область дуги около положительного (+) её полюса, что позволяет либо осуществлять щадящую сварку свариваемых деталей преимущественно плавящимся сварочным электродом, либо экономить электроды, осуществляя резку металла электродуговой сваркой.

Применение выпрямителей для преобразования переменного тока в постоянный вызвало понятие среднего значения тока по модулю (т. е. без учета знака ординаты) за период. При двухполупериодном выпрямлении среднее значение по модулю определяется как среднеарифметическое значение всех ординат обеих полуволн за целый период без учета их знаков (т. е. полагая все ординаты за период положительными, что и имеет место при двухполупериодном идеальном выпрямлении.

Приемниками электроэнергии с нелинейными характеристиками являются в первую очередь всевозможные преобразовательные установки переменного тока в постоянный, использующие различные вентили.

Сюда относятся выпрямительные установки для:

· железнодорожной тяги

· городского электротранспорта

· электролиза (производство алюминия, хлора, едкого натра и др.)

· питания приводов прокатных станов

· возбуждения генераторов электростанций

В качестве вентилей до последнего времени использовались в основном ртутные выпрямители (неуправляемые и управляемые). В настоящее время широкое применение находят преимущественно кремниевые полупроводниковые выпрямители. Внедряются тиристорные выпрямители.

Обычно выпрямительные установки выполняются большой мощности и присоединяются через специальные трансформаторы к питающей сети на напряжении 6 -- 10 кВ. Выпрямительные установки небольшой мощности выполняются по трехфазной схеме с нулевым выводом.

2.1.4 Вентильные блоки преобразовательных подстанций систем энергоснабжения

· Для питания главных двигателей постоянного тока прокатных станов, кранов и другой техники

Энергоснабжение заводов осуществляется электросетью переменного тока, но для приводов прокатных станов и других агрегатов выгоднее использовать двигатели постоянного тока по той же причине, что и для двигателей транспортных средств.

· Для гальванических ванн (электролизёров) для получения цветных металлов и стали, нанесения металлических покрытий и гальванопластики.

· Установки электростатической очистки промышленных газов (электростатический фильтр)

· Установки очистки и обессоливания воды

· Для электроснабжения контактных сетей электротранспорта постоянного тока (трамвай, троллейбус, электровоз, метро)

· Для несинхронной связи энергосистем переменного тока[7]

· Для дальней передачи электроэнергии постоянным током[8].

2.1.5 Выпрямители высокочастотных колебаний

В составе ректенн:

· в перспективных системах сбора энергии окружающих шумовых электромагнитных сигналов.

· в перспективных системах беспроводной передачи электроэнергии.

2.2. Детектирование высокочастотного сигнала

В простейшем случае детектор амплитудно-модулированного сигнала устроен аналогично выпрямителю. Принцип работы основан на предположении, что частота несущей значительно выше частоты модулирующего сигнала, а коэффициент модуляции меньше единицы. В этом случае сигнал на входе устройства выпрямляется и фильтруется с помощью ФНЧ с частотой среза большей, чем максимальная частота модулирующего сигнала.

Рисунок 2. Схема АМ детектора на базе однополупериодного выпрямителя.

Демодулятор амплитудно модулированного высокочастотного сигнала в простейшем случае представляет собой однополупериодный выпрямитель на одном диоде с выходным фильтром из конденсатора и резистора. Соотношение номиналов ёмкости и сопротивления выбирается так, чтобы оптимально сглаживать полупериоды несущей высокой частоты, при превышении амплитуды полупериодов несущей выше напряжения на конденсаторе ёмкость заряжается, при уменьшении амплитуды полупериодов несущей ниже напряжения на конденсаторе ёмкость разряжается, тем самым огибающая восстанавливает модулирующий (низкочастотный) сигнал. При демодуляции сигнала звуковых частот (20--20000 Гц) как правило, применяется кремниевый или германиевый диод и конденсатор ёмкостью порядка 10--47 нФ.

3. Характеристики

· Номинальное выходное напряжение постоянного тока и допустимый диапазон его изменения;

· Номинальный ток нагрузки;

· Диапазон эффективного входного напряжения переменного тока (например 220 В ± 10%);

· Допустимая выходная пульсация, её амплитудно-частотные характеристики;

· Нагрузочная характеристика.

· Эквивалентное внутреннее комплексное (в первом приближении активное) сопротивление.

· Коэффициент использования габаритной мощности трансформатора.

4. Типовые схемы

4.1 Двухполупериодный выпрямитель

Может строиться по мостовой или полумостовой схеме (когда, например, в случае выпрямления однофазного тока, используется специальный трансформатор с выводом от средней точки вторичной обмотки и вдвое меньшим количеством выпрямляющих ток элементов. Такая схема ныне применяется редко, так как более металлоёмка и имеет большее эквивалентное активное внутреннее сопротивление, то есть большие потери на нагрев обмоток трансформатора. При построении двухполупериодного выпрямителя со сглаживающим конденсатором следует всегда помнить, что переменное напряжение всегда измеряется в «действующем» значении, которое в 1,41 раза меньше его максимальной амплитуды, а выпрямленное напряжение на конденсаторе, в отсутствии нагрузки, будет всегда равно амплитудному. Это означает, что, например, при измеренном напряжении однофазного переменного тока 12 вольт до мостового однофазного выпрямителя со сглаживающим конденсатором, на конденсаторе, (в отсутствии нагрузки), будет напряжение до 17 вольт. Под нагрузкой выпрямленное напряжение будет ниже, (но не ниже величины действующего напряжения переменного тока, если внутреннее сопротивление трансформатора -- источника переменного тока -- принять равным нулю) и зависеть от ёмкости сглаживающего конденсатора.

Соответственно, выбор величины переменного напряжения вторичной обмотки трансформатора, должен строиться исходя из максимальной допустимой величины подаваемого напряжения, а ёмкость сглаживающего конденсатора -- должна быть достаточно большой, чтобы напряжение под нагрузкой не снизилось меньше минимально допустимого. На практике также учитывается неизбежное падение напряжения под нагрузкой -- на сопротивлении проводов, обмотке трансформатора, диодах выпрямительного моста, а также возможное отклонение от номинального величины питающего трансформатор напряжения электрической сети.

5. Однофазные выпрямители

5.1 Однополупериодный выпрямитель (четверть мост)

Рисунок 3

Простейшая схема однополупериодного выпрямителя состоит только из одного выпрямляющего ток элемента (диода). На выходе -- пульсирующий постоянный ток. На промышленных частотах (50--60 Гц) не имеет широкого применения, так как для питания аппаратуры требуются сглаживающие фильтры с большими величинами емкости и индуктивности, что приводит к увеличению габаритно-весовых характеристик выпрямителя. Однако схема однополупериодного выпрямления нашла очень широкое распространение в импульсных блоках питания с частотой переменного напряжения свыше 10 КГц, широко применяющихся в современной бытовой и промышленной аппаратуре. Объясняется это тем, что при более высоких частотах пульсаций выпрямленного напряжения, для получения требуемых характеристик (заданного или допустимого коэффициента пульсаций), необходимы сглаживающие элементы с меньшими значениями емкости (индуктивности). Вес и размеры источников питания уменьшаются с повышением частоты входного переменного напряжения.

Однополупериодный выпрямитель или четвертьмост является простейшим выпрямителем и включает в себя один вентиль (диод или тиристор).

Допущения: нагрузка чисто-активная, вентиль -- идеальный электрический ключ.

Напряжение со вторичной обмотки трансформатора проходит через вентиль на нагрузку только в положительные полупериоды переменного напряжения. В отрицательные полупериоды вентиль закрыт, всё падение напряжения происходит на вентиле, а напряжение на нагрузке Uн равно нулю.

.

Эта величина вдвое меньше, чем в полномостовом.

Недостатки:[9]

· Большая величина пульсаций

· Сильная нагрузка на вентиль (требуется диод с большим средним выпрямленным током)

· Низкий коэффициент использования габаритной мощности трансформатора (около 0,45) (не путать с КПД, который зависит от потерь в меди и потерь в стали и в однополупериодном выпрямителе почти такой же, как и в двухполупериодном).

Преимущества: Экономия на количестве вентилей.

5.2 Полумост

На двух диодах и двух конденсаторах, широко известный как «с удвоением напряжения» или «удвоитель Латура-Делона-Гренашера». [10]

Известна также схема с удвоением тока: параллельно единственной вторичной обмотке трансформатора включаются два последовательно соединённых дросселя, средняя точка соединения между которыми используется как средняя точка в «двухполупериодном выпрямителе со средней точкой». [11]

6. Двухфазные выпрямители со сдвигом фаз 180°

6.1 Два четвертьмоста параллельно ("двухполупериодный со средней точкой")

Рисунок 4

Выпрямитель Миткевича «два четвертьмоста параллельно» на двуханодной лампе. Здесь вторичная обмотка Н служит для накала катода лампы.

Рисунок 5. Выпрямитель Миткевича «два четвертьмоста параллельно» на твёрдотельных диодах.

Широко известный как «двухполупериодный со средней точкой». Предложил в 1901 г. профессор Миткевич В.Ф. В этом выпрямителе две противофазных обмотки создают двухфазный переменный ток со сдвигом между фазами 180 угловых градусов. Двухфазный переменный ток выпрямляется двумя однополупериодными четвертьмостовыми выпрямителями, включенными параллельно и работающими на одну общую нагрузку. Является почти аналогом полномостового выпрямителя Гретца, но имеет почти вдвое большее эквивалентное внутреннее активное сопротивление, вдвое меньше диодов и средний ток через один диод почти вдвое больше, чем в полномостовом, при амплитуде выпрямляемого напряжения сопоставимой с падением напряжения на переходе твердотельного диода обладает значительно лучшем КПД по сравнению с мостовой схемой. Применялась, когда медь была дешевле диодов. В одной из работ отмечается, что в этом выпрямителе выпрямленные полупериоды имеют колоколообразную форму, то есть форму близкую к функции y=Em*(sin(w*t))І.

Площадь под интегральной кривой равна:

Средняя ЭДС равна:

Относительное эквивалентное активное внутреннее сопротивление равно , то есть вдвое больше, чем в однофазном полномостовом, следовательно больше потери энергии на нагрев меди обмоток трансформатора (или расход меди).

Ток в нагрузке равен

Мощность в нагрузке равна

Частота пульсаций равна , где -- частота сети.

6.2 Два полных моста параллельно

Позволяет применять диоды со средним током почти вдвое меньшим, чем в однофазном полномостовом.

7. Двухфазные выпрямители со сдвигом фаз 90°

7.1 Два четвертьмоста параллельно

7.2 Два полумоста параллельно

7.3 Два полумоста последовательно

7.4 Два полных моста параллельно

На двух параллельных полных мостах.

Площадь под интегральной кривой равна:

Средняя ЭДС равна: то есть в раз больше, чем в однофазном полномостовом.

В режиме холостого хода и близких к нему ЭДС в мосту с наибольшей на данном отрезке периода ЭДС обратносмещает (закрывает) диоды моста с меньшей на данном отрезке периода ЭДС. Эквивалентное внутреннее активное сопротивление при этом равно При увеличении нагрузки (уменьшении ) появляются и увеличиваются отрезки периода на которых оба моста работают параллельно на общую нагрузку, эквивалентное внутреннее активное сопротивление на этих отрезках периода равно В режиме короткого замыкания оба моста работают параллельно на нагрузку на всём периоде, но полезная мощность в этом режиме равна нулю.

7.5 Два полных моста последовательно

На двух последовательных полных мостах.

Площадь под интегральной кривой равна:

Средняя ЭДС равна: то есть вдвое больше, чем в однофазном полномостовом.

Относительное эквивалентное внутреннее активное сопротивление равно

Ток в нагрузке равен

Мощность в нагрузке равна

Частота пульсаций равна

8 Трёхфазные выпрямители

Наиболее распространены трёхфазные выпрямители по схеме Миткевича В. Ф. (на трёх диодах, предложена им в 1901 г.) и по схеме Ларионова А. Н. (на шести диодах, предложена в 1923 г.). Выпрямитель по схеме Миткевича является четвертьмостовым параллельным, по схеме Ларионова -- полумостовым параллельным.[12][неавторитетный источник?]

8.1. Три четвертьмоста параллельно (схема Миткевича)

Рисунок 6. Три четвертьмоста параллельно (Миткевича В. Ф.)

Рисунок 7. Вид ЭДС на входе (точками) и на выходе (сплошной)

(«Частично трёхполупериодный со средней точкой»). Площадь под интегральной кривой равна:

Средняя ЭДС равна:

На холостом ходу и близких к нему режимах ЭДС в ветви с наибольшей на данном отрезке периода обратносмещает (закрывает) диоды в ветвях с меньшей на данном отрезке периода ЭДС и относительное эквивалентное активное сопротивление равно сопротивлению одной ветви При увеличении нагрузки (уменьшении ) появляются и увеличиваются отрезки периода на которых обе ветви работают на одну нагрузку параллельно и относительное эквивалентное активное сопротивление на этих отрезках равно В режиме короткого замыкания эти отрезки максимальны но полезная мощность в этом режиме равна нулю.

Частота пульсаций равна , где -- частота сети.

8.2 Три разделённых полумоста параллельно (три «с удвоением напряжения» параллельно)

8.3 Три полумоста параллельно, объединённые кольцом/треугольником («треугольник-Ларионов»)

Рисунок 8. Вид ЭДС на входе (точками) и на выходе (сплошной)

В некоторой электротехнической литературе иногда не различают схемы «треугольник-Ларионов» и «звезда-Ларионов», которые имеют разные значения среднего выпрямленного напряжения, максимального тока, эквивалентного активного внутреннего сопротивления и др.

В выпрямителе "треугольник-Ларионов" потери в меди больше, чем в выпрямителе «звезда-Ларионов», поэтому на практике чаще применяется схема «звезда-Ларионов».

Кроме этого, выпрямители Ларионова А.Н. часто называют мостовыми, на самом деле они являются полумостовыми параллельными.

В некоторой литературе выпрямители Ларионова и подобные называют «полноволновыми» (англ. full wave), на самом деле полноволновыми являются выпрямитель «три последовательных моста» и подобные.

Площадь под интегральной кривой равна:

Средняя ЭДС равна: , то есть больше, чем в выпрямителе Миткевича.

В работе схемы «треугольник-Ларионов» есть два периода. Большой период равен 360° (). Малый период равен 60° (р / 3), и повторяется внутри большого 6 раз. Малый период состоит из двух малых полупериодов по 30° (р / 6), которые зеркальносимметричны и поэтому достаточно разобрать работу схемы на одном малом полупериоде в 30°.

На холостом ходу и в режимах близких к нему ЭДС в ветви с наибольшей на данном отрезке периода обратносмещает (закрывает) диоды с меньшими на данном отрезке периода ЭДС.

В начальный момент () ЭДС в одной из ветвей равна нулю, а ЭДС в двух других ветвях равны 0,86*Em, при этом открыты два верхних диода и один нижний диод. Эквивалентная схема представляет собой две параллельные ветви с одинаковыми ЭДС (0,86) и одинаковыми сопротивлениями по 3*r каждое, эквивалентное сопротивление обеих ветвей равно 3*r/2. Далее, на малом полупериоде, одна из двух ЭДС, равных 0,86, растёт до 1,0, другая уменьшается до 0,5, а третья растёт от 0,0 до 0,5. Один из двух открытых верхних диодов закрывается, и эквивалентная схема является параллельным включением двух ветвей, в одной из которых большая ЭДС и её сопротивление равно 3*r, в другой ветви образуется последовательное включение двух меньших ЭДС, и её сопротивление равно 2*3*r=6*r, эквивалентное сопротивление обеих ветвей равно

Частота пульсаций равна , где -- частота сети. Абсолютная амплитуда пульсаций равна . Относительная амплитуда пульсаций равна .

электрический ток выпрямитель однофазный

Литература

1. Тарасов Ф.И. Как построить выпрямитель М.: Госэнергоиздат, 1949. -- 50000 с.

2. Вересов Г.П. Электропитание бытовой радиоэлектронной аппаратуры - М.: Радио и связь, 1983. -- 128 с. -- 60000 экз.

3. В.В. Китаев и др. Электропитание устройств связи --- М.: Связь, 1975. -- 328 с. -- 24000 экз.

4. Костиков В.Г. Парфенов Е.М. Шахнов В.А. Источники электропитания электронных средств. Схемотехника и конструирование: Учебник для ВУЗов. -- 2. -- М.: Горячая линия -- Телеком, 2001. -- 344 с. -- 3000 экз.

Размещено на Allbest.ru

...

Подобные документы

  • Техническое описание системы питания потребителей от тяговых подстанций систем электроснабжения постоянного тока 3,3 кВ и переменного тока 25 кВ их преимущества и недостатки. Схемы электроснабжения устройств автоблокировки и электрических железных дорог.

    контрольная работа [1,0 M], добавлен 13.10.2010

  • Функциональная схема разомкнутой СУ. Типовые узлы схем автоматического управления. Применение реле минимального тока. Реле пускового тока. Автотрансформаторный асинхронный пуск в функции времени. Сравнительный анализ принципов резисторного управления.

    курс лекций [540,0 K], добавлен 01.05.2009

  • Анализ принципов построения энергоснабжения космических аппаратов. Типовые функции верхнего уровня иерархии подсистемы энергоснабжения. Этапы проектирования солнечной батареи. Подсистема распределения электрической энергии космического аппарата.

    курсовая работа [1,5 M], добавлен 08.06.2016

  • Выбор оптимальной схемы энергоснабжения промышленного района. Сравнение схем энергоснабжения – комбинированной и раздельной. Особенности технико-экономического выбора турбин и котлоагрегатов для различных схем энергоснабжения. Эксплуатационные затраты.

    курсовая работа [337,9 K], добавлен 16.03.2011

  • Признаки классификации электроприводов постоянного тока, их составляющие и область применения. Замкнутая автоматическая система – следящий привод. Электромеханические характеристики, функциональная и структурная схемы электропривода, его элементы и блоки.

    курсовая работа [4,1 M], добавлен 12.03.2012

  • Образование электрического тока, существование, движение и взаимодействие заряженных частиц. Теория появления электричества при соприкосновении двух разнородных металлов, создание источника электрического тока, изучение действия электрического тока.

    презентация [54,9 K], добавлен 28.01.2011

  • Характеристика электроснабжения механического цеха. Расчет экономических показателей его обслуживания. Выбор схемы электрического снабжения. Расчет тока короткого замыкания, нагрузок, освещения. Выбор трансформаторов, подстанций, питающего кабеля.

    дипломная работа [189,6 K], добавлен 11.02.2012

  • Анализ электрического состояния цепей постоянного или переменного тока. Системы уравнений для определения токов во всех ветвях схемы на основании законов Кирхгофа. Исследование переходных процессов в электрических цепях. Расчет реактивных сопротивлений.

    курсовая работа [145,0 K], добавлен 16.04.2009

  • Структурная схема контроля трансформаторных подстанций. Характеристика семейства PROFIBUS. Принцип действия измерительного трансформатора постоянного тока. Режим управления преобразователем частоты. Оценка погрешности каналов измерения напряжения и тока.

    курсовая работа [1,2 M], добавлен 29.05.2010

  • Электронные устройства для преобразования энергии переменного тока в энергию постоянного тока. Классификация выпрямителей, их основные параметры. Работа однофазной мостовой схемы выпрямления. Диаграммы токов и напряжений двухполупериодного выпрямителя.

    реферат [360,2 K], добавлен 19.11.2011

  • Измерительный мост, позволяющий определять величину неизвестного электрического сопротивления. Принципы работы мостовых схем нескольких ученых. Компенсационная и дифференциальная схемы. Примеры измерительных приборов на базе измерительных цепей.

    курсовая работа [1,1 M], добавлен 02.07.2013

  • Условия, необходимые для существования электрического тока. Достоинства и недостатки параллельного соединения проводников. Единица силы тока. Работа электрического тока в замкнутой электрической цепи. Закон Ома для участка цепи. Химическое действие тока.

    презентация [398,2 K], добавлен 07.02.2015

  • Понятие электрического тока как упорядоченного движения заряженных частиц. Виды электрических батарей и способы преобразования энергии. Устройство гальванического элемента, особенности работы аккумуляторов. Классификация источников тока и их применение.

    презентация [2,2 M], добавлен 18.01.2012

  • Выбор трехжильного силового кабеля в схеме внешнего электроснабжения тяговых подстанций (ТП). Определение количества преобразовательных агрегатов на ТП. Выбор трансформатора собственных нужд. Расчет мощности тяговой подстанций и релейной защиты.

    курсовая работа [1,3 M], добавлен 23.12.2014

  • Определение мощности и количества питающих подстанций, расчет кабельной сети, выбор сечения и длины соответствующих кабелей, определение тока короткого замыкания в электрических сетях. Выбор коммутационной аппаратуры, средств и установок защиты.

    курсовая работа [267,6 K], добавлен 23.06.2011

  • Переменные электрические величины, их значения в любой момент времени. Изменение синусоидов тока во времени. Элементы R, L и C в цепи синусоидального тока и фазовые соотношения между их напряжением и током. Диаграмма изменения мгновенных значений тока.

    курсовая работа [403,1 K], добавлен 07.12.2011

  • Обзор сути, видов и классификации трансформаторов, которые предназначены для преобразования переменного тока из одного напряжения в другое. Режим нагрузки, обмотки, магнитные потоки одно- и трехфазных трансформаторов. Выпрямители переменного напряжения.

    реферат [673,9 K], добавлен 27.10.2012

  • Понятие электрического тока, выбор его направления, действие и сила. Движение частиц в проводнике, его свойства. Электрические цепи и виды соединений. Закон Джоуля-Ленца о количестве теплоты, выделяемое проводником, закон Ома о силе тока на участке цепи.

    презентация [194,6 K], добавлен 15.05.2009

  • Сущность магнетизма, поле прямого бесконечно длинного тока. Форма правильных окружностей, описываемых силовыми линиями электрического поля элемента тока. Структура латентного поля тока. Закон Био-Савара, получение "магнитного" поля из электрического.

    реферат [2,2 M], добавлен 04.09.2013

  • Основные этапы проектирования электрического двигателя: расчет параметров якоря и магнитной системы машины постоянного тока, щеточно-коллекторного узла и обмотки добавочного полюса. Определение потери мощности, вентиляционных и тепловых характеристик.

    курсовая работа [411,3 K], добавлен 11.06.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.