Магнитное поле и магнитные цепи

Характеристика ферромагнитных материалов и их магнитных свойств. Закон полного тока и специфика его применения для расчета магнитного поля. Расчет неразветвленных магнитных цепей. Определение магнитного потока по заданной магнитодвижущей силе обмотки.

Рубрика Физика и энергетика
Вид лекция
Язык русский
Дата добавления 08.08.2020
Размер файла 204,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Магнитное поле и магнитные цепи

1. Ферромагнитные материалы и их магнитные свойства

По магнитным свойствам все материалы разделяют на две группы: ферромагнитные (железо, кобальт, никель и их сплавы и др.) и неферромагнитные материалы (все материалы, за исключением ферромагнитных).

Особенностью неферромагнитных материалов является то, что зависимость между магнитной индукцией В и напряженностью магнитного поля Н в них является линейной. Их абсолютная магнитная проницаемость есть величина постоянная и практически равна магнитной постоянной

. (7.1)

Материалы, магнитная проницаемость которых достигает больших значений и зависит от внешнего магнитного поля и предшествующего состояния, называют ферромагнитными. Свойства ферромагнитных материалов принято характеризовать зависимостью магнитной индукции В от напряженности магнитного поля Н. Если перемагничивать образец в периодическом магнитном поле, то кривая имеет вид петли, называемой петлей гистерезиса (рис. 7.1). Участок 0а является кривой намагничивания, поскольку поле возникает при нулевом значении индукции. Точки б и д соответствуют остаточной индукции , а напряженность в точках в и е называют задерживающей, или коэрцитивной, силой .

Рис. 7.1

В зависимости от магнитной проницаемости ферромагнитные материалы разделяют на две группы:

1) магнитомягкие с большой магнитной проницаемостью и с малой коэрцитивной силой . К ним относят электротехнические стали, пермаллой и ферриты;

2) магнитотвердые с малой магнитной проницаемостью, большой коэрцитивной силой и большой остаточной индукцией Тл.

Магнитотвердые материалы применяют для изготовления постоянных магнитов. К ним относятся углеродистые, вольфрамовые, хромистые и кобальтовые сплавы.

Ферромагнитные материалы играют важную роль в электротехнике, так как дают возможность при относительно небольших напряженностях получать сильные магнитные поля и конструировать электромагнитные устройства, обладающие заданными характеристиками.

Ферромагнитные магнитопроводы используют во всех электрических машинах, трансформаторах, электромагнитах, реле и др.

2. Закон полного тока и его применение для расчета магнитного поля

Магнитной цепью называется совокупность магнитодвижущих сил (МДС), ферромагнитных тел или каких-либо иных сред, по которым замыкается магнитный поток.

Произведение числа витков катушки на протекающий в ней ток называют магнитодвижущей силой (МДС)

, [А]. (7.2)

МДС вызывает в магнитной цепи магнитный поток подобно тому, как ЭДС вызывает ток в электрической цепи. На схемах МДС указывают стрелкой, положительное направление которой совпадает с направлением движения правоходного винта, если его вращать по направлению тока в обмотке (рис. 7.2 а).

Магнитная цепь, во всех сечениях которой магнитный поток одинаков, называется неразветвленной (рис. 7.2 б).

а) б) в) г)

Рис. 7.2

В разветвленной магнитной цепи потоки на различных участках неодинаковы (рис. 7.2 в).

Одним из основных законов, используемых при расчете магнитной цепи, является закон полного тока: циркуляция вектора напряженности магнитного поля Н по замкнутому контуру равна алгебраической сумме токов, которые охвачены этим контуром

. (7.3)

Если контур интегрирования охватывает витков катушки, которым протекает ток I, то закон полного тока принимает вид

. (7.4)

Между величинами, характеризующими магнитные и электрические цепи, существует формальная аналогия. Эта аналогия распространяется и на методы расчета магнитных цепей. В электрических цепях постоянные токи возникают под действием ЭДС. В магнитных цепях магнитные потоки создаются МДС обмоток. По аналогии с сопротивлением электрическому току часто используют сопротивление магнитному потоку, называемое магнитным сопротивлением.

Рассмотрим неразветвленную магнитную цепь (рис. 7.3 а).

По закону полного тока имеем

, (7.5)

где - напряженности магнитного поля и длины однородных (постоянного сечения) участков.

Учитывая, что , а уравнение (7.3) запишем в виде

, (7.6)

где ; , Гн-1 - магнитные сопротивления участков.

Уравнению (7.6) соответствует эквивалентная схема замещения магнитной цепи (рис. 7.3 б).

Произведение магнитного потока на магнитное сопротивление назвают по аналогии с электрической цепью магнитным напряжением

.

Из уравнения (7.4) определим магнитный поток и получим формулу, которая представляет собой закон Ома для магнитной цепи

. (7.7)

Тогда для участка магнитной цепи без МДС

(7.8)

Ввиду нелинейности магнитного сопротивления применять закон Ома для ферромагнитных участков нельзя. Его можно применять только для участков с воздушными зазорами.

Для разветвленных магнитных цепей справедливы законы Кирхгофа.

Первый закон Кирхгофа - алгебраическая сумма магнитных потоков в узле равна нулю

.

Второй закон Кирхгофа - алгебраическая сумма МДС в замкнутом контуре равна алгебраической сумме падений магнитных напряжений на участках этого контура

.

Рис. 7.4

Рассмотрим разветвленную несимметричную магнитную цепь (рис. 7.4 а) и ее схему замещения (рис. 7.4 б).

Произвольно выбрав направление магнитных потоков в ветвях, запишем первый закон Кирхгофа

или .

Произвольно выбрав направление обхода контура (по часовой стрелке), запишем уравнения по второму закону Кирхгофа:

для первого контура

или

;

для второго контура

или

.

3. Расчет неразветвленных магнитных цепей

Первый вариант. Определение МДС по заданному магнитному потоку (задача синтеза, или прямая задача). Исходные данные: геометрические размеры цепи, кривая намагничивания, магнитный поток.

Порядок расчета:

1. Выделить в магнитной цепи однородные участки с площадями сечений , ; и средними длинами .

2. По заданному магнитному потоку и сечениям участков определить магнитные индукции

3. По кривой намагничивания определить напряженности ,

Для воздушного (неферромагнитного) участка напряженность поля

.

4. По второму закону Кирхгофа рассчитать сумму падений магнитных напряжений на участках контура

Это и есть требуемая МДС катушки

.

Второй вариант. Определение магнитного потока по заданной МДС (задача анализа, или обратная задача). Исходные данные: геометрические размеры цепи, кривая намагничивания, МДС.

Порядок расчета:

1. Магнитную цепь представить совокупностью однородных участков с площадями поперечных сечений и длинами

2. Произвольно выбрав магнитную индукцию для одного из участков (в пределах кривой намагничивания), определить магнитную индукцию на других участках. Для этого используют зависимость

3. По кривой намагничивания определить напряженности магнитного поля для всех участков цепи.

4. Определить падения магнитных напряжений на участках цепи

5. Просуммировать магнитные напряжения, построить график

.

6. Для заданной МДС определить магнитный поток и магнитные индукции на участках цепи.

Рис. 7.5

Пример 7.1. В магнитопроводе из электротехнической стали Э11 (рис. 7.5) необходимо обеспечить магнитную индукцию= 0,8 Тл. Число витков равномерно намотанной на магнитопровод обмотки = 100, длина средней магнитной линии сердечника = 40 см, сечение = 20 см2. Как изменятся ток и магнитное сопротивление магнитопровода, если в сердечнике сделать воздушный зазор = 1 мм? Магнитный поток сердечника должен остаться без изменения. При расчете рассеянием пренебречь и считать поле в воздушном зазоре однородным.

Решение. Пренебрегая потоком рассеяния, считаем, что магнитная индукция в воздушном зазоре и в стали одинакова: Тл. Напряженность поля в сердечнике для = 0,8 Тл по кривой намагничивания электротехнической стали Э11 (из справочника) = 3,18 А/см.

Напряженность магнитного поля в воздушном зазоре

Магнитодвижущая сила обмотки

при отсутствии в магнитопроводе воздушного зазора

при наличии в магнитопроводе воздушного зазора

Токи в обмотке

.

Ток нужно увеличить на А, т.е. в шесть раз.

Магнитное сопротивление:

магнитопровода

;

воздушного зазора

ферромагнитный поле цепь обмотка

.

Размещено на Allbest.ru

...

Подобные документы

  • Проявления магнитного поля, параметры, его характеризующие. Особенности ферромагнитных (магнитомягких и магнитотвердых) материалов. Законы Кирхгофа и Ома для магнитных цепей постоянного тока, принцип их расчета, их аналогия с электрическими цепями.

    контрольная работа [122,4 K], добавлен 10.10.2010

  • Характеристики магнитного поля и явлений, происходящих в нем. Взаимодействие токов, поле прямого тока и круговой ток. Суперпозиция магнитных полей. Циркуляция вектора напряжённости магнитного поля. Действие магнитных полей на движущиеся токи и заряды.

    курсовая работа [840,5 K], добавлен 12.02.2014

  • Анализ источников магнитного поля, основные методы его расчета. Связь основных величин, характеризующих магнитное поле. Интегральная и дифференциальная формы закона полного тока. Принцип непрерывности магнитного потока. Алгоритм расчёта поля катушки.

    дипломная работа [168,7 K], добавлен 18.07.2012

  • Магнитное поле — составляющая электромагнитного поля, появляющаяся при наличии изменяющегося во времени электрического поля. Магнитные свойства веществ. Условия создания и проявление магнитного поля. Закон Ампера и единицы измерения магнитного поля.

    презентация [293,1 K], добавлен 16.11.2011

  • Содержание закона Ампера. Напряженность магнитного поля, её направление. Закон Био-Савара-Лапласа, сущность принципа суперпозиции. Циркуляция вектора магнитного напряжения. Закон полного тока (дифференциальная форма). Поток вектора магнитной индукции.

    лекция [489,1 K], добавлен 13.08.2013

  • Методика измерения магнитных свойств веществ в переменном и постоянном магнитном поле на примере магнитной жидкости. Исследование изменения магнитного потока, пронизывающего витки измерительной катушки при быстром извлечении из нее контейнера с образцом.

    лабораторная работа [952,5 K], добавлен 26.08.2009

  • История открытия магнитного поля. Источники магнитного поля, понятие вектора магнитной индукции. Правило левой руки как метод определения направления силы Ампера. Межпланетное магнитное поле, магнитное поле Земли. Действие магнитного поля на ток.

    презентация [3,9 M], добавлен 22.04.2010

  • Введение в магнитостатику. Сила Лоренца. Взаимодействие токов. Физический смысл индукции магнитного поля, его графическое изображение. Примеры расчета магнитных полей прямого тока и равномерно движущегося заряда. Сущность закона Био–Савара-Лапласа.

    лекция [324,6 K], добавлен 18.04.2013

  • Процесс формирования и появления магнитного поля. Магнитные свойства веществ. Взаимодействие двух магнитов и явление электромагнитной индукции. Токи Фуко — вихревые индукционные токи, возникающие в массивных проводниках при изменении магнитного потока.

    презентация [401,5 K], добавлен 17.11.2010

  • Введение в магнитостатику, сила Лоренца. Взаимодействие токов. Физический смысл индукции магнитного поля и его графическое изображение. Сущность принципа суперпозиции. Примеры расчета магнитного поля прямого тока и равномерно движущегося заряда.

    лекция [324,8 K], добавлен 24.09.2013

  • Определение наличия и направления магнитного поля метки. Создание постоянного магнитного поля, компенсирующего действие постоянных внешних магнитных полей. Принципиальная схема зарядно-разрядного узла устройства. Определение разряда накопительной емкости.

    лабораторная работа [1,2 M], добавлен 18.06.2015

  • Регулирование скорости тягового электродвигателя при изменении магнитного поля. Пересчет характеристик при изменении магнитного поля и смешанном возбуждении. Особенности магнитного потока при шунтировании сопротивления и изменением числа витков обмотки.

    презентация [321,9 K], добавлен 14.08.2013

  • Анализ неразветвленных и разветвленных магнитных цепей. Трансформаторы, асинхронные и синхронные электрические машины. Разработка задач по нелинейным электрическим цепям. Выпрямители, магнитные цепи постоянного потока, электромагнитные устройства.

    курсовая работа [2,2 M], добавлен 25.09.2012

  • Основные критерии классификации магнитных материалов. Магнитомягкие материалы для постоянных и низкочастотных магнитных полей. Свойства ферритов и магнитодиэлектриков. Магнитные материалы специального назначения. Анализ магнитных цепей постоянного тока.

    курсовая работа [366,4 K], добавлен 05.01.2017

  • Основные понятия теории магнитного поля - особого вида материи, посредством которой осуществляется взаимодействие между движущимися заряженными частицами или телами, обладающими магнитным моментом. Закон Ома для магнитной цепи. Ферромагнитные материалы.

    реферат [850,7 K], добавлен 05.04.2011

  • Понятие и действие магнитного поля, его характеристики: магнитная индукция, магнитный поток, напряжённость, магнитная проницаемость. Формулы магнитной индукции и правило "левой руки". Элементы и типы магнитных цепей, формулировка их основных законов.

    презентация [71,7 K], добавлен 27.05.2014

  • Магнитное поле Земли и его характеристики. Понятие геомагнитных возмущений и их краткая характеристика. Механизм возмущения магнитного поля Земли. Влияние ядерных взрывов на магнитное поле. Механизм влияния различных факторов на геомагнитное поле Земли.

    контрольная работа [30,6 K], добавлен 07.12.2011

  • Исследование сущности магнитного поля, которое создаётся движущимися электрическими зарядами. Особенности магнитных линий - очертаний, образовавшиеся под воздействием магнитных сил. Признаки магнитной индукции - величины характеризующей магнитное поле.

    презентация [786,7 K], добавлен 13.06.2010

  • Геомагнитное поле земли. Причины возникновения магнитных аномалий. Направление вектора напряженности земли. Техногенные и антропогенные поля. Распределение магнитного поля вблизи воздушных ЛЭП. Влияние магнитных полей на растительный и животный мир.

    курсовая работа [326,4 K], добавлен 19.09.2012

  • Алгоритмы и последовательность действий при расчёте цепей постоянного магнитного потока, трехфазной цепи со статической нагрузкой и в аварийном режиме, построении диаграммы токов и напряжения. Аналитический расчет магнитной цепи в системе MathCAD.

    курсовая работа [7,9 M], добавлен 21.04.2019

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.