Characteristic layouts of distribution networks with the analysis of voltage deviations and expediency of its control

Voltage deviation in the distribution networks has been performed and expediency of the voltage deviation control for electrically closest and farthest consumers have been analyzed in terms of Levanevska substation, town of Zaporizhzhia.

Рубрика Физика и энергетика
Вид статья
Язык английский
Дата добавления 14.10.2020
Размер файла 2,4 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Characteristic layouts of distribution networks with the analysis of voltage deviations and expediency of its control

Viktor Kovalenko, Serhii Levchenko, Mykola Tryputen, Vitaliy Kuznetsov,

Maksym Tryputen, Oleksiy Gorodny, Alisa Kuznetsova, Yevheniia Kuznetsova

Urgency of the research. It is well-known that electric energy characteristics are the levels of electromagnetic compatibility of electric grid providing adequate performance of any electrical means connected to the grid if the electric energy characteristics do not exceed permitted values. In the context of general idea of electromagnetic compatibility of consumers within power supply grids, power quality is the topical problem of modern electric-power supply industry.

Target setting. The issue of assessing the possibility of ensuring the quality of electricity in terms of voltage deviation by consumers is very important. The problem of voltage fluctuations is relevant, so that voltage deviation have a negative impact on functioning electrical equipment

Actual scientific researches and issues analysis. Papers [2-11] are devouted the effective management methods of electrical energy consumption. The articles [6-8] shows that under present conditions only system approach ensures accurate identification and prediction of electric power losses in distribution networks that are characterized by considerable ambiguity.

Uninvestigated parts of general matters defining. Generalized diagram of the voltage modes characterizes the state for the entire distribution network connected to the main substation; it consists of the branched 10 kV network, all the distribution transformers, and all the 0.4 kV networks connected to those transformers. Along with the generalized diagram, values of the available voltage losses have been obtained; those values occur within 10 kV and 0.4 kV networks in terms of the favourable conditions of voltage control and the initial values of the admissible voltage deviations of electrical receivers. Moreover, that is the basis to determine operating position of control tappings of distribution transformers.

The research objective. Since one of the important characteristics of electrical energy is the deviation of the voltage in the network, it is advisable to carry out its analysis in the urban distribution networks in terms of Levanevska substation, town of Zaporizhzhia. To simplify practical representation of possible voltage modes on the main substation buses and within the whole distribution networks, it is expedient to use graphic representation - so-called generalized diagram of voltage modes. That diagram helps make the analysis of voltage modes more demonstrative than analytical calculation; besides, the diagram gives great possibilities for further study.

The statement of basic materials. While analyzing voltage mode in the distribution networks and determining the required law of voltage control in the main substation (MS), one should take into consideration great amount offactors effecting and complicating that study. Those factors include the following: changes in the operating mode of the network, differences in the points of connections of electrical receivers (ER) to the distribution network, differences in possible operating positions of the control tappings in the distribution transformers (DT), differences in the points of DT connections to 10 kV network, available dead zones of automatic voltage controller etc. Owing to that fact, it is required to perform generalized analysis of the voltage mode and conditions of its control within 10 kV and 0.4 kV distribution networks and on main substation buses. To do that, one should apply probabilistic calculation methods. At the same time, it is expedient to use graphic depiction (so-called generalized diagram (GD) of the voltage modes) to simplify representation ofpossible voltage modes on MS buses and within the whole distribution network. That diagram will help make the analysis of the voltage modes more clearly arranged than analytic calculations; moreover, it gives great opportunities for further study.

Conclusions. Voltage deviation in the distribution networks has been performed and expediency of the voltage deviation control for electrically closest and farthest consumers have been analyzed in terms of Levanevska substation, town of Zaporizhzhia. Expediency ofpractical application of generalized diagrams for that purpose has been demonstrated. It has been defined that in the modes of maximum and minimum loads, voltage exceeds the admissible deviation norms of ± 5 %. Conclusion has been made on the expediency of more careful voltage control. Generalized diagram for 0-1 and 9-10 hours with the maximum voltage deviations has been constructed. Graph of dependences has been developed; formula of voltage deviations in the main substation, due to the voltage passing along that line, has been defined. According to the voltage data before and after the implementation of control, graphs of voltage deviations on the distribution transformer and in terms of the farthest consumer have been constructed.

Keywords: distribution networks; main substation; voltage deviation; transformer load; transformer voltage control (TVC); generalized diagram.

Table: 4. Fig.: 7. References: 11.

electrically voltage network

Віктор Коваленко, Сергій Левченко, Микола Трипутень, Віталій Кузнецов,

Максим Трипутень, Олексій Городній, Аліса Кузнецова, Євгенія Кузнецова

РОЗРАХУНОК РЕЖИМІВ РОБОТИ ХАРАКТЕРНИХ СХЕМ

РОЗПОДІЛЬНИХ МЕРЕЖ З АНАЛІЗОМ ВІДХИЛЕННЯ

НАПРУГИ Й ДОЦІЛЬНОСТІ ЇЇ РЕГУЛЮВАННЯ

Актуальність теми дослідження. Загальновідомо, що характеристики електричної енергії - це рівні електромагнітної сумісності електричної мережі, що забезпечують адекватну продуктивність будь-яких електричних засобів, підключених до мережі, якщо характеристики електричної енергії не перевищують дозволених значень. Якість електроенергії в контексті загальної ідеї електромагнітної сумісності споживачів в електромережах є актуальною проблемою сучасної галузі електропостачання.

Постановка проблеми. Питання оцінки можливості забезпечення якості електроенергії в умовах відхилення напруги споживачами є дуже важливим. Проблема коливань напруги є актуальною, оскільки остання негативно впливає на функціонування електричного обладнання.

Аналіз останніх досліджень і публікацій. Роботи авторів [2-11] присвячені ефективним методам управління споживанням електричної енергії. Зокрема статті [6-8] доводять, що в нинішніх умовах лише системний підхід забезпечує точну ідентифікацію та прогнозування втрат електроенергії в розподільних мережах, які характеризуються значною неоднозначністю.

Виділення недосліджених частин загальної проблеми. Узагальнена діаграма (УД) режиму напруг характеризує стан одночасно для всієї розподільної мережі, приєднаної до центру живлення (ЦЖ) і складається з розгалуженої мережі 10 кВ, усіх розподільчих трансформаторів і всіх мереж 0,4 кВ, приєднаних до цих трансформаторів. Одночасно з узагальненою діаграмою отримано значення наявних величин втрат напруги, які при прийнятих умовах регулювання напруги в ЦЖ і вихідних значеннях допустимих відхилень напруги у електроприймачів можуть мати місце в розподільних мережах 10 кВ і 0,4 кВ. Крім того, звідси ж визначено робоче положення регулювальних відгалужень розподільного трансформатора.

Постановка завдання. Оскільки однією з важливих характеристик електричної енергії є відхилення напруги в мережі, доцільно провести її аналіз у міських розподільних мережах на території підстанції Леваневська, м. Запоріжжя. Для спрощеного практичного уявлення про можливі режими напруги на шинах центру живлення ЦЖ і у всій розподільній мережі загалом доцільно використовувати графічну побудову - так звану узагальнену діаграму режиму напруг. Аналіз режиму напруг за допомогою цієї діаграми є більш наочним, ніж аналітичний розрахунок, і надає великі можливості.

Виклад основного матеріалу. Під час аналізу режиму напруги в розподільних мережах і у процесі визначення, зокрема, необхідного закону регулювання напруги в центрі живлення ЦЖ доводиться враховувати велику кількість факторів, що впливають і великою мірою ускладнюють дослідження. До числа цих факторів відносяться: зміна режиму роботи мережі, відмінність місць приєднання електроприймачів ЕП до розподільної мережі, відмінність можливих робочих положень регулювальних відгалужень у розподільних трансформаторах РТ, відмінність місць приєднання РТ до мережі 10 кВ, наявність зони нечутливості у автоматичного регулятора напруги і т. ін. У зв 'язку з цим доводиться проводити узагальнений аналіз режиму напруги й умов її регулювання в розподільних мережах 10 кВ і 0,4 кВ та на шинах ЦЖ спільно.

Для цієї мети слід застосовувати ймовірнісні методи розрахунків. У той же час для спрощеного практичного уявлення про можливі режими напруги на шинах ЦЖ і у всій розподільній мережі в цілому доцільно використовувати графічну побудову - так звану узагальнену діаграму УД режиму напруг. Аналіз режиму напруг за допомогою цієї діаграми є більш наочним, ніж аналітичний розрахунок, і надає великі можливості.

Висновки відповідно до статті. Проведено аналіз відхилення напруги в розподільних мережах і доцільності його регулювання для електрично найближчого та найвіддаленішого споживача на прикладі підстанції «Леваневська», м. Запоріжжя. Показано доцільність практичного застосування для цього узагальнених діаграм.

Виявлено, що в режимах максимуму та мінімуму навантажень напруга перевищує допустимі норми відхилень ± 5 %. Зроблено висновок про доцільність більш ретельного регулювання напруги. Побудовано узагальнену діаграму для 0-1 та 9-10 годин, які мають найбільші відхилення напруги.

Побудовано графік залежності та знайдено формулу відхилення напруги в центрі живлення від потужності, що проходить по цій лінії.

За даними напруги до і після впровадження регулювання, побудовано графіки відхилення напруги на розподільчому трансформаторі й у найвіддаленішого споживача.

Ключові слова: розподільчі мережі; центр живлення; відхилення напруги; навантаження трансформатора; регулювання напруги трансформатора РПН; узагальнена діаграма.

Табл.: 4. Рис.: 7. Бібл.: 11.

Urgency of the research. It is common knowledge that electric energy characteristics are the levels of electromagnetic compatibility of electric grid providing adequate performance of any electrical means connected to the grid if the electric energy characteristics do not exceed permitted values. In the context of general idea of electromagnetic compatibility of consumers within power supply grids, power quality is the topical problem of modern electric-power supply industry.

Target setting. The issue of assessing the possibility of ensuring the quality of electricity in terms of voltage deviation by consumers is very important. The problem of voltage fluctuations is relevant, so that voltage deviation have a negative impact on functioning electrical equipment.

Actual scientific researches and issues analysis. Papers [2-11] are devouted the effective management methods of electrical energy consumption. The articles [6-8] shows that under present conditions only system approach ensures accurate identification and prediction of electric power losses in distribution networks that are characterized by considerable ambiguity.

Uninvestigated parts of general matters defining. Generalized diagram of the voltage modes characterizes the state for the entire distribution network connected to the main substation; it consists of the branched 10 kV network, all the distribution transformers, and all the

4 kV networks connected to those transformers. Along with the generalized diagram, values of the available voltage losses have been obtained; those values occur within 10 kV and

4 kV networks in terms of the favourable conditions of voltage control and the initial values of the admissible voltage deviations of electrical receivers. Moreover, that is the basis to determine operating position of control tappings of distribution transformers.

The research objective. Since one of the important characteristics of electrical energy is the deviation of the voltage in the network, it is advisable to carry out its analysis in the urban distribution networks in terms of Levanevska substation, town of Zaporizhzhia. To simplify practical representation of possible voltage modes on the main substation buses and within the whole distribution networks, it is expedient to use graphic representation - so-called generalized diagram of voltage modes. That diagram helps make the analysis of voltage modes more demonstrative than analytical calculation; besides, the diagram gives great possibilities for further study.

The statement of basic materials. While analyzing voltage mode in the distribution networks and determining the required law of voltage control in the main substation (MS), one should take into consideration great amount of factors effecting and complicating that study. Those factors include the following: changes in the operating mode of the network, differences in the points of connections of electrical receivers (ER) to the distribution network, differences in possible operating positions of the control tappings in the distribution transformers (DT), differences in the points of DT connections to 10 kV network, available dead zones of automatic voltage controller etc. Owing to that fact, it is required to perform generalized analysis of the voltage mode and conditions of its control within 10 kV and 0.4 kV distribution networks and on main substation buses.

To do that, one should apply probabilistic calculation methods. At the same time, it is expedient to use graphic depiction (so-called generalized diagram (GD) of the voltage modes) to simplify representation of possible voltage modes on MS buses and within the whole distribution network. That diagram will help make the analysis of the voltage modes more clearly arranged than analytic calculations; moreover, it gives great opportunities for further study.

Generalized diagram of the voltage modes characterizes the situation for the entire distribution network connected to MS; the diagram consists of the branched 10 kV network, all the DTs, and all the 0.4 kV networks connected to those transformers. Fig. 1 demonstrates principal diagram of the mentioned distribution network. In this context, it means that DT may be switched on at any point of 0.4 kV network, and ER may be connected at any point of 0.4 kV distribution network.

Fig. 1. Principle diagram of 10 kV and 0.4 kV distribution network: а - 10 kV network; b - distribution transformers (DT); c - 0.4 kV network; d - electrical receivers (ER)

GD is the basis to determine conditions of voltage control on MS buses in terms of which deviations from nominal voltage on ER clamps connected to the mentioned distribution networks are within the admissible limits. Along with GD, values of the available voltage losses may be obtained; those losses may be observed within 10 kV and 0.4 kV networks in terms of the adopted conditions of voltage control in MS and the initial values of the admissible voltage deviations in ER. Moreover, that is the basis to define operating position of DT control tappings.

While constructing generalized diagram of voltage modes, assumption is made on the fact that all the values of voltage losses from MS to each network point and from each network point to any ER are changing in a mutually proportional way. That assumption simplifies to certain extent graphic representation of the aforementioned values and construction of the generalized diagram on the whole. However, it meets the condition of homogeneity of all the connected power consumers in terms of the convergence (with practically adopted degree of accuracy) of their load diagrams.

In terms of urban networks, that condition is true to some extent only for public utility loads. Other consumers (educational institutions, trade organizations, industrial and tractive facilities) may differ considerably in their load diagrams.

Following condition is taken as the validation criterion to solve the problem of voltage control in MS: voltage deviation from the nominal value for all ERs connected to the network should not be beyond the limits of the admissible values [1]. In this context, all the network sites and all the loads are considered to be three-phase and symmetric. As it has been already mentioned, that condition is somehow idealized. Available three-phase loads, tappings, and differences in the phase properties within certain sections of a three-phase network result in asymmetric voltages and increased actual voltage deviations in ER comparing to the calculated values obtained for the mentioned idealized conditions. In practice, voltage loss on zero wire may be up to 25 % (sometimes, up to 50 %) of the voltage loss in phase wires. Thus, calculation values of the admissible voltage losses should be reduced by not less than 0.5-1 %,

e. they should be taken within the range of ± 4.5-4 % instead of ± 5 % of the nominal voltage. Nevertheless, that will result practically in the unjustified cost rising of 10 kV network since the actual situation cannot be determined by the simplified calculation.

In terms of simplified analysis of voltage modes, two boundary operating modes are considered: maximum and minimum loads. In the context of the favourable initial conditions, all other possible operating modes of the network are intermediate. Voltage deviations from the nominal value in the maximum-load mode at the network point are marked as V ; in terms of minimum-load mode, they are identified as V (Fig. 2).

Fig. 2. Diagram of substitution of the distribution network

Tables 1 and 2 represent parameters of electrically closest and farthest points of 0.4 kV and 10 kV feeder Ф-7 of Levanevska electric substation, town of Zaporizhzhia.

While constructing diagrams, relative (in percentage form) values V are laid along the abscissa axis, and values V are laid along the ordinates axis. According to the condition taken before, ER voltage should not go beyond the admissible limits of ± 5 % of the nominal one; thus, it is possible to imagine corresponding range of admissible conditions of ER operation in the form of a square with the side of 10 % and the center at the origin of coordinates. In terms of the adopted coordinate axes, voltage modes at each point of the network are characterized by certain point on the diagram, which coordinates define maximum and minimum voltage deviations.

Table 1

Parameters of 0.4 kV network

Time,

hour

Voltage of the closest point, V

Deviations from the nominal value, %

Voltage of the farthest point, V

Deviations from the nominal value, %

1

2

3

4

5

0

418

10.1

411

8.1

1

418

10.1

411

8.1

2

415

9.1

407

7.2

3

415

9.1

407

7.2

4

411

8.1

403

6.1

5

405

6.7

397

4.4

6

400

5.2

389

2.3

7

389

2.4

374

-1.5

8

370

-2.7

345

-9.2

9

377

-0.9

354

-6.8

10

374

-1.6

350

-8.0

11

386

1.5

369

-3.0

12

383

0.7

364

-4.2

13

377

-0.9

354

-6.8

14

379

-0.2

357

-6.1

15

392

3.3

371

-2.3

16

393

3.3

380

-0.1

17

395

4.0

383

0.8

18

391

3.0

378

-0.5

19

402

5.9

392

3.1

20

404

6.4

394

3.8

21

408

7.4

398

4.7

22

412

8.5

406

7.0

23

418

10.0

410

7.8

Table 2

Parameters of 10 kV network

Time,

Voltage of the

Deviations from

Voltage of

Deviations from

hour

closest point, V

the nominal value, %

the farthest point, V

the nominal value, %

0

10.7

7

10.2

2

1

10.7

7

10.2

2

2

10.6

6

10.1

1

3

10.6

6

10.1

1

4

10.6

6

10

0

5

10.6

6

9.9

-1

6

10.6

6

9.8

-2

7

10.6

6

9.6

-4

8

10.3

3

9.25

-7.5

9

10.4

4

9.4

-6

10

10.3

3

9.35

-6.5

11

10.3

3

9.55

-4.5

12

10.4

4

9.5

-5

13

10.4

4

9.4

-6

14

10.4

4

9.45

-5.5

15

10.5

5

9.65

-3.5

16

10.5

5

9.65

-3.5

17

10.6

6

9.7

-3

18

10.6

6

9.62

-3.8

19

10.6

6

9.85

-1.5

20

10.6

6

9.9

-1

21

10.6

6

10

0

22

10.6

6

10.1

1

23

10.6

6

10.2

2

Difference in ordinates of any two points along the straight line determines voltage loss between the corresponding line points in the mode of maximum loads; difference in abscissas defines the same but in terms of the mode of minimum loads.

Voltage deviations from the nominal values have been analyzed. It has been identified that in terms of the modes of maximum and minimum loads, voltage exceeds the admissible deviation norms of ± 5 %. Conclusion has been made on the expediency of better voltage control. Generalized diagram for 0-1 and 9-10 hours, having the greatest voltage deviations, has been constructed (Fig. 3, 4).

Fig. 3. Generalized diagrams for 0-1 hours

Fig. 4. Generalized diagrams for 9-10 hours

Possible variants of control highlighted in black dots are at the distance of 1.5 % from each other according to the control step of the transformer voltage control in the main substation, i.e. at Levanevska substation. Blue colour shows operating modes of 10 kV and 0.4 kV networks for that system. Normal operating mode requires displacement of the system so that the center of 0.4 kV network will coincide with the center of squares (it is represented in the red line) which shows tappings of distribution transformers. Since TVC allows controlling only in a steplike mode, then we use the closest control point for the main substation (black line).

Values of voltage deviation in the main substation with the closest TVC steps have been determined for each hour and represented in Table 3.

Table 3

Controle mode

Time, hour

Voltage deviation in MS, %

TVC position

Power, kV^A

1

2

3

4

0

-3.05

-3

37

1

-3.05

-3

37

2

-3.08

-3

37

3

-3.08

-3

37

4

-2.07

-1.5

37

5

-0.68

0

44

6

0.87

1.5

54

7

2.70

3

69

8

6.35

6

100

9

5.39

6

94

10

5.25

6

99

11

2.40

3

77

1

2

3

4

12

3.61

3

83

13

5.39

6

94

14

4.63

4.5

90

15

1.64

1.5

63

16

1.80

1.5

62

17

1.70

1.5

58

18

2.35

3

63

19

0.18

0

51

20

-0.39

0

50

21

-1.37

0

50

22

-2.30

-3

48

23

-3.12

-3

40

According to the table data, diagram of dependences of voltage deviations in the main substation upon the power flowing through that line has been constructed (Fig. 5).

With the help of approximation, maximally accurate dependence has been determined, i.e. polynomial one being represented in formula:

V0(S ) = -0.0011S2 + 0.2873S-12.07. (1)

According to the data before and after the implementation of control, graphs of voltage deviations within the distribution transformer in terms of the farthest consumer has been constructed (Fig. 6, 7). Red lines display deviation norms being equal to ±5 %.

Knowing the line parameters (r = 0.64 Ohm/km, l = 0.95 km), voltage losses before and after the implementation of energy-saving measures have been calculated and added to Table 4.

Thus, apart from the improved voltage quality, one can observe decreased losses in the network as well. According to the electricity tariff, daily effect from the voltage control is 9.17 kW-h that is UAH 18.1 per day or UAH 6.501 thous. per year.

Fig. 6. Voltage deviations before the implementation of control 440

Fig. 7. Voltage deviations after the implementation of control

Table 4

Effect from the implementation of control mode

ime,

hour

Before the implementation of control mode

After the implementation of control mode

Effect, kW

Voltage U, V

Current I, A

Voltage losses P, kW

Voltage U, В

Current I, A

Voltage losses P, kW

1

2

3

4

5

6

7

8

0

411

91.2

5.06

376

99.5

6.02

-0.96

1

411

90.5

4.98

376

98.8

5.93

-0.95

2

407

90.7

5

377

98.0

5.84

-0.84

3

407

90.1

4.94

377

97.5

5.78

-0.84

4

403

91.7

5.11

378

97.7

5.81

-0.7

5

397

111.8

7.6

378

117.3

8.36

-0.76

6

389

139.7

11.86

377

144.0

12.61

-0.75

1

2

3

4

5

6

7

8

7

374

184.5

20.7

375

184.0

20.58

0.12

8

345

291.1

51.52

366

274.2

45.71

5.81

90

354

265.1

42.73

371

253.1

38.94

3.78

10

350

283.2

48.75

371

267.0

43.35

5.4

11

369

208.9

26.53

370

207.8

26.27

0.27

12

364

226.9

31.29

368

224.2

30.57

0.73

13

354

265.4

42.84

371

253.4

39.04

3.8

14

357

252.9

38.88

369

244.6

36.39

2.49

15

371

168.6

17.29

372

168.2

17.21

0.08

16

380

162.3

16.02

372

165.5

16.65

-0.63

17

383

151.8

14.01

372

156.4

14.88

-0.87

18

378

165.8

16.71

373

168.1

17.18

-0.47

19

392

129.8

10.25

374

136.0

11.25

-1

20

394

125.8

9.62

374

132.6

10.68

-1.06

21

398

126.6

9.75

376

133.9

10.9

-1.15

22

406

117.6

8.41

377

126.8

9.78

-1.37

23

410

96.7

5.69

380

104.4

6.63

-0.94

Ј455.54

Ј446.37

Ј9.17

Conclusions

Voltage deviation in the distribution networks has been performed and expediency of the voltage deviation control for electrically closest and farthest consumers have been analyzed in terms of Levanevska substation, town of Zaporizhzhia. Expediency of practical application of generalized diagrams for that purpose has been demonstrated.

It has been defined that in the modes of maximum and minimum loads, voltage exceeds the admissible deviation norms of ± 5 %. Conclusion has been made on the expediency of more careful voltage control. Generalized diagram for 0-1 and 9-10 hours with the maximum voltage deviations has been constructed. Graph of dependences has been developed; formula of voltage deviations in the main substation, due to the voltage passing along that line, has been defined.

According to the voltage data before and after the implementation of control, graphs of voltage deviations on the distribution transformer and in terms of the farthest consumer have been constructed.

References

GOST 13109-97. Normy kachestva elektricheskoi energii v sistemakh elektrosnabzheniia ob- shchego naznacheniia [Quality standards of electric energy in general-purpose electric power supply systems]. [in English].

Vorotnitskii, V. E. (2006). Poteri elektroenergii v elektricheskikh setiakh analiz i opyt snizhe- niia [Energy losses in electric networks: analysis and practice of its reduction]. Moscow: NTF Enrgoprogress [in Russian].

Zhelezko, Yu. S., Artemiev, А. V. & Savchenko, О. V. (2002). Raschet analiz i normirovanie poter elektroenergii v elektricheskikh setiakh [Calculation, analysis, and standardization of energy losses in electric networks]. Moscow: Izd-vo NTS ENAS [in Russian].

I 34-70-028-86. Instruktsiiapo snizheniiu tekhnologicheskogo raskhoda elektricheskoi energii na peredachu po elektricheskim setiam energosistem i obieedinenii [Instruction to reduce technological consumption of electric power for the transmission through electric networks of electric systems and interconnections] (1987). Moscow: SPO Soiuztekhenergo [in Russian].

I 34-70-030-87. Instruktsiia po raschetu i analizu tekhnologicheskogo raskhoda elektricheskoi ener- gii na peredachu po elektricheskim setiam energosistem i energoobieedinenii [Instruction to calculate and analyze technological consumption of electric power for the transmission through electric networks of electric systems and power interconnections] (1987). Moscow: SPO Soiuztekhenergo [in Russian].

Zgurovets, О. V. & Kostenko, G. P. (2007). Effektivnye metody upravleniia potrebleniem elektricheskoi energii [Efficient methods to control electric energy consumption]. Problemy zahal- noi enerhetyky - Problems of general energetics, 16, 75-80 [in Russian].

Zhelezko, Yu. S., Artemiev, А. V. & Savchenko, О. V. (2002). Raschet normativnykh kharak- teristik tekhnicheskikh poter elektroenergii [Calculating normative characteristics of technical power losses]. Elektricheskie stantsii - Power stations, 2, 45-51 [in Russian].

Derzkii, V. G. & Tokalin, О. А. (2001). Sistemnyi podkhod k vyboru meropriiatii posnizheniiu poter energii v raspredelitelnykh setiakh [System approach to select measures for power loss reduction in the distribution networks]. Energetika i elektrifikatsiia - Energetics and electrification, 10, 41-43 [in Russian].

Derzkii, V. G. (2002). Ekspertiza struktury poter elektroenergii vraspredelitelnykh setiakh Mintopenergo [Expert evaluation of the structure of power loss in the distribution networks of Minto- penergo]. Energetika i elektrifikatsiia - Energetics and electrification, 4, 18-22 [in Russian].

Derzkii, V. G. (2005). Rozrakhunok vtratelektroenerhii v rozpodilnykhmerezhakh 0,38 kV [Calculating power losses in 0.38 kV distribution networks]. Enerhetyka ta elektryfikatsiia - Energetics and electrification, 9, 32-40 [in Ukrainian].

Melnichuk, L. М. (2006). Vyznachennia ta rozpodilennia vtrat elektrychnoi enerhii mizh spozhyvachamy z urakhuvanniam yikh hrafikiv navantazhen [Determining and distributing power losses among the consumers taking into account the load diagrams]. Enerhetyka ta elektryfikatsiia - Energetics and electrification, 5, 19-21 [in Ukrainian].

Размещено на Allbest.ru

...

Подобные документы

  • Determination of wave-length laser during the leadthrough of experiment in laboratory terms by means of diagnostics of laser ray through the unique diffraction of cut. Analysis of results: length of fringe, areas and interrelation between factors.

    лабораторная работа [228,4 K], добавлен 29.12.2010

  • The basic principles and the protection of power lines patterns used in this process methods. Physical basics of high-power transformers in substations. Justification of the information received. Diagram illustrating the operation of the protection.

    презентация [628,0 K], добавлен 18.02.2016

  • Study of synthetic properties of magnetic nanoparticles. Investigation of X-ray diffraction and transmission electron microscopy of geometrical parameters and super conducting quantum interference device magnetometry of magnetic characterization.

    реферат [857,0 K], добавлен 25.06.2010

  • The results of theoretical analysis and computer simulation of the amplitude and phase errors of the narrowband signal. Vector representation of input and output signals. Standard deviation of the phase. Probability distribution laws of the phase error.

    реферат [469,7 K], добавлен 06.04.2011

  • Тестування і діагностика є необхідним аспектом при розробці й обслуговуванні обчислювальних мереж. Компанія Fluke Networks є лідером розробок таких приладів. Такими приладами є аналізатори EtherScope, OptіVіew Fluke Networks, AnalyzeAir та InterpretAir.

    реферат [370,5 K], добавлен 06.01.2009

  • The importance of the control in the lesson of Foreign Language. Test is one of the types of control and their characteristics. Vocabulary and Grammar, Reading and Writing, Listening and Speaking as tests. Dictation and its importance as a control.

    курсовая работа [68,0 K], добавлен 15.09.2014

  • Development of computer technologies. Machines, which are able to be learned from experience and not forget that they studied, and able to work unassisted or control of man. Internet as global collection of different types of computer networks.

    топик [10,3 K], добавлен 04.02.2009

  • Research tastes and preferences of consumers. Segmenting the market. Development of product concept and determine its characteristic. Calculating the optimal price at which the firm will maximize profits. Formation of optimal goods distribution.

    курсовая работа [4,4 M], добавлен 09.08.2014

  • Загальна характеристика системи забезпечення безпечності харчових продуктів - НАССР. Головні моменти історії формування та розвитку. Основні поняття Hazard Analysis Control Critical Points. Особливості принципів, переваг та недоліків цієї системи.

    реферат [826,6 K], добавлен 15.12.2010

  • Signals, channels and communication networks. Enabling Any-to-Any Communication. Next-Generation Mobile Networks. Challenges of Reinventing the Networking Infrastructure. Leading the Way by Providing Innovative Solutions. The review of similar schemes.

    курсовая работа [629,0 K], добавлен 07.12.2015

  • Testing as a form of control the level of students’ skills and abilities. The classification of tests in learning English. Problems in the control of education. The final results on the evaluation system of knowledge. The main stage of the lesson.

    курсовая работа [37,8 K], добавлен 08.05.2014

  • Information security problems of modern computer companies networks. The levels of network security of the company. Methods of protection organization's computer network from unauthorized access from the Internet. Information Security in the Internet.

    реферат [20,9 K], добавлен 19.12.2013

  • Понятие о нейронных сетях и параллели из биологии. Базовая искусственная модель, свойства и применение сетей. Классификация, структура и принципы работы, сбор данных для сети. Использование пакета ST Neural Networks для распознавания значимых переменных.

    реферат [435,1 K], добавлен 16.02.2015

  • Logistics as a part of the supply chain process and storage of goods, services. Logistics software from enterprise resource planning. Physical distribution of transportation management systems. Real-time system with leading-edge proprietary technology.

    контрольная работа [15,1 K], добавлен 18.07.2009

  • Overview of social networks for citizens of the Republic of Kazakhstan. Evaluation of these popular means of communication. Research design, interface friendliness of the major social networks. Defining features of social networking for business.

    реферат [1,1 M], добавлен 07.01.2016

  • The lines of communication and the basic properties of the fiber optic link. Comparison of characteristics and selection of the desired type of optical cable. The concept of building a modern transmission systems. The main function module SDH networks.

    дипломная работа [2,1 M], добавлен 16.08.2016

  • "Damage control" как современная концепция лечения пострадавших с критической политравмой. Хирургическое лечение всех повреждений в первые 24 часа. Одновременное выполнение бригадами хирургов трепанации черепа и остеосинтеза закрытого перелома бедра.

    презентация [393,4 K], добавлен 01.04.2014

  • SCADA (Supervisory Control And Date Acquisition) – диспетчерское управление и сбор данных. Формирование удобного человеко-машинного интерфейса. Разработка проекта WinCC: среда проектирования, конфигурирование. Пример отображения информации на экране.

    презентация [1023,1 K], добавлен 10.02.2014

  • The concept of advertising as a marketing tool to attract consumers and increase demand. Ways to achieve maximum effect of advertising in society. Technical aspect of the announcement: style, design, special effects and forms of distribution channels.

    реферат [16,1 K], добавлен 09.05.2011

  • In world practice constitutional control is actually a develop institute with nearly bicentennial history. In this or that form it is presented and successfully functions in the majority of democratic states. Constitutionally legal liability in Russia.

    реферат [51,3 K], добавлен 10.02.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.