Высоковольтные электрические системы

Изучение прохождения электрического тока через газовую среду. Закономерности развития разряда в неоднородных полях. Сущность барьерного эффекта. Конструкция и виды высоковольтных изоляторов. Методы измерения высоких напряжений. Схема омического делителя.

Рубрика Физика и энергетика
Вид контрольная работа
Язык русский
Дата добавления 01.11.2020
Размер файла 1,2 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://allbest.ru

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

Контрольная работа

Высоковольтные электрические системы

по дисциплине: «Техника высоких напряжений»

Выполнил: студент

Проверил: к.т.н., доцент

1. Разряды в газах

Электрический разряд в газах, прохождение электрического тока через газовую среду под действием электрического поля, сопровождающееся изменением состояния газа. Многообразие условий, определяющих исходное состояние газа (состав, давление и т. д.), внешних воздействий на газ, форм, материала и расположения электродов, геометрии возникающего в газе электрического поля и т. п. приводит к тому, что существует множество видов электрических разрядов в газах причём его законы сложнее, чем законы прохождения электрического тока в металлах и электролитах. Электрический разряд в газах подчиняются закону Ома лишь при очень малой приложенной извне разности потенциалов, поэтому их электрические свойства описывают с помощью вольтамперной характеристики.

Газы становятся электропроводными при их ионизации. Если электрический разряд в газах происходит только при вызывающем и поддерживающем ионизацию внешнем воздействии (при действии т. н. внешних ионизаторов), его называют несамостоятельным газовым разрядом. электрический разряд в газах продолжающийся и после прекращения действия внешнего ионизатора, называется самостоятельным.

1.1 Разряд в неоднородных полях

В неоднородном поле, в отличие от однородного, напряженность поля в различных точках промежутка разная по величине или по направлению. К типичным промежуткам с неоднородным полем относятся: стержень-стержень, стержень-плоскость, провод-земля и многие другие реальные изоляционные промежутки.

На рис. 1.8 приведены зависимости напряженностей от расстояния между электродами типа стержень-плоскость.

Основные закономерности развития разряда в любых резко неоднородных полях ( KH > 4 ) практически одинаковы. При некотором начальном напряжении UН в промежутке возникает самостоятельный разряд в лавинной форме, т. к. вблизи стержня имеется область с напряженностью, превышающей значение E*Н, соответствующее возникновению самостоятельной формы разряда (рис. 1.8).

Рис. 1.8 Зависимость напряженности электрического поля от расстояния между электродами типа стержень-плоскость:

1 - EСР = f (S) = U/S; 2 - Emax = f (S); 3 - E*H - напряженность возникновения самостоятельной формы разряда

Разряд локализуется в этой области, а вторичные лавины поддерживаются либо за счет фотоионизации из объема газа (при положительной полярности стержня), либо за счет фотоэмиссии или автоэлектронной (холодной) эмиссии с катода (при отрицательной полярности стержня). Такой разряд называется коронным разрядом в лавинной форме. Значение напряжения и напряженности поля на электроде при возникновении коронного разряда зависит от степени неоднородности поля. С увеличением степени неоднородности напряженность на электроде-стержне увеличивается, а напряжение возникновения короны уменьшается.

При увеличении напряжения свыше UH , когда количество электронов в лавине возрастает до 107-109, она переходит в плазменное состояние и в промежутке возникает стример у электрода с повышенной напряженностью поля. Если в однородном поле возникший стример пересекает весь межэлектродный промежуток, то в резконеоднородном поле, в зависимости от величины напряжения, стример, пройдя некоторое расстояние, может остановиться. При этом плазма его распадается, но вблизи острия возникают новые стримеры, которые также останавливаются и их плазма распадается.

Такое состояние разряда - устойчивое, т. к. при этом выполняется условие самостоятельности разряда. Этот случай, когда стримеры не достигают противоположного электрода, получил название коронного разряда в стримерной форме.

Для пробоя всего межэлектродного промежутка необходимо еще увеличить напряжение. Тогда образуется канал, который продвигается от электрода с повышенной напряженностью (острие) к противоположному электроду. При пересечении искровым каналом всего промежутка он преобразуется в электрическую дугу, что означает завершение пробоя. В резко неоднородных полях напряжение пробоя всегда больше напряжения возникновения коронного разряда в любой форме.

1.2 Эффект полярности

В слабо-неравномерных полях, где минимальный и средний градиенты напряжения мало отличаются друг от друга, коронное и разрядное напряжения практически совпадают друг с другом, влияние полярности невелико. В сильно-неравномерном поле коронное напряжение намного ниже разрядного, полярность при несимметричных электродах существенно влияет на величину разрядного напряжения. В промежутке острие-плоскость формирование разряда зависит от полярности острия.

При положительной полярности острия имеющиеся в промежутке электроны, двигаясь к острию в область сильного поля, совершают ударную ионизацию и образуют лавину электронов. Когда лавина доходит до острия, электроны лавины нейтрализуются на аноде, а положительные ионы вследствие малой скорости движения остаются у острия и создают положительный объемный заряд, который обладает собственным электрическим полем. Взаимодействуя с внешним полем в промежутке, положительный объемный заряд ослабляет поле вблизи острия и усиливает его в остальной части промежутка (см. рис. 1.10, а). Если напряжение между электродами достаточно велико, то возникает лавина электронов справа от объемного заряда, электроны которой, смешиваясь с положительными ионами объемного заряда, создают зародыш канала анодного стримера, заполненный плазмой. Зажигается стримерный коронный разряд. Положительные заряды этой лавины будут располагаться на головке стримера и создавать область повышенной напряженности во внешнем пространстве. Наличие области сильного поля обеспечивает образование новых лавин, электроны которых втягиваются в канал стримера, постепенно удлиняя его. Стример прорастает к катоду, вызывая пробой промежутка, при сравнительно малом значении разрядного напряжения.

При отрицательной полярности острия электрическое поле непосредственно у острия приводит к эмиссии электронов с катода, которые сразу попадают в сильное поле и производят ударную ионизацию, образуя большое число лавин. Электроны лавин, перемещаясь в слабое поле у анода, теряют скорость, захватываются нейтральными молекулами, становятся отрицательными ионами, рассеянными в пространстве. Положительные ионы лавин образуют объемный заряд у острия, который, взаимодействуя с внешним полем, будет увеличивать напряженность непосредственно у острия и уменьшать - в остальной части промежутка (рис. 1.10, б). Увеличение поля у острия приводит к усилению эмиссии электронов с поверхности катода, которые, смешиваясь с положительным объемным зарядом, образуют у катода зародыш катодного стримера.

Вследствие большого числа начальных лавин у катода плазменный канал здесь представляет собой более или менее однородный слой с радиусом кривизны большим, чем у острия. Поэтому электрическое поле несколько выравнивается и напряженность во внешней области уменьшается.

Уменьшение напряженности электрического поля во внешнем пространстве приводит к тому, что для дальнейшей ионизации в этой части промежутка необходимо значительно увеличить разность потенциалов между электродами. При дальнейшем увеличении напряжения происходит ионизация справа от плазменного слоя. Большое число образующихся лавин приводит к удлинению стримера. Однако, так же как и в начале, благодаря большому числу лавин, головка стримера размыта, и возрастание напряженности на головке стримера оказывается гораздо меньшим, чем при положительном острие.

В силу рассмотренных выше особенностей развитие стримера при отрицательном острие происходит с большими трудностями, поэтому разрядное напряжение при отрицательной полярности острия в 2-2,5 раза больше, чем при положительной полярности (рис. 1.10).

На переменном напряжении пробой происходит всегда на положительной полярности.

1.3 Барьерный эффект

Существенное влияние объемного заряда на развитие разряда в промежутке с резко неравномерным полем используется на практике для увеличения разрядных напряжений изоляционных промежутков.

Это увеличение достигается помещением в промежуток барьеров из твердого диэлектрика (электрокартон, гетинакс и др.). При положительном острие положительные ионы оседают на барьер и растекаются по его поверхности тем равномернее, чем дальше от острия расположен барьер. Это приводит к более равномерному распределению напряженности в промежутке между барьером и плоскостью (рис. 1.11, а) и, следовательно, к значительному увеличению разрядного напряжения.

При отрицательной полярности стержня электроны, двигаясь от острия, попадают на барьер, теряют скорость и большинство из них вместе с атомами кислорода становятся отрицательными ионами. На барьере в этом случае появляется концентрированный отрицательный заряд, увеличивающий напряженность поля не только между положительным объемным зарядом у острия и барьером, но и во внешнем пространстве (рис. 1.11, б). Поэтому при отрицательной полярности острия увеличение разрядного напряжения в промежутке при наличии барьера будет незначительным. При расположении барьера в средней части промежутка разрядные напряжения при отрицательной и положительной полярностях близки.

При расположении барьера в непосредственной близости от положительного острия роль его уменьшается вследствие резкой неравномерности распределения зарядов на барьере. Напряженность поля оказывается достаточной для того, чтобы ионизационные процессы проходили на другую сторону барьера. Барьер, расположенный в непосредственной близости от отрицательного острия, не способен задерживать быстрые электроны с острия, которые проходят сквозь барьер к плоскости. электрический ток высоковольтный изолятор

Таким образом, барьеры в промежутке устанавливаются на таком оптимальном расстоянии от острия, при котором разрядные напряжения максимальны (25-30 % от длины промежутка между электродами), причем при положительной полярности острия разрядное напряжение может увеличиться в 2 раза по сравнению с промежутком такой же длины, но без барьера (рис. 1.12).

Барьеры широко используются в высоковольтных конструкциях, работающих как в воздухе, так и в масле (высоковольтные вводы, трансформаторы и др.). На переменном напряжении электрическая прочность на положительной полярности увеличивается и приближается к электрической прочности на отрицательной полярности.

2. Высоковольтные изоляторы

Высоковольтный изолятор - это изделие, предназначенное для крепления провода, кабеля или шины на несущей конструкции линии электропередач и предотвращения её пробоя на землю.

По назначению изоляторы подразделяется на линейные и станционно-аппаратные, которые, в свою очередь, делятся на опорные и проходные.

2.1 Линейные изоляторы

Линейные изоляторы применяются для крепления и изолирования проводов и тросов воздушных линий электропередачи. По конструктивному исполнению они делятся на штыревые и подвесные.

Штыревые изоляторы изготавливаются из электротехнического фарфора или стекла и монтируются на опорах с помощью штырей или крюков.

Они выпускаются различного конструктивного исполнения.

Обозначение, например, ШФ10-В - штыревой, фарфоровый, номинальное напряжение 10 кВ, конструктивное исполнение В (всего существует три варианта конструктивного исполнения - А, Б, В). Выпускаются промышленностью на напряжение до 35 кВ.

Подвесные изоляторы применяются для напряжений больше 35 кВ. Подразделяются на тарельчатые (шарнирные) и стержневые. Изготавливаются из электротехнического фарфора, стекла и полимерных материалов.

На рис. 2.1 приведена конструкция подвесного тарельчатого изолятора.

Шапка (2) и стержень (3) обеспечивают шарнирное соединение одного изолятора с другим при сборке изоляторов в гирлянду. Изоляторы испытывают только растягивающие усилия, но, благодаря конструктивному исполнению, головка (5) изолятора работает на сжатие и поэтому выдерживает очень большие механические нагрузки (до 30…50 Тс). Обозначение изолятора, например ПСГ6-А: подвесной, стеклянный, грязестойкий. Минимальная разрушающая нагрузка - 6 тс.

Подвесные стержневые изоляторы изготавливаются из электротехнического фарфора, стекла, ситалла, стекловолокна с полимерным покрытием. Один изолятор может заменить гирлянду из 7 тарельчатых изоляторов на напряжение 110 кВ. Шарнирно крепится при помощи двух шапок с замками на концах изолятора. Достоинством стержневых изоляторов является непробиваемость. Кроме того, за счет малого диаметра изолятора повышаются градиенты электрического поля по поверхностному перекрытию. Обозначение изолятора, например СФ-110/2,25: стержневой, фарфоровый, номинальное напряжение 110 кВ, минимальная разрушающая нагрузка - 2,25 тс.

2.2 Станционно-аппаратные изоляторы

Опорные изоляторы предназначены для крепления шинопроводов, деталей аппаратов и изолирования их от заземленных конструкций и между собой. Изготавливают их для наружной и внутренней установки на напряжение до 110 кВ. На большее напряжение опорные изоляторы собирают в колонны.

Опорные изоляторы для наружной установки делятся на штыревые и стержневые. Штыревые изоляторы используются в тех случаях, когда требуется большая механическая прочность на изгиб, изготавливаются из электротехнического фарфора. Обозначение, например, ОНШ-35-2000: опорный, наружной установки, штыревой, номинальное напряжение - 35 кВ, минимальная разрушающая нагрузка - 2000 кгс.

Опорно-стержневые изоляторы изготавливаются на напряжение 35…150 кВ из электротехнического фарфора. Концы изолятора армированы чугунными фланцами. Обозначение, например ОНС-110-1000: опорный, наружной установки, стержневой, номинальное напряжение 110 кВ, минимальная механическая прочность - 1000 кгс.

Проходные изоляторы и вводы используются там, где токоведущие части проходят через стены, перекрытия зданий, ограждения электроустановок или вводятся внутрь металлических корпусов оборудования.

Проходными изоляторами называют изоляторы на напряжение до 35 кВ, на напряжение 110 кВ и выше - вводы. Вводы имеют более сложную конструкцию изоляции и выполняются с маслобарьерной изоляцией (до 150кВ) или с бумажно-масляной изоляцией (220 кВ и выше). Проходные изоляторы на высокие напряжения (до 35 кВ включительно) изготавливаются из электротехнического фарфора, стекла, бакелитовой бумаги. На рис. 2.2 приведена конструктивная схема проходного изолятора.

Для увеличения напряжения перекрытия Uпер на наружной поверхности изолятора делают ребра, а также увеличивают диаметр изолятора у заземленного фланца. Проходные изоляторы маркируются по напряжению, току и изгибающей механической нагрузке. Например, П-10/400-750, что означает: проходной изолятор, UН = 10 кВ, IН = 400 А, Ризг = 750 кгс.

Вводы - это проходные изоляторы на 110 кВ и выше. Они содержат внешнюю и внутреннюю изоляцию сложной конструкции. Внешней изоляцией является фарфоровая покрышка. Внутренняя - участки изоляции в теле ввода. Вводы бывают двух типов: маслобарьерные и бумажно-масляные (для UH ? 220 кВ).

1) Маслобарьерный ввод 110…150 кВ конденсаторного типа (см. рис. 2.3). Чтобы повысить Uпр, разбивают промежуток на n малых промежутков барьерами 5 и выравнивают поле металлическими обкладками (фольга на барьерах). В результате Uпр повышается в ~ 2,5 раза.

Обкладки выравнивают поле в радиальном и аксиальном направлениях. Наиболее важно выровнять поле в аксиальном направлении для уменьшения длины ввода. Для этого уступы делают одинаковыми. На рис. 2.4 приведены эпюры распределения напряженностей электрического поля в радиальном (а) и аксиальном (б) направлениях маслобарьерного ввода.

Токоведущий стержень обматывается несколькими слоями бумаги. Основную электрическую прочность изоляции ввода обеспечивает масло, находящееся внутри покрышки.

2) Бумажно-масляный ввод конденсаторного типа на класс напряжения U ? 220 кВ. Ввод изготавливается путем намотки на токоведущий стержень (или трубу) изоляционного тела из бумаги. Через каждые 2…4 мм намотки бумаги в тело закладываются конденсаторные обкладки из алюминиевой фольги для выравнивания поля в осевом и радиальном направлениях. После намотки тело пропитывается маслом в вакууме, а после сборки ввод герметизируется.

3. Измерения высоких напряжений

Измерение высоких напряжений является одной из сложных проблем в высоковольтной технике.

Сложность измерения высоких напряжений обусловлена тем, что на точность измерения оказывают влияние факторы, имеющие сложные и случайные зависимости от частоты, напряжения, тепловых явлений и внешних условий. Влияние этих факторов не представляется возможным полностью исключить, поэтому их необходимо уметь учитывать.

К основным неопределенным априори мешающим факторам относятся емкостные связи между элементами измерительной системы, сопротивление утечки, коронный разряд, частичные разряды в изоляционных конструкциях, зависимость значения сопротивления резисторов от напряжения и температуры.

Выполнение конструкции измерительных устройств и приборов в соответствии с требованиями техники высоких напряжений позволяет уменьшить влияние мешающих факторов и тем самым обеспечить достаточно высокую точность получения измеряемой величины и формы напряжения.

Существующие высоковольтные измерительные устройства и методы измерения можно разбить на две основные группы.

1. Методы и устройства, позволяющие измерять (как в п.2) полную величину напряжения.

2. Методы и устройства, позволяющие измерять часть напряжения и определять полное напряжение по коэффициенту пропорциональности устройства.

Наиболее широкое распространение при измерении переменных, постоянных и импульсных напряжений в научно-исследовательских и промышленных лабораториях получили шаровые измерительные разрядники, электростатические киловольтметры и делители напряжений в сочетании с низковольтными регистрирующими и измерительными приборами.

3.1 Измерение напряжения с использованием делителей

Делитель напряжения (ДН) - это измерительное устройство, состоящее из цепочки последовательно соединенных элементов, имеющих активное или реактивное сопротивление.

Один конец измерительной цепочки заземляется, а на другой подается измеряемое напряжение.

Делитель напряжения содержит низковольтное плечо, к которому присоединяется измерительный прибор, и высоковольтное плечо, которое с одной стороны присоединяется к объекту, а с другой стороны - к низковольтному плечу.

Делители характеризуются коэффициентом деления КB дB - отношение значения напряжения на делителе к напряжению на низковольтном плече с учетом передающего кабеля ZBBк Bи измерительного устройства.

Делитель должен удовлетворять основному требованию: напряжение на низковольтном плече должно по форме повторять измеряемое напряжение, приложенное к высоковольтному плечу. Для этого необходимо, чтобы:

-коэффициент деления не зависел от частоты;

-коэффициент деления не зависел от значения и полярности измеряемого напряжения;

-значения сопротивлений делителя не зависели от напряжения, температуры;

-подключение делителя к объекту, на котором измеряется напряжение, не должно оказывать влияния на измеряемое напряжение.

Делители напряжения используются для измерения постоянных, переменных и импульсных напряжений. Из-за существенного различия в требованиях к делителям при напряжениях различного вида обычно делители изготавливают для измерения какого-либо одного вида напряжения: постоянного, переменного или импульсного. Делители изготавливаются

? омическими;

? емкостными;

? емкостно-омическими.

Делители напряжения позволяют не только измерять напряжение, но и зафиксировать форму воздействующего сигнала при помощи электронного осциллографа. Общая принципиальная схема измерения с помощью ДН приведена на рис 1.3

3.3 Омический делитель

Схема замещения омического ДН представлена на рис. 1.4.

Погрешность измерения напряжения омическим делителем будет определяться зависимостью сопротивления резисторов от температуры; наличием токов утечки по изоляционной части конструкции, зависимостью сопротивления резисторов и изоляционной части конструкции от напряжения; влиянием коронного разряда возможного с элементов конструкции ДН.

Рис. 1.4. Схема замещения омического делителя: ВН - высокое напряжение; R1 - сопротивление высоковольтного плеча делителя;

R2 - сопротивление низковольтного плеча делителя.

Омические делители для измерения постоянных напряжений могут быть выполнены намоткой из проволоки с высоким удельным сопротивлением (нихром, константан и др.) или из керамических поверхностных и объемных резисторов. Отечественная промышленность выпускает стабильные проволочные резисторы (МВСГ, МРГЧ, МРХ) и высоковольтные резисторы типа С5-23, С5-24, С5-24А, С5-50, С5-51 с большим значением сопротивления (несколько мегаом), пригодные для создания точных делителей. Там, где не требуется высокая точность, можно использовать и другие типы поверхностных и объемных резисторов.

3.4 Емкостный делитель

Схему емкостного делителя (рис. 1.6) можно получить, полагая в общей cхеме замещения ДН (рис. 1.3.) L = 0 (индуктивность конденсаторов, из которых собран ДН), R = 0 (активное сопротивление соединительных проводников и обкладок конденсаторов). Реальные емкостные делители имеют конкретные значения индуктивности и сопротивления, которые приводят к повышенным погрешностям при измерении переменных и импульсных напряжений с крутым фронтом.

3.5 Емкостно-омические делители (смешанные)

Схема замещения емкостно-омического ДН приведена на рис. 1.7.

Емкостно-омические делители при соответствующем подборе параметров могут передавать с малой погрешностью постоянное, переменное и импульсное напряжения. Передаточная характеристика емкостно-омического делителя не зависит от частоты, если постоянные времени плеч высокого и низкого напряжений равны. Наряду с выполнением условия R1C1=R2C2 должны быть обеспечены соотношения L1C1=L2C2, т. е. должны быть равны собственные частоты плеч высокого и низкого напряжений. В общем виде для любого делителя должны выполняться равенства:

Такие делители называют компенсированными.

Список используемой литературы

1. https://www.booksite.ru/fulltext/1/001/008/125/928.htm

2. Высоковольтные испытательные установки и измерения: учебное пособие по лабораторным работам / В. А. Лавринович. - Томск: Изд-во ТПУ,2010. - 50 с.

3. Техника высоких напряжений: курс лекций / В. Ф. Важов, В. А. Лавринович. - Томск: Изд-во ТПУ, 2008. - 150 с.

Размещено на Allbest.ru

...

Подобные документы

  • Изучение электрических и механических характеристик изоляторов. Исследование предназначения опорных, проходных и подвесных высоковольтных изоляторов. Основные преимущества фарфоровых и полимерных изоляторов. Трансформаторные вводы на напряжение 110 кВ.

    презентация [638,1 K], добавлен 25.02.2015

  • Измерение высоких напряжений шаровыми разрядниками, электростатическим киловольтметром. Омические делители для измерения импульсного напряжения. Порядок проведения калибровки киловольтметра. Измерение амплитудного значения переменного напряжения.

    реферат [1,1 M], добавлен 30.03.2015

  • Изучение устройств для подвешивания и изоляции проводов и кабелей на опорах воздушной линии электропередачи или воздушных линий связи. Конструкция подвесных изоляторов. Описания проходных, штыревых и линейных изоляторов. Состав тарельчатых изоляторов.

    презентация [752,2 K], добавлен 20.04.2017

  • Понятие электрической цепи и электрического тока. Что такое электропроводность и сопротивление, определение единицы электрического заряда. Основные элементы цепи, параллельное и последовательное соединения. Приборы для измерения силы тока и напряжения.

    презентация [4,6 M], добавлен 22.03.2011

  • Действие электрического тока на организм человека. Факторы, влияющие на исход поражения током. Нормирование напряжений прикосновения и токов через тело человека. Эквивалентная схема электрического сопротивления различных тканей и жидкостей тела человека.

    контрольная работа [69,3 K], добавлен 30.10.2011

  • Самостоятельный и несамостоятельный разряды в газах. Описание установки для измерения тока ионного тока тлеющего разряда. Модель физического процесса. Построение графиков, отображающих зависимость ионного тока тлеющего разряда от расстояния до коллектора.

    курсовая работа [1,3 M], добавлен 14.09.2012

  • Понятие электрического тока, выбор его направления, действие и сила. Движение частиц в проводнике, его свойства. Электрические цепи и виды соединений. Закон Джоуля-Ленца о количестве теплоты, выделяемое проводником, закон Ома о силе тока на участке цепи.

    презентация [194,6 K], добавлен 15.05.2009

  • Определение времени нарастания входного импульса и передаточных свойств делителя методом частотных характеристик. Конструктивное исполнение омического делителя напряжения. Расчет переходной характеристики делителя, подключение его к осциллографу.

    курсовая работа [260,4 K], добавлен 04.06.2011

  • Структурная схема эффекта Поккельса - изменения показателя преломления вещества под действием внешнего электрического поля. Характеристики ячеек Поккельса. Условия эксплуатации оптико-электронного трансформатора напряжения. Погрешность его измерения.

    реферат [130,5 K], добавлен 19.05.2014

  • Изоляция электротехнических установок. Составляющие времени разряда при воздействии короткого импульса. Стандартный грозовой импульс и его параметры. Время запаздывания разряда. Измерения с помощью шаровых разрядников. Характеристики изоляции.

    лабораторная работа [1,1 M], добавлен 27.01.2009

  • Измерения как один из основных способов познания природы, история исследований в данной области и роль великих ученых в развитии электроизмерительной науки. Основные понятия, методы измерений и погрешностей. Виды преобразователей токов и напряжений.

    контрольная работа [123,1 K], добавлен 26.04.2010

  • Образование электрического тока, существование, движение и взаимодействие заряженных частиц. Теория появления электричества при соприкосновении двух разнородных металлов, создание источника электрического тока, изучение действия электрического тока.

    презентация [54,9 K], добавлен 28.01.2011

  • Электрический пробой газов и диэлектриков. Вольт-секундные характеристики изоляции. Разработка импульсного генератора высоких напряжений. Моделирование и построение математической модели, позволяющей проводить расчет электрического разряда в жидкости.

    дипломная работа [3,4 M], добавлен 26.11.2011

  • Расчет электронов в лавине, развивающейся в воздухе при различных атмосферных условиях. Понятие короны как вида разряда. Построение кривых относительного распределения напряжений трансформатора. Годовое число грозовых отключений по территории Молдовы.

    контрольная работа [1,2 M], добавлен 14.06.2010

  • Изучение высоковольтных изоляторов, предохранителей, шин, разъединителей. Измерительные трансформаторы тока и напряжения, масляные выключатели и приводы к ним. Конструкции, типы аппаратов защиты. Аппаратура ручного и дистанционного управления, пускатели.

    лабораторная работа [434,6 K], добавлен 25.10.2009

  • Электрический ток в полупроводниках. Образование электронно-дырочной пары. Законы электролиза Фарадея. Прохождение электрического тока через газ. Электрическая дуга (дуговой разряд). Молния - искровой разряд в атмосфере. Виды самостоятельного разряда.

    презентация [154,2 K], добавлен 15.10.2010

  • Требования по технике безопасности. Трехфазная цепь при соединении потребителей по схемам "звезда" и "треугольник". Однофазного счетчика электрической энергии. Опыт холостого хода трансформатора, короткого замыкания. Работа люминесцентной лампы.

    методичка [721,6 K], добавлен 16.05.2010

  • Единицы измерения электрического тока. Закон Ома и электрическое сопротивление. Применение Закона Ома при расчетах электрических цепей. Применение анализа цепи к модели мембраны. Свойства конденсатора в электрической цепи. Понятие электрической емкости.

    реферат [1,3 M], добавлен 06.11.2009

  • Методика и основные этапы определения токов всех ветвей схемы, используя МКТ, МУП, а также тока в выделенной ветви, используя МЭГi, МЭГu. Порядок проверки баланса мощностей. Схемы в EWB или Ms для измерения токов ветвей, напряжений на элементах.

    курсовая работа [156,3 K], добавлен 26.01.2011

  • Изучение физических свойств и явлений, описывающих протекание электрического тока в газах. Содержание процесса ионизации и рекомбинации газов. Тлеющий, искровой, коронный разряды как виды самостоятельного газового разряда. Физическая природа плазмы.

    курсовая работа [203,2 K], добавлен 12.02.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.