Резистивные элементы

Общее понятие о резистивных элементах, принцип их работы. Правила, используемые при работе с резистивными элементами. Резисторы постоянного и переменного сопротивления, подстроечные резисторы. Анализ спецификации элементов, особенностей их применения.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 29.11.2020
Размер файла 280,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Реферат по физике по теме «Резистивные элементы»

Выполнил: студент

Багаутдинов Рустам Вадимович

Проверил: преподаватель

Руденко Вадим Анатольевич

Москва 2020 г

Содержание

Введение

Глава l. Общее понятие о резистивных элементах

§1. Резистивные элементы

§2. Правила используемые при работе с резистивными элементами

§3. Принцип работы резистивных элементов

Глава 2

§1. Виды резистивных элементов

§2. Резистор постоянного сопротивления

§3. Резистор переменного сопротивления

§4. Резисторы подстроечные

Глава 3. Изготовление резисторов

Заключение

Использованные материалы

Введение

В данном реферате я попытаюсь раскрыть суть применения резистивных элементов, их разновидности и принцип работы, а так же теоретическое изготовление резистивных элементов.

Актуальность темы высока, так как резистивные элементы используются во всех электрических цепях не зависимо от области их применения, а так же, немаловажную роль резисторы играют в таких областях науки как компьютерная архитектура, электротехника, схемотехника и иных технических отраслях связанных с эксплуатацией электросхем или отдельных её элементов.

Цель данного реферата заключена в раскрытии сути применения резистивных элементов, их разновидности и принцип работы.

Из задач реферата можно выявить следующее:

- анализ спецификацию элементов, особенности их применения и различные виды;

- анализ теоретического создания резистивных элементов.

Глава 1. Общее понятие о резистивных элементах

§1. Резистивные элементы

Резистор - пассивный элемент электрических цепей. Обладает определённым или переменным значением электрического R. Предназначенный для линейного преобразования I в U и U в I, ограничения I, поглощения E и др. Весьма широко используемый компонент практически всех электрических и электронных устройств.

Общие характеристики резисторов:

· Номинальное R -- основной параметр.

· Предельная Pрасеив.

· °t коэффициент сопротивления.

· Предельное рабочее U.

· Избыточный шум.

· Влагоустойчивость и термостойкость. https://ru.wikipedia.org/wiki/Резистор#Основные_характеристики_и_параметры_резисторов

Основные обозначения резисторов на электрических схемах ГОСТ 2.728-74 Единая система конструкторской документации:

Обозначение

Описание

Постоянный резистор без указания номинальной мощности рассеивания

Постоянный резистор номинальной мощностью рассеивания 0,05 Вт

Постоянный резистор номинальной мощностью рассеивания 0,125 Вт

Постоянный резистор номинальной мощностью рассеивания 0,25 Вт

Постоянный резистор номинальной мощностью рассеивания 0,5 Вт

Постоянный резистор номинальной мощностью рассеивания 1 Вт

Постоянный резистор номинальной мощностью рассеивания 2 Вт

Постоянный резистор номинальной мощностью рассеивания 5 Вт

Так же при использовании резисторов различного свойства применяют следующие обозначения на электрических схемах ГОСТ 2.728-74 Единая система конструкторской документации:

Обозначение

Описание

Переменный резистор (реостат).

Переменный резистор, включённый как реостат (ползунок соединён с одним из крайних выводов).

Подстроечный резистор.

Подстроечный резистор, включённый как реостат (ползунок соединён с одним из крайних выводов).

Варистор (сопротивление зависит от приложенного напряжения).

Термистор (сопротивление зависит от температуры).

Фоторезистор (сопротивление зависит от освещённости).

§2. Правила используемые при работе с резистивными элементами

Последовательное соединение резисторов.

При последовательном соединении резисторов их сопротивления складываются, а формула будет иметь следующий вид:

Если R1=R2=R3=…=Rn то Rобщ=nR1

Параллельное соединение резисторов.

При параллельном соединении резисторов складываются величины, обратные сопротивлению:

Если R1=R2=R3=…=Rn то Rобщ=R1/n

Смешанное соединение резисторов.

При смешанном соединении резисторов схема состоит из двух параллельно включённых блоков, один из них состоит из последовательно включённых резисторов: (R1+R2) и R3= 1/R, при этом формула принимает вид:

Rобщ=R3+(R1+R2)/R1+R2+R3

Для расчёта таких цепей из резисторов, которые нельзя разбить на блоки, последовательно или параллельно соединённые между собой, применяют правила Кирхгофа. Иногда для упрощения расчётов бывает полезно использовать преобразование треугольник-звезда и применять принципы симметрии.

§3. Принцип работы резистивных элементов

Резистор устанавливается в электрической цепи для ограничения тока, протекающего через цепь. Величина напряжения, которая на нем упадет, рассчитывается просто - по закону Ома:

U=IR

Падением напряжения называется то количество Вольт, которые появляются на выводах резистора, когда через него протекает ток. Соответственно, если на резисторе у нас упало напряжение, и через него протекает ток - значит на нём выделяется в тепло определенная мощность. В физике есть известная всем формула для нахождения мощности:

P=UI

Или для ускорения расчетов иногда удобно пользоваться формулой мощности через сопротивление:

P=U2/R=I2R

У каждого проводника есть определенная внутренняя структура. При протекании электрического тока электроны сталкиваются с различными неоднородностями структуры вещества и теряют энергию, она то и выделяется в виде тепла.

R=p*l/S

Где: р - удельное сопротивление, l - длина проводника, S - площадь поперечного сечения.

Глава 2

§1. Виды резистивных элементов

В зависимости от выполняемых задач. А точнее от специфики установления сопротивления в различных цепях, используют различные виды резисторов. Которые в свою очередь могу применяться повсеместно, либо иные - только в узкоспециализированной области.

Резисторы могут быть:

· Постоянными

· Переменными

Вне зависимости от вида резисторы так же делятся на линейные и нелинейные.

Сопротивления линейных резисторов не зависят от приложенного напряжения или протекающего тока.

Сопротивления нелинейных резисторов изменяются в зависимости от значения приложенного напряжения или протекающего тока. Например, сопротивление осветительной лампы накаливания при отсутствии тока в 10-15 раз меньше, чем в режиме освещения. В линейных резистивных цепях форма тока совпадает с формой напряжения, вызвавшего этот ток.

§2. Резистор постоянного сопротивления

Постоянным считается резистор, сопротивление которого в процессе работы остается неизменным. Конструктивно такой резистор представляет собой керамическую трубку, на поверхность которой нанесен токопроводящий слой, обладающий определенным омическим сопротивлением. По краям трубки напрессованы металлические колпачки, к которым приварены выводы резистора, сделанные из облуженной медной проволоки. Сверху корпус резистора покрыт влагостойкой цветной эмалью.

Керамическую трубку называют резистивным элементом и в зависимости от типа токопроводящего слоя, нанесенного на поверхность, резисторы разделяются на непроволочные и проволочные. https://sesaga.ru/rezistor-rezistory-postoyannogo-soprotivleniya.html

Непроволочные резисторы постоянного сопротивления

Непроволочные резисторы используются для работы в электрических цепях постоянного и переменного тока, в которых протекают сравнительно небольшие токи нагрузки. Резистивный элемент резистора выполнен в виде тонкой полупроводящей пленки, нанесенной на керамическое основание.

Полупроводящая пленка называется резистивным слоем и изготавливается из пленки однородного вещества толщиной 0,1 - 10 мкм (микрометр) или из микрокомпозиций. Микрокомпозиции могут быть выполнены из углерода, металлов и их сплавов, из окислов и соединений металлов, а также в виде более толстой пленки (50 мкм), состоящей из размельченной смеси проводящего вещества. зависимости от состава резистивного слоя резисторы разделяются на углеродистые, металлопленочные (металлизированные), металлодиэлектрические, металлоокисные и полупроводниковые. Наиболее широкое применение получили металлопленочные и углеродистые композиционные постоянные резисторы. Из резисторов отечественного производства можно выделить МЛТ, ОМЛТ (металлизированный, лакированный эмалью, теплостойкий), ВС (углеродистые) и КИМ, ТВО (композиционные).

Непроволочные резисторы отличаются малыми размерами и массой, низкой стоимостью, возможностью применения на высоких частотах до 10 ГГц. Однако они недостаточно стабильны, так как их сопротивление зависит от температуры, влажности, приложенной нагрузки, продолжительности работы и т.п. Но все же положительные свойства непроволочных резисторов настолько значительны, что именно они получили наибольшее применение.

Проволочные резисторы постоянного сопротивления

Проволочные резисторы применяются в электрических цепях постоянного тока. При изготовлении резистора на его корпус в один или два слоя наматывается тонкая проволока, сделанная из никелина, нихрома, константана или других сплавов с высоким удельным электрическим сопротивлением. Высокое удельное сопротивление провода позволяет выполнить резистор с минимальным расходом материалов и небольших размеров. Диаметр применяемых проводов определяется плотностью тока, проходящего через резистор, технологическими параметрами, надежностью и стоимостью, и начинается с 0,03 - 0,05 мм.

Для защиты от механических или климатических воздействий и для закрепления витков резистор покрывается лаками и эмалями или герметизируется. Вид изоляции влияет на теплостойкость, электрическую прочность и наружный диаметр провода: чем больше диаметр провода, тем толще слой изоляции и тем выше электрическая прочность.

Наибольшее применение нашли провода в эмалевой изоляции ПЭ (эмаль), ПЭВ (высокопрочная эмаль), ПЭТВ (теплостойкая эмаль), ПЭТК (теплостойкая эмаль), достоинством которой является небольшая толщина при достаточно высокой электрической прочности. Распространенными резисторами большой мощности являются проволочные эмалированные резисторы типа ПЭВ, ПЭВТ, С5-35 и др.

По сравнению с непроволочными резисторами проволочные отличаются более высокой стабильностью. Они могут работать при более высоких температурах, выдерживают значительные перегрузки. Однако они сложнее в производстве, дороже и малопригодны для использования на частотах выше 1- 2 МГц, так как обладают высокой собственной емкостью и индуктивностью, которые проявляются уже на частотах в несколько килогерц.

Поэтому в основном их применяют в цепях постоянного тока или тока низких частот, там, где требуются высокие точности и стабильность работы, а также способность выдерживать значительные токи перегрузки вызывающие значительный перегрев резистора.

С появлением микроконтроллеров современная техника стала более функциональнее и одновременно с этим намного миниатюрнее. Использование микроконтроллеров позволило упростить электронные схемы и тем самым уменьшить потребление тока устройствами, что сделало возможным миниатюризировать элементную базу. На рисунке ниже показаны SMD резисторы, которые припаиваются на плату со стороны печатного монтажа.

§3. Резистор переменного сопротивления

Резисторы переменного сопротивления, или переменные резисторы являются радиокомпонентами, сопротивление которых можно изменять от нуля и до номинального значения. Они применяются в качестве регуляторов усиления, регуляторов громкости и тембра в звуковоспроизводящей радиоаппаратуре, используются для точной и плавной настройки различных напряжений и разделяются на потенциометры и подстроечные резисторы.

Потенциометр

Потенциометром называют регулируемый резистор, имеющий два постоянных вывода и один подвижный. Постоянные выводы расположены по краям резистора и соединены с началом и концом резистивного элемента, образующим общее сопротивление потенциометра. Средний вывод соединен с подвижным контактом, который перемещается по поверхности резистивного элемента и позволяет изменять величину сопротивления между средним и любым крайним выводом.

Потенциометр представляет собой цилиндрический или прямоугольный корпус, внутри которого расположен резистивный элемент, выполненный в виде незамкнутого кольца, и выступающая металлическая ось, являющаяся ручкой потенциометра. На конце оси закреплена пластина токосъемника (контактная щетка), имеющая надежный контакт с резистивным элементом. Надежность контакта щетки с поверхностью резистивного слоя обеспечивается давлением ползунка, выполненного из пружинных материалов, например, бронзы или стали.

При вращении ручки ползунок перемещается по поверхности резистивного элемента, в результате чего сопротивление изменяется между средним и крайними выводами. И если на крайние выводы подать напряжение, то между ними и средним выводом получают выходное напряжение.

Схематично потенциометр можно представить, как показано на рисунке ниже: крайние выводы обозначены номерами 1 и 3, средний обозначен номером 2.

В зависимости от резистивного элемента потенциометры разделяются на непроволочные и проволочные.

Непроволочные резисторы переменного сопротивления

резистивный элемент

В непроволочных потенциометрах резистивный элемент выполнен в виде подковообразной или прямоугольной пластины из изоляционного материала, на поверхность которых нанесен резистивный слой, обладающий определенным омическим сопротивлением.

Резисторы с подковообразным резистивным элементом имеют круглую форму и вращательное перемещение ползунка с углом поворота 230 -- 270°, а резисторы с прямоугольным резистивным элементом имеют прямоугольную форму и поступательное перемещение ползунка. Наиболее популярными являются резисторы типа СП, ОСП, СПЕ и СП3. На рисунке ниже показан потенциометр типа СП3-4 с подковообразным резистивным элементом.

Отечественной промышленностью выпускались потенциометры типа СПО, у которых резистивный элемент впрессован в дугообразную канавку. Корпус такого резистора выполнен из керамики, а для защиты от пыли, влаги и механических повреждений, а также в целях электрической экранировки весь резистор закрывается металлическим колпачком.

Потенциометры типа СПО обладают большой износостойкостью, нечувствительны к перегрузкам и имеют небольшие размеры, но у них есть недостаток - сложность получения нелинейных функциональных характеристик. Эти резисторы до сих пор еще можно встретить в старой отечественной радиоаппаратуре.

Проволочные резисторы переменного сопротивления

В проволочных потенциометрах сопротивление создается высокоомным проводом, намотанным в один слой на кольцеобразном каркасе, по ребру которого перемещается подвижный контакт. Для получения надежного контакта между щеткой и обмоткой контактная дорожка зачищается, полируется, или шлифуется на глубину до 0,25d.

Устройство и материал каркаса определяется исходя из класса точности и закона изменения сопротивления резистора (о законе изменения сопротивления будет сказано ниже). Каркасы изготавливают из пластины, которую после намотки провода сворачивают в кольцо, или же берут готовое кольцо, на которое укладывают обмотку.

Для резисторов с точностью, не превышающей 10 - 15%, каркасы изготавливают из пластины, которую после намотки провода сворачивают в кольцо. Материалом для каркаса служат изоляционные материалы, такие как гетинакс, текстолит, стеклотекстолит, или металл - алюминий, латунь и т.п. Такие каркасы просты в изготовлении, но не обеспечивают точных геометрических размеров.

Каркасы из готового кольца изготавливают с высокой точностью и применяют в основном для изготовления потенциометров. Материалом для них служит пластмасса, керамика или металл, но недостатком таких каркасов является сложность выполнения обмотки, так как для ее намотки требуется специальное оборудование.

Обмотку выполняют проводами из сплавов с высоким удельным электрическим сопротивлением, например, константан, нихром или манганин в эмалевой изоляции. Для потенциометров применяют провода из специальных сплавов на основе благородных металлов, обладающих пониженной окисляемостью и высокой износостойкостью. Диаметр провода определяют исходя из допустимой плотности тока.

§4.Резисторы подстроечные

Это приборы, сопротивление которых предполагается изменять редко - при настройке прибора и его регулировке. По характеристикам подстроечный резистор, в принципе, не отличается от переменного, но конструктивные отличия есть. У подстроечных резисторов гораздо ниже износостойкость и механическая прочность (ведь их не нужно постоянно «крутить»), отсутствует удобная ручка (вместо нее может быть обычный шлиц как у винта под отвертку), они могут быть хуже или вовсе не защищены от внешнего воздействия (пыли, влаги). Имеют два и три вывода.

Основная цель подстроечного резистора- изменение или подстройка сопротивления лишь на этапе сборки изделия.

Переменный резистор обладает меньшей точностью нежели постоянный. Это плата за возможность регулировки, в результате которой сопротивление может гулять в некоторых пределах.

Конечно на этапе налаживания изделия может применяться так называемый подборочный резистор. Это обычный постоянный резистор, только при монтаже он подбирается из кучки резисторов с близкими номиналами.

Подбор резисторов имеет место быть, когда требуется регулировка параметров изделия и при этом требуется высокая точность работы (чтобы требуемый параметр как можно меньше плавал). Таким образом нужно чтобы резистор был как можно большей точностью 1% или даже 0,5%.

Так для подстройки параметров схемы чаще всего применяют подстроечные резисторы. Эти резисторы специально придуманы для этих целей. Подстройка осуществляется посредством тоненькой часовой отвертки, причем после достижения требуемой величины сопротивления ползунок резистора часто фиксируют краской или клеем. https://sesaga.ru/rezistor-rezistory-peremennogo-soprotivleniya.html

Глава 3. Изготовление резисторов

Металлопленочные резисторы

Металлопленочные резисторы представляют собой изоляционные основания -- цилиндрические трубки из керамики, стекла, слоистых пластиков, ситаллов, на которые нанесены пленки специальных сплавов или металлов различной толщины.

Металлическую пленку наносят на основание резистора осаждением металла при высокой температуре в специальной камере, химическим восстановлением из растворов солей, травлением, оксидированием и др.

Основные материалы для изготовления пленочных резисторов -- титан и тантал. Важнейшее их преимущество в том, что в процессе производства можно управлять их электрическими свойствами: получить титановую пленку, обладающую одним из свойств металла, полупроводника или диэлектрика. Для повышения стабильности характеристик резистора плёнку напыляют на нагретое до определенной температуры основание. Сопротивление металлических пленок обратно пропорционально их толщине. Для получения необходимой величины удельного сопротивления в процессе напыления ведётся постоянный контроль толщины наносимой плёнки.

Металлоокисные резисторы

Плёнку двуокиси олова осаждают на керамические или стеклянные основания путем термического разложения паров хлористого олова или пульверизатором наносят на нагретое основание водный раствор четыреххлористого олова. В последнее время производство металлоокисных резисторов ведется на автоматических установках. Композиционные резисторы изготовляют на основе смеси проводящего материала (например, графита и сажи) с органическими и неорганическими связующими, наполнителем и отвердителем. Композиционные смеси наносят на основание резистора. Наиболее распространен метод погружения основания резистора в ванну со смесью и извлечения его из ванны с определенной скоростью. Нанесенную таким образом пленку подвергают термической обработке.

Проволочные резисторы

Проволочные резисторы (постоянного и переменного сопротивлений) отличаются высокой стабильностью электрических параметров, повышенной точностью, но резисторы этого типа имеют значительные индуктивность и ёмкость (так как они имеют вид катушки), большие габариты и сравнительно дороги. Основной элемент проволочных резисторов -- тонкая проволока (диаметром в несколько сотых долей миллиметра) из сплавов, обладающих высоким удельным сопротивлением, достаточной механической прочностью, пластичностью и термостойкостью. Все элементы конструкций проволочных резисторов выполняют из термостойких материалов (так как при прохождении электрического тока резистор нагревается), а проводящий элемент (проволоку) защищают от климатических и механических воздействий стеклоэмалевыми и другими электроизоляционными покрытиями. Основной операцией при изготовлении проволочных резисторов является процесс наматывания проволоки на керамический или пластмассовый каркас. Полупроводниковые резисторы изготавливают (наиболее широко) из кремния, который обеспечивает высокую рабочую температуру изделия. Исходными заготовками служат кремниевые пластины различных размеров. После промывки и травления на концах пластин создают никелевые контактные площадки. Для этого химическим путем вжигают никель в слой кремния при температуре 780--800°С. Затем еще раз покрывают никелем контактные площадки и припаивают выводы.

Проволочные резисторы

Постоянные проволочные резисторы изготовляют из манганиновой, нихромовой или константановой проволоки, которую наматывают на трубку из керамики или пресспорошка. Сверху в качестве защитного покрытия применяют силикатную эмаль, которая фиксирует витки и изолирует их друг от друга, а также защищает резистор от окисления и механических повреждений.

Различают резисторы с однослойной и многослойной намотками. Постоянные проволочные резисторы имеют номиналы 3 Ом -- 51 кОм и номинальную мощность до 150 Вт. Промышленность выпускает следующие типы проволочных резисторов: с однослойной намоткой -- ПЭ (проволочные эмалированные); ПЭВ (проволочные эмалированные влагостойкие); ПЭВТ (проволочные эмалированные и влаго- и термостойкие); ПЭВР (проволочные эмалированные влагостойкие регулируемые), имеющие латунный подвижный с зажимным винтом хомутик, который можно перемещать в доль корпуса резистора по виткам проволоки, свободной от изоляции; регулируемые с многослойной намоткой -- ПТ (проволочные точные); ПТН, ПТМ, ПТК (проволочные точные, соответственно из нихромовой, магнаниновой и константановой проволоки); малогабаритные ПТМН, ПТММ, ПТМК (проволочные т очные малогабаритные, соответственно из нихрома, манганина и константана). Резисторы с однослойной намоткой имею т допустимые отклонения от номинала ±5; ±10%, а резисторы с многослойной намоткой -- ±0,25; ±0,5; ±1%.

Для изготовления микропроволочных резисторов применяют манганиновую микропроволоку диаметром 3--10 мкм. Допустимое отклонение от номинала составляет от ±0,05 до ±5%. Основные материалы являются металлическими сплавами: манганин -- медно-марганцовый сплав, применяется при изготовлении измерительных приборов и образцовых сопротивлений; константан -- медно-никелевый сплав для намотки проволочных резисторов и реостатов; нихром -- сплав никеля, хрома и железа; фехраль -- сплав железа, хрома, алюминия применяют для устройства электронагревательных приборов. Для изготовления проволочных резисторов применяют сплавы, обладающие повышенным удельным сопротивлением и малым значением температурного коэффициента удельного сопротивления.

Постоянный проволочный резистор представляет собой изоляционный каркас, на который намотана проволока с высоким удельным электрическим сопротивлением. Снаружи резистор покрывают термостойкой эмалью, спрессовывают пластмассой либо герметизируют металлическим корпусом, закрываемым с торцов керамическими шайбами.

Для гибридных ИМС выпускаются микромодульные резисторы, представляющие собой стержень из стекловолокна с нанесенным на поверхность тонким слоем токопроводящей композиции. Такие резисторы приклеиваются к контактным площадкам подложек токопроводящим клеем-контактором.

Заключение

В данном реферате я попытался раскрыть вопрос видов, принципов работы, создания, технической характеристики, применения и эксплуатации резисторов.

С момента создания резистора он прочно укоренился как в обычной жизни человека (телевизор, радио, нагревательные приборы и многое другое), так и в научной сфере жизни человечества в целом

В процессе развития электротехники открывались новые свойства различных материалов. Так, были созданы резисторы, сопротивление которых зависит от вида воздействия, оказываемого на них. Эти типы резисторов нашли широкое применение в качестве всевозможных датчиков или ограничителей напряжения. Как мы видим, этот элемент электрической цепи является одним из обязательных, без которого работа всей цепи приведет к отрицательному результату.

Список используемой литературы и интернет-ресурсов

1. https://ru.wikipedia.org/wiki/Резистор

2. https://sesaga.ru/rezistor-rezistory-postoyannogo-soprotivleniya.html

3. https://electroinfo.net/radiodetali/rezistory/peremennyj-rezistor.html

4. ГОСТ 2.728-74 Единая система конструкторской документации

5. Резисторы (справочник) / под ред. И. И. Четверткова -- М.: Энергоиздат, 1991

Размещено на Allbest.ru

...

Подобные документы

  • Нелинейные резистивные (безинерционные) двухполюсные и четырехполюсные элементы. Анализ нелинейных цепей с двухполюсными элементами. Сущность графоаналитических методов анализа нелинейных цепей. Анализ цепей с четырехполюсными нелинейными элементами.

    реферат [155,2 K], добавлен 11.03.2009

  • Понятие и примеры простых резистивных цепей. Методы расчета простых резистивных цепей. Расчет резистивных электрических цепей методом токов ветвей. Метод узловых напряжений. Описание колебания в резистивных цепях линейными алгебраическими уравнениями.

    реферат [128,0 K], добавлен 12.03.2009

  • Характеристика сущности резисторов, которые предназначены для перераспределения и регулирования электрической энергии между элементами схемы. Классификация, конструкции и параметры резисторов, характеризующие их эксплуатационные возможности применения.

    реферат [409,2 K], добавлен 10.01.2011

  • Расчет нелинейных резистивных цепей. Преобразование электрической энергии в тепло. Безынерционные элементы как источники высших гармоник. Статическое и дифференциальное сопротивление. Закон Ома, Джоуля-Ленца. Метод эквивалентного генератора в цепях.

    презентация [1,3 M], добавлен 28.10.2013

  • Назначение и принцип работы тахогенератора. Применение устройств, изготовленных по технологии LongLife. Тахогенераторы постоянного тока в схемах автоматики. Конструкция и принцип действия асинхронного тахогенератора. Амплитудная и фазовая погрешность.

    контрольная работа [592,9 K], добавлен 25.09.2011

  • Расчет линейных и нелинейных электрических цепей постоянного тока. Определение реактивного сопротивления элементов, составление баланса активных и реактивных мощностей с целью исследования переходных процессов в одно- и трехфазных электрических цепях.

    контрольная работа [8,2 M], добавлен 14.05.2010

  • Линейные цепи постоянного тока, вычисление в них тока и падения напряжения, сопротивления. Понятие и закономерности распространения тока в цепях переменного тока. Расчет цепей символическим методом, реактивные элементы электрической цепи и их анализ.

    методичка [403,7 K], добавлен 24.10.2012

  • История высоковольтных линий электропередач. Принцип работы трансформатора - устройства для изменения величины напряжения. Основные методы преобразования больших мощностей из постоянного тока в переменный. Объединения элетрической сети переменного тока.

    отчет по практике [34,0 K], добавлен 19.11.2015

  • Принцип применения операторного метода для анализа переходных колебаний в электрических цепях, содержащих один реактивный элемент и резисторы. Переходные колебания в цепи с емкостью и с индуктивностью. Свободные переходные процессы в цепи с емкостью.

    лекция [174,2 K], добавлен 27.04.2009

  • Нелинейные элементы и устройства электрических цепей переменного тока, основанные на этих элементах. Их классификация и краткая характеристика. Практические примеры использования нелинейных элементов на примере диодов. Диодные вентили и ограничители.

    курсовая работа [1,5 M], добавлен 05.01.2017

  • Принцип действия и область применения электрических машин постоянного тока. Допустимые режимы работы двигателей при изменении напряжения, температуры входящего воздуха. Обслуживание двигателей, надзор и уход за ними, ремонт, правила по безопасности.

    курсовая работа [1,6 M], добавлен 25.02.2010

  • Исследование режима работы основных элементов электрической цепи: источника (генератора), приемника и линии электропередачи на примере цепи постоянного тока. Влияние тока в цепи или сопротивления нагрузки на параметры режимов работы элементов цепи.

    лабораторная работа [290,8 K], добавлен 22.12.2009

  • Контакторы рычажного типа. Устройство дугогасительных систем по принципу гашения электрической дуги поперечным магнитным полем в дугогасительных камерах. Конструкции контакторов постоянного и переменного тока. Устройство и общая компоновка контакторов.

    лабораторная работа [125,7 K], добавлен 12.01.2010

  • Решение линейных и нелинейных электрических цепей постоянного тока, однофазных и трехфазных линейных электрических цепей переменного тока. Схема замещения электрической цепи, определение реактивных сопротивлений элементов цепи. Нахождение фазных токов.

    курсовая работа [685,5 K], добавлен 28.09.2014

  • Понятие и назначение, сферы применения и функциональные особенности контакторов, разновидности и отличительные признаки. Конструкция контактора постоянного и переменного тока. Принцип действия данных устройств. Магнитные пускатели, неисправности, ремонт.

    презентация [475,8 K], добавлен 22.11.2010

  • Понятие и назначение электронных генераторов, их классификация и разновидности, структура и основные элементы, принцип действия и сферы применения. Характеристика, возможные режимы работы генераторов постоянного тока и автоматического включения резерва.

    шпаргалка [1,1 M], добавлен 20.01.2010

  • Экспериментальное определение и построение вольтамперных характеристик нелинейных резистивных элементов. Проверка достоверности графического метода расчёта нелинейных электрических цепей. Основные теоретические положения, порядок выполнения работы.

    лабораторная работа [297,6 K], добавлен 22.12.2009

  • Расчет линейных электрических цепей постоянного тока, определение токов во всех ветвях методов контурных токов, наложения, свертывания. Нелинейные электрические цепи постоянного тока. Анализ электрического состояния линейных цепей переменного тока.

    курсовая работа [351,4 K], добавлен 10.05.2013

  • Анализ состояния цепей постоянного тока. Расчет параметров линейных и нелинейных электрических цепей постоянного тока графическим методом. Разработка схемы и расчет ряда показателей однофазных и трехфазных линейных электрических цепей переменного тока.

    курсовая работа [408,6 K], добавлен 13.02.2015

  • Применение метода междуузлового напряжения при анализе многоконтурной электрической схемы, имеющей два потенциальных узла. Нелинейные электрические цепи постоянного тока. Цепи с параллельным, последовательно-параллельным соединением резистивных элементов.

    презентация [1,8 M], добавлен 25.07.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.