Возобновляемые источники энергии

Исследование проблем, связанных с происхождением, экономичностью, техническим освоением и способами использования различных источников энергии. Понимание принципов производства и потребления энергии. Прогнозы, касающиеся будущего наших ресурсов.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 13.12.2020
Размер файла 200,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Минобрнауки России

РГУ нефти и газа (НИУ) имени И.М. Губкина

Факультет геологии и геофизики нефти и газа

Кафедра теоретических основ поисков и разведки нефти и газа

Реферат

По дисциплине Экология

Возобновляемые источники энергии

К защите

доцент, к.т.н. Орлова М.Н.

Выполнил:

Студент группы ГП-20-09

Мустафин Рузаль Русланович

Москва, 2020

Содержание

Введение

1. Солнечная электроэнергетика

2. Ветровая электроэнергетика

3. Гидроэнергетика

4. Геотермальная энергетика

5. Биоэнергия

Заключение

Список литературы

Введение

источник энергия потребление

За последнее десятилетие интерес к возобновляемым источникам энергии постоянно возрастает, поскольку во многих отношениях они неограниченны. По мере того как поставки топлива становятся менее надежными и более дорогостоящими, эти источники становятся все более привлекательными и более экономичными. Проблемы, связанные с происхождением, экономичностью, техническим освоением и способами использования различных источников энергии, были и будут неотъемлемой частью жизни на нашей планете. Прямо или косвенно с ними сталкивается каждый житель Земли. Понимание принципов производства и потребления энергии составляет необходимую предпосылку для успешного решения приобретающих все большую остроту проблем современности и в еще большей степени - ближайшего будущего. Почему же именно сейчас, как никогда остро, встал вопрос: что ждет человечество - энергетический голод или энергетическое изобилие? Не сходят со страниц газет и журналов статьи об энергетическом кризисе. Из-за нефти возникают войны, расцветают и беднеют государства, сменяются правительства. К разряду газетных сенсаций стали относить сообщения о запуске новых установок или о новых изобретениях в области энергетики. Разрабатываются гигантские энергетические программы, осуществление которых потребует громадных усилий и огромных материальных затрат.

Существуют разные прогнозы, касающиеся будущего наших ресурсов. Разрабатывая такие прогнозы, надо исходить, с одной стороны, из оценки перспектив роста населения и производства соответственно потребности общества, а с другой - из наличия запасов каждого ресурса. Однако прогнозировать современную тенденцию роста населения и производства далеко в будущее было бы рискованно. Кроме того, научно - технический прогресс, несомненно, будет продолжаться в направлении поисков более экономных, ресурсосберегающих технологий, что позволит постепенно сокращать потребность во многих природных источниках производства.

Исходя из сказанного, следует ожидать, по крайне мере, в ближайшие десятилетия, дальнейший рост потребностей в самых разнообразных энергетических ресурсах. При оценке их запасов важно различать две большие группы ресурсов - невозобновляемые и возобновляемые. Первые практически не восполняют, и их количество неуклонно уменьшается по мере использования. Сюда относятся минеральные и земляные ресурсы. Возобновляемые ресурсы либо способны к самовоспроизведению (биологические), либо непрерывно поступают к Земле извне (солнечная энергия), либо, находятся в непрерывном круговороте, могут использоваться повторно (вода). Возобновляемые ресурсы -- природные ресурсы, запасы которых или восстанавливаются быстрее, чем используются, или не зависят от того, используются они или нет.

Разумеется, возобновляемые ресурсы, как и невозобновляемые, не бесконечны, но их возобновляемая часть может постоянно использоваться.

Если обратиться к главным типам мировых природных ресурсов, то в самом общем мы получаем следующую картину. Основным видом энергоресурсов является пока ещё минеральное топливо - нефть, газ, уголь. Эти источники энергии невозобновляемы и при нынешних темпах роста их добычи они могут быть, по мнению учёных, исчерпаны через 80-140 лет.

Человек, безусловно, оказывает влияние на окружающую его среду, однако в природе существуют естественные уравновешивающие механизмы, которые поддерживают среду и обитающие в ней сообщества в состоянии равновесия, когда все изменения происходят достаточно медленно. Тем не менее, во многих случаях хозяйственная деятельность человека нарушает равновесие, создаваемое этими механизмами, что приводит к быстрым изменениям условий окружающей среды, с которыми ни человек, ни природа не могут успешно справиться. Традиционное производство энергии, дающее огромные количества загрязнителей воды и воздуха, - один из видов такой деятельности человека.

Цель реферата: выделить основные виды альтернативных источников энергии, определить их сильные и слабые стороны, и их значение в настоящий момент.

1. Солнечная энергетика

Солнечная энергетика -- направление альтернативной энергетики, основанное на непосредственном использовании солнечного излучения для получения энергии. Солнечная энергетика использует возобновляемый источник энергии и является «экологически чистой», то есть не производящей вредных отходов во время активной фазы использования.

Все солнечные электростанции (СЭС) подразделяют на несколько типов:

СЭС башенного типа

СЭС тарельчатого типа

СЭС, использующие фотоэлектрические модули (фотобатареи)

СЭС, использующие параболические концентраторы

Комбинированные СЭС

Аэростатные солнечные электростанции

Солнечно-вакуумные электростанции

СЭС башенного типа

Данные электростанции основаны на принципе получения водяного пара с использованием солнечной радиации. В центре станции стоит башня высотой от 18 до 24 метров, на вершине которой находится резервуар с водой. Этот резервуар покрашен в чёрный цвет для поглощения теплового и видимого излучения. Также в этой башне находится насосная группа, доставляющая воду в резервуар от турбогенератора, который находится вне башни. По кругу от башни на некотором расстоянии располагаются гелиостаты.

Гелиостат -- зеркало площадью в несколько квадратных метров, закреплённое на опоре и подключённое к общей системе позиционирования. То есть, в зависимости от положения солнца, зеркало будет менять свою ориентацию в пространстве. Основная и самая трудная задача -- это позиционирование всех зеркал станции так, чтобы в любой момент времени все отражённые лучи от них попали на резервуар. В ясную солнечную погоду температура в резервуаре может достигать 700 градусов по Цельсию. Такие температурные параметры используются на большинстве традиционных тепловых электростанций, поэтому для получения энергии используются стандартные турбины. Фактически на станциях такого типа можно получить сравнительно большой КПД (около 20 %) и высокие мощности.

СЭС тарельчатого типа

Данный тип СЭС использует принцип получения электроэнергии, схожий с таковым у башенных СЭС, но есть отличия в конструкции самой станции. Станция состоит из отдельных модулей. Модуль состоит из опоры, на которую крепится ферменная конструкция приемника и отражателя. Приёмник расположен примерно в области концентрации отражённого солнечного света. Отражатель состоит из зеркал в форме, напоминающей тарелки (отсюда название), радиально расположенных на ферме. Диаметры этих зеркал достигают 2 метров, а количество зеркал -- нескольких десятков (в зависимости от мощности модуля). Такие станции могут состоять как из одного модуля (автономные), так и из нескольких десятков (работа параллельно с сетью).

СЭС, использующие фотоэлектрические модули

Солнечные электростанции этого типа в настоящее время широко распространены, так как в общем случае СЭС состоит из большого числа отдельных модулей различной мощности и выходных параметров. Данные СЭС применяются для энергообеспечения как малых, так и крупных объектов (частные коттеджи, пансионаты, санатории, промышленные здания и т. д.). Фотоэлектрические модули и массивы производят электричество постоянного тока. Они могут быть подключены как в последовательном, так и в параллельном электрическом устройстве для получения любой требуемой комбинации напряжения и тока. Устанавливаться фотобатареи могут практически везде, начиная от кровли и фасада здания и заканчивая специально выделенными территориями. Установленные мощности тоже колеблются в широком диапазоне, начиная от снабжения отдельных насосов, заканчивая электроснабжением городов.

СЭС, использующие параболоцилиндрические концентраторы

Принцип работы данных СЭС заключается в нагревании теплоносителя до параметров, пригодных к использованию в турбогенераторе.

Конструкция СЭС: на ферменной конструкции устанавливается длинное параболоцилиндрическое зеркало, а в фокусе параболы устанавливается трубка, по которой течет теплоноситель (чаще всего масло). Пройдя весь путь, теплоноситель разогревается и в теплообменных аппаратах отдаёт теплоту воде, которая превращается в пар и поступает на турбогенератор.

Комбинированные СЭС

Часто на СЭС различных типов дополнительно устанавливают теплообменные аппараты для получения горячей воды, которая используется как для технических нужд, так и для горячего водоснабжения и отопления. В этом и состоит суть комбинированных СЭС. Также на одной территории возможна параллельная установка концентраторов и фотобатарей, что тоже считается комбинированной СЭС.

Аэростатные СЭС

Аэростатные солнечные электростанции (СЭС) бывают 2 типов: первый -- солнечные элементы располагаются на поверхности аэростата. При этом КПД не превышает КПД солнечных батарей и составляет около 15 % (в пределе может достигать 40 %). В конструкции второго типа в качестве рефлектора используется параболическая, вогнутая давлением газа, металлизированная плёнка, которая служит для концентрации солнечной энергии. Стоимость квадратного метра которой мала в сравнении с солнечными батареями и любыми отражающими поверхностями. Располагаясь на высоте более 20 км аэростат не боится затенения при облачной погоде, а двигаясь с воздушными потоками не испытывает ветровых нагрузок. Верхняя часть выполнена из прозрачной плёнки с армированным покрытием, посредине парабола пленочного концентратора из армированной металлизированной плёнки, а в фокусе -- термопреобразователь, охлаждаемый легким газом - водородом, для системы с разложением воды, либо гелий в случае наличия системы дистанционной передачи энергии, например, радио - или свч - излучением. Ориентировка шара на солнце осуществляется за счёт перекачки балластной жидкости (вода для водородного цикла), точная ориентировка -- гироскопами. При необходимости в одном дирижабле может находиться несколько плавающих шаровидных модулей.

Солнечно-вакуумные электростанции

Используют энергию воздушного потока, искусственно создаваемого путём использования разности температур воздуха в приземном слое воздуха, нагреваемого солнечными лучами в закрытом прозрачными стёклами участке, и на некоторой высоте. Состоят из накрытого стеклянной крышей участка земли и высокой башни, у основания которой расположена воздушная турбина с электрогенератором. Вырабатываемая мощность растет с ростом разности температур, которая увеличивается с высотой башни. Путём использования энергии нагретой почвы способны работать почти круглосуточно, что является их серьёзным преимуществом.

Преимущества солнечной энергетики.

1. Неиссякаемость и постоянность.

Говоря о солнечной энергии, в первую очередь, необходимо упомянуть, что это - неиссякаемый источник энергии, в отличие от ископаемых видов топлива - угля, нефти, газа, которые не восстанавливаются.

2. Экологическая чистота.

В свете последних тенденций в борьбе за экологическую чистоту Земли, солнечная энергетика - это наиболее перспективная отрасль, которая частично заменяет энергию, получаемую от невозобновляемых топливных ресурсов и, тем самым, выступает принципиальным шагом на пути защиты климата от глобального потепления. Производство, транспортировка, монтаж и использование солнечных электростанций практически не сопровождается вредными выбросами в атмосферу. Даже если они и присутствуют в незначительной мере, то по сравнению с традиционными источниками энергии - это почти нулевое воздействие на окружающую среду.

3. Бесшумность.

За счет того, что в системах на солнечном ресурсе нет никаких движущихся узлов, как, например, в генераторах, выработка электроэнергии происходит бесшумно.

4. Большая область использования.

Солнечная энергия - это то, что можно использовать для отдаленных регионов любой страны, где нет централизованного энергоснабжения. Эту энергию можно использовать как нагревательный элемент, как вспомогательное оборудования для увеличения объема добычи пресной воды в дальних населенных пунктах Египта, и конечно это один из основных источником энергии для международной космической станции (МКС) и спутников, так как в космосе мощность солнечного излучения гораздо выше, чем на поверхности Земли.

Недостатки солнечных источников энергии.

1. Большая стоимость.

Это является частой причиной отказа приобретать солнечные панели, так как на начальном этапе они требуют больших вложений, и люди не могу себе этого позволить. Но во многих развитых странах правительство помогает своим гражданам приобрести и установить солнечные электростанции, выдавая им кредиты и помогая им оформить все нужные документы для этого. В этой области Россия очень сильно отстает, и поэтому это является проблемой для большого процента населения.

2. Непостоянство.

За счет того, что солнечный свет отсутствует в ночное время, а также в пасмурные и дождливые дни эффективность солнечных электростанций падает, солнечная энергия не может служить основным источником электроэнергии.

3. Высокая стоимость аккумулирования энергии.

Аккумуляторные батареи, позволяющие накапливать энергию и сглаживать, в какой-то мере, нестабильность поступления солнечной энергии, отличает высокая цена, доступная не каждому домовладельцу. Упрощает ситуацию тот факт, что пик потребления электроэнергии приходится как раз на светлое время суток.

4. Применение дорогостоящих и редких компонентов.

Выпуск тонкопленочных солнечных панелей требует введения теллурида кадмия или селенида меди, индия, галлия, которые являются редкими и дорогостоящими - это влечет за собой удорожание системы альтернативного энергоснабжения в целом.

5. Малая мощность на единицу площади.

Одним из важных параметров источника электроэнергии выступает средняя плотность мощности, измеряемая в Вт/м2 и характеризующая количество энергии, которое можно получить с единицы площади энергоносителя. Данный показатель для солнечного излучения составляет 170 Вт/м2 - это больше, чем у прочих возобновляемых природных ресурсов, но ниже, чем у нефти, газа, угля и в атомной энергетике. По этой причине, для выработки 1 кВт электроэнергии из солнечного тепла требуется значительная площадь солнечных панелей.

2. Ветровая электроэнергетика

Ветроэнергетика -- отрасль энергетики, специализирующаяся на преобразовании кинетической энергии воздушных масс в электрическую, механическую, тепловую или в любую другую форму энергии, удобную для использования в народном хозяйстве. Такое преобразование может осуществляться такими агрегатами, как ветровой генератор (для получения электрической энергии), ветряная мельница (для преобразования в механическую энергию), парус (для использования в транспорте) и другими.

Ветроэнергетическая установка - комплекс взаимосвязанного оборудования и сооружений, предназначенный для преобразования энергии ветра в другие виды энергии (механическую, тепловую, электрическую и др.).

В настоящее время применяются две основные конструкции ветроэнергетических установок: горизонтально-осевые и вертикально-осевые ветродвигатели. Оба типа ветроэнергетических установок имеют примерно равный КПД, однако наибольшее распространение получили ветроагрегат первого типа. Мощность ветроэнергетических установок может быть от сотен ватт до нескольких мегаватт.

Ветроэнергетические установки классифицируют по следующим основаниям:

по виду вырабатываемой энергии;

по мощности;

по областям применения;

по назначению;

по признаку работы с постоянной или переменной частотой вращения ветроколеса;

по способам управления;

по структуре системы генерирования энергии.

Ветроэнергетические установки в зависимости от вида вырабатываемой энергии подразделяют на две группы: механические и электрические. Электрические ветроэнергетические установки, в свою очередь, подразделяются на ВЭУ постоянного и переменного тока.

В зависимости от мощности подразделяют на четыре группы:

большой мощности -- свыше 1 МВт;

средней мощности -- от 100 кВт до 1 МВт;

малой мощности -- от 5 до 99 кВт;

очень малой мощности -- менее 5 кВт.

Классификация ветроэнергетических установок переменного тока по назначению приведена в таблице 1:

Таблица 1

Ветроэлектрическая станция - электростанция, состоящая из двух и более ветроэлектрических установок, предназначенная для преобразования энергии ветра в электрическую энергию и передачу ее потребителю.

Ветроагрегат - система, состоящая из ветродвигателя, системы передачи мощности и приводимой ими в движение машины (электромашинного генератора, насоса, компрессора и т. п.).

Основные характеристики ветроагрегатов:

производительность ветроагрегата - зависимость объема продукции, производимого ветроагрегата за единицу времени средней скорости ветра; установленная мощность ветроагрегата - паспортная мощность машины на выходном валу ветроагрегата;

номинальная мощность ветроагрегата - максимальное значение выходной мощности, на которую рассчитан в длительном режиме работы;

общий коэффициент полезного действия ветроагрегата - отношение производимой ветроагрегата полезной энергии к полной энергии ветра, проходящей через площадь ветроколеса;

минимальная рабочая скорость ветра - минимальная скорость ветра, при которой обеспечивается вращение ветроагрегата с номинальной частотой вращения с нулевой производительностью (холостой ход).

Гибридные ветроэнергетические установки - системы, состоящие из ветроэнергетических установок и какого-либо другого источника энергии (дизельного, бензинового, газотурбинного двигателей, фотоэлектрических, солнечных коллекторов, установок емкостного, водородного аккумулирования сжатого воздуха и т. п.), используемых в качестве резервного или дополнительного источника электроснабжения потребителей.

Ветропарк -- это комплекс ветроэнергетических установок, часто установленных рядами, которые перпендикулярны господствующему направлению ветра. При разработке такого проекта нужно учитывать наличие дорог для доступа к агрегатам, подстанции и мониторинговой и контрольной системам.

История ветровой энергетики.

В Дании в 1890 году была построена первая ветряная электростанция, а к 1908 году насчитывалось уже 72 станции мощностью от 5 до 25 кВт. Крупнейшие из них имели высоту башни 24 метра и четырёхлопастные роторы диаметром 23 метра. Предшественница современных ветряных электростанций с горизонтальной осью имела мощность 100 кВт и была построена в 1931 году в Ялте. Она имела башню высотой 30 метров. К 1941 году единичная мощность ветроэлектростанций достигла 1,25 МВт.

В период с 1940-х по 1970-е годы ветроэнергетика переживает период упадка в связи с интенсивным развитием передающих и распределительных сетей, дававших независимое от погоды энергоснабжение за умеренные деньги.

Возрождение интереса к ветроэнергетике началось в 1970-х после нефтяного кризиса 1973 года. Кризис продемонстрировал зависимость многих стран от импорта нефти и привел к поиску вариантов снижения этой зависимости. В середине 1970-х в Дании начались испытания предшественников современных ветрогенераторов. Позднее чернобыльская катастрофа также стимулировала интерес к возобновляемым источникам энергии. Калифорния осуществила одну из первых программ стимулирования ветроэнергетики, начав предоставление налоговых льгот для производителей электроэнергии из ветра.

Прибрежная (оффшорная) ветряная энергетика.

Во многих точках нашей планеты в прибрежной зоне континентов и островов дуют постоянные сильные ветра, чья энергия может быть использована человечеством для производства высокорентабельного, экологически чистого электричества. Ветряные электростанции, построенные в шельфовой зоне морей, называют оффшорными (от английского «offshore» -- «на некотором расстоянии от берега»), а также прибрежными, морскими, шельфовыми или водными (надводными). Это одна из наиболее перспективных областей возобновляемой энергетики, в частности ветряной энергетики, в которую уже осуществляются миллиардные вложения.

Достоинства ветровой энергетики:

1. Компактность и практичность.

Ветряк занимает небольшую территорию и может располагаться вблизи жилых домов или заводов - потребителей электроэнергии, а также в изолированных энергосистемах.

2. Полная безопасность для окружающей среды.

Ветрогенератор не нуждается в топливе, поэтому выбросов в атмосферу нет, вся работа системы производится автономно.

3. Возобновляемая энергия.

Энергия ветра, в отличие от ископаемого топлива, неистощима.

4. Выбросы в атмосферу.

Ветрогенератор мощностью 1 МВт сокращает ежегодные выбросы в атмосферу 1800 тонн СО2, 9 тонн SO2, 4 тонн оксидов азота.

Недостатки ветряной энергетики:

1. Нестабильность.

Заключается в негарантированности получения необходимого количества электроэнергии. На некоторых участках суши силы ветра может оказаться недостаточно для выработки необходимого количества электроэнергии.

2. Малая мощность.

Ветровые генераторы значительно уступают в выработке электроэнергии дизельным генераторам, что приводит к необходимости установки сразу нескольких турбин. Кроме того, ветровые турбины неэффективны при пиковых нагрузках.

3. Дороговизна.

Высокая стоимость как изготовления и установки ветряка, так и разрабатываемые технологии.

3. Гидроэнергетика

На гидроэлектростанциях в качестве источника энергии используется потенциальная энергия водного потока, первоисточником которой является Солнце, испаряющее воду, которая затем выпадает на возвышенностях в виде осадков и стекает вниз, формируя реки. Гидроэлектростанции обычно строят на реках, сооружая плотины и водохранилища. Также возможно использование кинетической энергии водного потока на так называемых свободно поточных (бесплотинных) ГЭС.

Водохранилища часто занимают значительные территории, изымая их из сельскохозяйственного оборота, но в то же время могут благоприятно влиять в других вопросах. Смягчается климат в прилегающем районе, накопление воды для орошения и т. д.

Плотины зачастую изменяют характер рыбного хозяйства, поскольку перекрывают путь к нерестилищам проходным рыбам, однако часто благоприятствуют увеличению запасов рыбы в самом водохранилище и осуществлению рыбоводства.

Типы ГЭС:

Плотинные

Малые

Гидроаккумулирующие

Приливные

Осмотические

Плотинные ГЭС.

Это наиболее распространённые виды гидроэлектрических станций. Напор воды в них создаётся посредством установки плотины, полностью перегораживающей реку, или поднимающей уровень воды в ней на необходимую отметку. Такие гидроэлектростанции строят на многоводных равнинных реках, а также на горных реках, в местах, где русло реки более узкое, сжатое.

Малые ГЭС.

малая ГЭС (МГЭС) гидроэлектростанция, вырабатывающая сравнительно малое количество электроэнергии. Общепринятого для всех стран понятия малой гидроэлектростанции нет, в качестве основной характеристики таких ГЭС принята их установленная мощность, составляющая до 30 МВт.

Гидроаккумулирующие ЭС.

Такие ГАЭС способны аккумулировать вырабатываемую электроэнергию и пускать её в ход в моменты пиковых нагрузок. Принцип работы таких электростанций, следующий: в определённые периоды (не пиковой нагрузки), агрегаты ГАЭС работают как насосы от внешних источников энергии и закачивают воду в специально оборудованные верхние бассейны. Когда возникает потребность, вода из них поступает в напорный трубопровод и приводит в действие турбины.

Приливные ГЭС.

Приливная электростанция -- особый вид гидроэлектростанции, использующий энергию приливов, а фактически кинетическую энергию вращения Земли. Приливные электростанции строят на берегах морей, где гравитационные силы Луны и Солнца дважды в сутки изменяют уровень воды. Колебания уровня воды у берега могут достигать 18 метров.

Для получения энергии залив или устье реки перекрывают плотиной, в которой установлены гидроагрегаты, которые могут работать как в режиме генератора, так и в режиме насоса.

ПЭС используются во Франции, Великобритании, Канаде, Китае, Индии, США и других странах.

В России c 1968 года действует экспериментальная Кислогубская ПЭС в Кислой губе на побережье Баренцева моря. На 2009 год её мощность составляла 1,7 МВт. На этапе проектирования находится Северная ПЭС в губе Долгая-Восточная на Кольском полуострове мощностью 12 МВт.

Осмотические ГЭС.

Осмотическая электростанция -- стационарная энергетическая установка, основанная на принципе диффузии жидкостей (осмос).

Первая и единственная, на данный момент в мире, осмотическая электростанция построена компанией Statkraft в норвежском городке Тофте (коммуна Хурум), на территории целлюлозно-бумажного комбината «Sцdra Cell Tofte». Строительство электростанции обошлось в 20 миллионов долларов и 10 лет, проведенных в исследованиях и разработке технологии. Эта электростанция пока вырабатывает очень мало энергии: примерно 2--4 киловатта. Впоследствии планируется увеличить выработку энергии до 10 киловатт.

Осмотическая электростанция берёт под контроль смешивание солёной и пресной воды, тем самым извлекает энергию из увеличивающейся энтропии жидкостей. Смешивание проходит в резервуаре, который разделен на два отсека полупроницаемой мембраной. В один отсек подается морская вода, а в другой пресная. За счёт разной концентрации солей в морской и пресной воде, молекулы воды из пресного отсека, стремясь выровнять концентрацию соли, переходят через мембрану в морской отсек. В результате этого процесса в отсеке с морской водой формируется избыточное давление, которое в свою очередь используется для вращения гидротурбины, вырабатывающей электроэнергию.

Достоинства гидроэлетростанций:

Работа ГЭС не сопровождается выделением угарного газа и углекислоты, окислов азота и серы, пылевых загрязнителей и других вредных отходов, не загрязняет почву. Некоторое количество тепла, образующегося из-за трения движущихся частей турбины, передается протекающей воде, но это количество редко бывает большим.

Вода -- возобновляемый источник энергии. По крайней мере до тех пор, пока ручьи и реки не пересохнут. Гидрологический цикл (круговорот воды в природе) пополняет источники потенциальной энергии за счет дождей, снегопадов и водостока.

Производительность ГЭС легко контролировать, изменяя скорость водяного потока (объем воды, подводимый к турбинам).

Недостатки гидроэнергетики

Большие водохранилища затопляют значительные участки земли, которые могли бы использоваться с другими целями. Целые города, а также большие пространства сельскохозяйственных угодий с плодородными землями, становились жертвами водохранилищ, что вызывало массовые переселения, недовольство и экономические трудности

Разрушение или авария плотины большой ГЭС практически неминуемо вызывает катастрофическое наводнение ниже по течению реки

Плотина может нарушить нерестовый цикл рыбы. С этой проблемой можно бороться, сооружая рыбоходы и рыбоподъемники в плотине или перемещая рыбу в места нереста с помощью ловушек и сетей. Однако это приводит к удорожанию строительства и эксплуатации ГЭС.

4. Геотермальная энергетика

Геотермальная энергетика -- направление энергетики, основанное на использовании тепловой энергии недр Земли для производства электрической энергии на геотермальных электростанциях, или непосредственно, для отопления или горячего водоснабжения. Обычно относится к альтернативным источникам энергии, использующим возобновляемые энергетические ресурсы.

Запасы тепла Земли практически неисчерпаемы -- при остывании ядра на 1 °C выделится 2*1020 кВт?ч энергии, что в 10000 раз больше, чем содержится во всем разведанном ископаемом топливе, и в миллионы раз больше годового энергопотребления человечества. При этом температура ядра превышает 6000 °C, а скорость остывания оценивается в 300-500 °C за миллиард лет.

Тепловой поток, текущий из недр Земли через её поверхность, составляет 47±2 ТВт тепла (400 тыс. ТВт?ч в год, что в 17 раз больше всей мировой выработки, и эквивалентно сжиганию 46*109 тонн угля), а тепловая мощность, вырабатываемая Землей за счет радиоактивного распада урана, тория и калия-40 оценивается в 33 ТВт, т.е. до 70% теплопотерь Земли восполняется. Использование даже 1% этой мощности эквивалентно нескольким сотням мощных электростанций. Однако, плотность теплового потока при этом составляет менее 0,1 Вт/м2. (в тысячи и десятки тысяч раз меньше плотности солнечного излучения), что затрудняет её использование.

В вулканических районах циркулирующая вода перегревается выше температуры кипения на относительно небольших глубинах и по трещинам поднимается к поверхности, иногда проявляя себя в виде гейзеров. Доступ к подземным тёплым водам возможен при помощи глубинного бурения скважин. Более чем такие паротермы распространены сухие высокотемпературные породы, энергия которых доступна при помощи закачки и последующего отбора из них перегретой воды. Высокие горизонты пород с температурой менее +100 °C распространены и на множестве геологически малоактивных территорий, потому наиболее перспективным считается использование геотерм в качестве источника тепла.

Геотермический градиент -- изменение температуры на определенном участке земной толщи, -- в среднем составляет 3 °C на каждые 100 метров.

Но в зависимости от региона температурный градиент меняется -- например, в Кольской сверхглубокой скважине на горизонте 12 км была зафиксирована температура 220 °C, а в некоторых местах планеты, у тектонических разломов и зонах вулканической активности, для достижения аналогичных температур достаточно пробурить от нескольких сотен метров до нескольких километров, обычно от 0,5 до 3 км. В американском штате Орегон геотермический градиент 150 °C на 1 км, а в Южной Африке всего 6 °C на 1 км. Вывод: построить эффективную геотермальную станцию удастся далеко не везде. Как правило, подходящие места те, где сильная геологическая активность -- часто происходят землетрясения и имеются действующие вулканы.

Виды геотермальных электростанций.

Гидротермальная станция.

Упрощенная схема гидротермальной электростанции прямого цикла: из земли по трубе поднимается горячий пар, который раскручивает турбину генератора, а после устремляется в атмосферу.

Если из имеющейся у вас в наличии скважины бьёт не пар, а пароводяные смеси с температурой выше 150 °C, то потребуется станция комбинированного цикла. Перед турбиной сепаратор будет отделять пар от воды -- пар отправится в турбину, а горячая вода либо будет сброшена в скважину, либо перейдет в расширитель, где в условиях низкого давления отдаст дополнительный пар для турбины.

Если температура воды из-под земли составляет меньше 100 °C на экономически приемлемой глубине, -- а ГеоТЭС необходим, то потребуется строить сложную бинарную геотермальную станцию, цикл которой был изобретен в СССР. В ней жидкость из скважины вообще не подается на турбину ни в каком виде. Вместо этого в теплообменнике она разогревает другую рабочую жидкость с меньшей температурой кипения, которая, превращаясь в пар, раскручивает турбину, конденсируется и вновь возвращается в теплообменную камеру. В роли таких рабочих жидкостей может выступать, например, фреон, один из видов которого (фтордихлорбромметан) кипит уже при 51,9 °C. Бинарный цикл можно сочетать с комбинированным циклом, когда на одну турбину будет подаваться пар, а отделенная вода направится в другой контур для разогрева теплоносителя с низкой температурой кипения.

Петротермальная станция.

Разогретые подземные источники -- весьма редкое явление в масштабах планеты, как вы, наверное, могли заметить, что резко ограничивает потенциальную область внедрения геотермальной энергетики, поэтому был разработан альтернативный подход: если в горячей глубине земной коры нет воды, значит, ее нужно туда закачать. Петротермальный принцип подразумевает закачку воды в глубокую скважину с разогретой породой, где жидкость превращается в пар и возвращается обратно на турбину электростанции.

Необходимо пробурить как минимум две скважины: в одну с поверхности будет подаваться вода, чтобы от тепла пород превратиться в пар и выйти через другую скважину. А далее процесс получения электроэнергии будет полностью аналогичен гидротермальной станции.

Естественно, соединить под землей на глубине нескольких километров две скважины нереально -- вода между ними сообщается за счет разломов, образующихся в результате закачивания жидкости под огромным давлением (гидроразрыв). Чтобы расщелины и пустоты не закрылись со временем, к воде добавляют гранулы, например, песок.

Преимущества геотермальной энергетики:

Относительно экологически чистые. В отличие от угольных электростанций, на геотермальных электростанциях используется возобновляемый источник тепла, который имеет постоянный запас. Исследования показали, что в отрасли задействовано всего 6,5% от общего мирового потенциала, а это означает, что энергии хватит еще на многие годы вперед. Кроме того, количество парникового газа от ГеоТЭС составляет всего 5% от того, что выделяют угольные электростанции.

Большее количество энергии. ГеоТЭС имеют большую мощность - они могут весомо помочь в удовлетворении спроса на энергию, который растет с каждым годом, как в развитых странах, так и в развивающихся.

Стабильные цены. Обычные электростанции зависят от топлива, поэтому стоимость производимой ими электроэнергии колеблется в зависимости от рыночной цены топлива. Поскольку ГеоТЭС не используют топливо, то им не нужно учитывать его стоимость, и они могут предложить своим потребителям стабильные затраты на электроэнергию.

Низкие эксплуатационные расходы. Геотермальные установки требуют минимального обслуживания по сравнению с традиционными электростанциями. В результате они надежны и дешевы в эксплуатации.

Возобновляемый и устойчивый источник. Геотермальная энергия никогда не закончится, в отличие от невозобновляемых источников энергии. Пока земля поддерживает жизнь, геотермальная энергия будет существовать, ГеоТЭС будут работать.

Постоянное энергоснабжение. В отличие от других возобновляемых источников энергии, геотермальная может обеспечивать постоянное энергоснабжение - 24 часа в сутки, 7 дней в неделю, 365 дней в год вне зависимости от внешних факторов. К примеру, солнечные батареи могут производить электричество только в течение дня. Точно так же ветровые турбины производят энергию только при достаточном ветре.

Недостатки геотермальной энергетики:

Экологическая проблема. Ущербом для окружающей среды может стать высокое потребление пресной воды, что, в конечном результате, приведет к ее дефициту. Жидкости, которые извлекаются из земли в процессе бурения, содержат большое количество токсичных химических веществ (в том числе мышьяка и ртути), а также парниковых газов (таких как сероводород, диоксид углерода, метан, аммиак и радон). Если они неправильно утилизируются или обрабатываются, то могут попасть в атмосферу или просочиться в грунтовые воды и нанести ущерб окружающей среде и здоровью людей.

Географические ограничения. Геотермальная активность наиболее высока вдоль тектонических линий разломов в земной коре. Именно в этих местах геотермальная энергия имеет самый большой потенциал. Недостаток в том, что немногие страны могут использовать геотермальные ресурсы. Поэтому, ввиду географических особенностей, следующие страны являются основными производителями геотермальной энергии: США, Исландия, Кения, Индонезия, Филиппины, Мексика.

Дорогое строительство. ГеоТЭС требуют значительных инвестиций. Хотя они имеют низкие эксплуатационные расходы, стоимость их строительства может быть намного выше, чем угольных, нефтяных и газовых электростанций. Большая часть этих затрат касается разведки и бурения геотермальных энергетических ресурсов. Традиционные электростанции не требуют разведки и бурения. Еще ГеоТЭС требуют специально разработанных систем отопления и охлаждения, а также другого оборудования, способного выдерживать высокие температуры.

Возможное истощение. Исследования показывают, что без тщательного управления геотермальные резервуары могут истощиться. В таких случаях ГеоТЭС станут бесполезными, пока резервуар не восстановится. Единственный неистощимый вариант - это получение геотермальной энергии прямо из магмы, но данная технология все еще находится в процессе разработки. Этот вариант стоит вложений в основном благодаря тому, что магма будет существовать миллиарды лет.

5. Биоэнергия

Биотопливо -- топливо из растительного или животного сырья, из продуктов жизнедеятельности организмов или органических промышленных отходов.

Различается жидкое биотопливо (для двигателей внутреннего сгорания, например, этанол, метанол, биодизель), твёрдое биотопливо (дрова, брикеты, топливные гранулы, щепа, солома) и газообразное (синтез-газ, биогаз, водород).

54--60 % биотоплива составляют его традиционные формы: дрова, растительные остатки и сушёный навоз для отопления домов и приготовления пищи. Их используют 38 % населения Земли.

Растительное сырьё разделяют на поколения.

Сырьём первого поколения являются сельскохозяйственные культуры с высоким содержанием жиров, крахмала, сахаров. Растительные жиры перерабатываются в биодизель, а крахмалы и сахара -- в этанол. С учётом непрямых изменений в землепользовании такое сырьё часто наносит больший ущерб климату, чем тот, которого удаётся избежать за счёт отказа от сжигания ископаемого топлив. Кроме того, его изъятие с рынка прямо влияет на цену пищевых продуктов. Почти всё современное транспортное биотопливо производится из сырья первого поколения, использование сырья второго поколения находится на ранних стадиях коммерциализации либо в процессе исследовании.

Непищевые остатки культивируемых растений, траву и древесину называют вторым поколением сырья. Его получение гораздо менее затратно, чем у культур первого поколения. Такое сырьё содержит целлюлозу и лигнин. Его можно прямо сжигать (как это традиционно делали с дровами), газифицировать (получая горючие газы), осуществлять пиролиз. Основные недостатки второго поколения сырья -- занимаемые земельные ресурсы и относительно невысокая отдача с единицы площади.

Третье поколение сырья -- водоросли. Не требуют земельных ресурсов, могут иметь большую концентрацию биомассы и высокую скорость воспроизводства.

Виды биотоплива.

Твёрдое биотопливо.

Дрова -- древнейшее топливо, используемое человечеством. В настоящее время в мире для производства дров или биомассы выращивают энергетические леса, состоящие из быстрорастущих пород (тополь, эвкалипт и др.). В России на дрова и биомассу в основном идёт балансовая древесина, не подходящая по качеству для производства пиломатериалов.

Топливные гранулы и брикеты -- прессованные изделия из древесных отходов (опилок, щепы, коры, тонкомерной и некондиционной древесины, порубочные остатки при лесозаготовках), соломы, отходов сельского хозяйства (лузги подсолнечника, ореховой скорлупы, навоза) и другой биомассы. Древесные топливные гранулы называются пеллеты, они имеют форму цилиндрических или сферических гранул. В настоящее время в России производство топливных гранул и брикетов экономически выгодно только при больших объёмах.

Энергоносители биологического происхождения (главным образом навоз и т. п.) брикетируются, сушатся и сжигаются в каминах жилых домов и топках тепловых электростанций, вырабатывая дешёвое электричество.

Жидкое биотопливо

Биодизель -- топливо на основе жиров животного, растительного и микробного происхождения, а также продуктов их этерификации. Для получения биодизельного топлива используются растительные или животные жиры. Сырьём могут быть рапсовое, соевое, пальмовое, кокосовое масло, или любого другого масла-сырца, а также отходы пищевой промышленности. Разрабатываются технологии производства биодизеля из водорослей.

Российские ученые из Объединенного института высоких температур (ОИВТ) РАН и МГУ разработали и успешно испытали установку для превращения биомассы микроводорослей в биобензин. Полученное топливо, перемешанное с обычным бензином, было испытано в двухтактном двигателе внутреннего сгорания. Новая разработка позволяет переработать сразу всю биомассу водорослей, без её высушивания. Ранее применявшиеся попытки получения биобензина из водорослей предусматривали стадию сушки, которая по энергозатратам превосходила энергоэффективность полученного топлива. Теперь эта проблема решена. Быстрорастущие микроводоросли гораздо более продуктивно перерабатывают энергию солнечного света и углекислого газа в биомассу и кислород, чем обычные наземные растения, поэтому получение биотоплива именно из них очень перспективно.

Заключение

В заключение следует ещё раз вспомнить о ключевых причинах бурного развития возобновляемых источников энергии в мире. Основной фактор, стимулирующий развитие ВИЭ -- это всё-таки декарбонизация, то есть принятие мер по сокращению выбросов парниковых газов для борьбы с глобальным потеплением. На это было нацелено принятое 12 декабря 2015 года и вступившее в силу 4 ноября 2016 года Парижское соглашение об изменении климата.

Среди других выгод перехода на ВИЭ можно отметить улучшение экологической обстановки, снабжение энергодефицитных и удаленных районов, а также развитие технологий и появление новых рабочих мест. За последние несколько лет использование ВИЭ стимулировало создание одной из самых высокотехнологичных отраслей промышленности в мире. Объем инвестиций в эту отрасль в 2015 году оценивался в $288 млрд США. 70% всех инвестиций в генерацию электроэнергии было сделано в секторе возобновляемых источников энергии. В данном секторе (не считая гидроэнергетику) в мире занято более 8 млн человек (например, в Китае их число составляет 3,5 млн).

Сегодня развитие возобновляемых источников энергии нужно рассматривать не в изоляции, а как часть более широкого процесса «энергетического перехода», долгосрочного изменения структуры энергетических систем. Этот процесс характеризуется и другими важными изменениями, многие из которых усиливают «зеленую» энергетику, повышая ее шансы на успех. Одним из таких изменений является развитие технологий хранения энергии. Для зависящих от погодных условий и времени суток ВИЭ появление подобных коммерчески привлекательных технологий, очевидно, станет большим подспорьем. Мировой процесс развития новой энергетики является необратимым.

Список литературы

1. Владимир Сидорович. Мировая энергетическая революция: Как возобновляемые источники энергии изменят наш мир. -- М.: Альпина Паблишер, 2015. -- 208 с.

2. Ушаков, В.Я. Возобновляемая и альтернативная энергетика: ресурсосбережение и защита окружающей среды. -- Томск: СПБ Графикс, 2011. -- 137 с.

3. Алибек Алхасов. Возобновляемая энергетика. -- 2010. -- 257 с.

4. Возобновляемая энергетика. - Сборник научных трудов. Отв. редактор В.В. Алексеев. - МГУ им. М.В. Ломоносова. Географический факультет. - М., Изд-во Московского университета, 1999 г. - 188 с.

5. https://minenergo.gov.ru/node/489.

6. Доброхотов В.И., Поваров О.А. Теплоэнергетика, 2003, №1, с. 2--11.

7. Поваров О.А., Саакян В.А., Никольский А.И., Лузин В.Е., Сапожников М.Б., Моргун В.М. Тяжелое машиностроение, 2002, № 8.

8. Шафер О. Возобновляемая энергия. Инф. бюлл., август 2005, с. 4--7.

9. О целевом видении стратегии развития электроэнергетики России на период до 2030 года. Москва, Российская академия наук, 2007, 136 с.

10. Попель О.С., Фрид С.Е., Щеглов В.Н., Сулейманов М.Ж., Коломиец Ю.Г., Прокопченко И.Н. Теплоэнергетика, 2006, № 3, с. 11--16.

11. МЭА. Прогноз мировой энергетики 2008 г. Международное энергетическое агентство, Париж, Франция, 578 стр. МЭА. Перспективы энергетических технологий 2008 г. Сценарии и стратегии до 2050 г. Международное энергетическое агентство, Париж, Франция, 646 стр.

12. Соколов Д.Я. Использование водной энергии. - М.: Колос, 1965.

13. Нетрадиционные источники энергии: рекоменд. библиогр. обзор / сост. Л.М. Кузнецова. - М.: Книга, 1984.

Размещено на Allbest.ru

...

Подобные документы

  • Виды нетрадиционных возобновляемых источников энергии, технологии их освоения. Возобновляемые источники энергии в России до 2010 г. Роль нетрадиционных и возобновляемых источников энергии в реформировании электроэнергетического комплекса Свердловской обл.

    реферат [3,1 M], добавлен 27.02.2010

  • Использование возобновляемых источников энергии, их потенциал, виды. Применение геотермальных ресурсов; создание солнечных батарей; биотопливо. Энергия Мирового океана: волны, приливы и отливы. Экономическая эффективность использования энергии ветра.

    реферат [3,0 M], добавлен 18.10.2013

  • Характеристика возобновляемых источников энергии: основные аспекты использования; преимущества и недостатки в сравнении с традиционными; перспективы использования в России. Способы получения электричества и тепла из энергии солнца, ветра, земли, биомассы.

    курсовая работа [3,9 M], добавлен 30.07.2012

  • Проблемы развития и существования энергетики. Типы альтернативных источников энергии и их развитие. Источники и способы использования геотермальной энергии. Принцип работы геотермальной электростанции. Общая принципиальная схема ГеоЭС и ее компоненты.

    курсовая работа [419,7 K], добавлен 06.05.2016

  • Распространение солнечной энергии на Земле. Способы получения электричества из солнечного излучения. Освещение зданий с помощью световых колодцев. Получение энергии с помощью ветрогенераторов. Виды геотермальных источников энергии и способы ее получения.

    презентация [2,9 M], добавлен 18.12.2013

  • География мировых природных ресурсов. Потребление энергии - проблема устойчивого развития. Статистика потребления мировой энергии. Виды нетрадиционных (альтернативных) источников энергии и их характеристика. Хранение отработавшего ядерного топлива.

    презентация [1,2 M], добавлен 28.11.2012

  • Классификация возобновляемых источников энергии. Современное состояние и перспективы дальнейшего развития гидро-, гелео- и ветроэнергетики, использование энергии биомассы. Солнечная энергетика в мире и в России. Развитие биоэнергетики в мире и в РФ.

    курсовая работа [317,6 K], добавлен 19.03.2013

  • Солнечная, ветряная, геотермальная энергия и энергия волн. Использование альтернативной энергии в России. Исследование параметров солнечной батареи и нестандартных источников энергии. Реальность использования альтернативной энергии на практике.

    реферат [3,8 M], добавлен 01.01.2015

  • Сущность и краткая характеристика видов энергии. Особенности использования солнечной и водородной энергии. Основные достоинства геотермальной энергии. История изобретения "ошейника" А. Стреляемым, принцип его работы и потребления энергии роста растений.

    презентация [911,5 K], добавлен 20.12.2009

  • Распределенное производство энергии как концепция строительства источников энергии и распределительных сетей. Факторы, стимулирующие развитие распределенной генерации. Возобновляемые источники энергии. Режимы работы автономных систем электроснабжения.

    реферат [680,6 K], добавлен 27.10.2012

  • Классификация альтернативных источников энергии. Возможности использования альтернативных источников энергии в России. Энергия ветра (ветровая энергетика). Малая гидроэнергетика, солнечная энергия. Использование энергии биомассы в энергетических целях.

    курсовая работа [3,9 M], добавлен 30.07.2012

  • Доля альтернативных источников энергии в структуре потребления РФ. Производство биогаза из органических отходов. Технический потенциал малой гидроэнергетики. Использование низкопотенциальных геотермальных источников тепла в сочетании с теплонасосами.

    курсовая работа [2,7 M], добавлен 20.08.2014

  • Характеристика невозобновляемых источников энергии и проблемы их использования. Переход от традиционных источников энергии к альтернативным. Нефть и газ и их роль в экономике любого государства. Химическая переработка нефти. Добыча нефти в Украине.

    реферат [22,9 K], добавлен 27.11.2011

  • Источники экологически чистой и безопасной энергии. Исследование и разработка систем преобразования энергии солнца, ветра, подземных источников в электроэнергию. Сложные системы управления. Расчет мощности ветрогенератора и аккумуляторных батарей.

    курсовая работа [524,6 K], добавлен 19.02.2016

  • Основы энергосбережения, энергетические ресурсы, выработка, преобразование, передача и использование различных видов энергии. Традиционные способы получения тепловой и электрической энергии. Структура производства и потребления электрической энергии.

    реферат [27,7 K], добавлен 16.09.2010

  • География мировых природных ресурсов. Потребление энергии как проблема устойчивого развития. Общая характеристика альтернативных источников энергии: солнечная, ветряная, приливная, геотермальная энергия и энергия, получаемая при сжигании биомассы.

    презентация [1,2 M], добавлен 08.12.2012

  • Пути и методики непосредственного использования световой энергии Солнца в промышленности и технике. Использование северного холода как источника энергии, его потенциал и возможности. Аккумулирование энергии и повышение коэффициента полезного действия.

    реферат [18,0 K], добавлен 20.09.2009

  • Возрастание интереса к проблеме использования солнечной энергии. Разные факторы, ограничивающие мощность солнечной энергетики. Современная концепция использования солнечной энергии. Использование океанской энергии. Принцип действия всех ветродвигателей.

    реферат [57,6 K], добавлен 20.08.2014

  • Существующие источники энергии. Мировые запасы энергоресурсов. Проблемы поиска и внедрения нескончаемых или возобновляемых источников энергии. Альтернативная энергетика. Энергия ветра, недостатки и преимущества. Принцип действия и виды ветрогенераторов.

    курсовая работа [135,3 K], добавлен 07.03.2016

  • Ветер как источник энергии. Выработка энергии ветрогенератором. Скорость ветра как важный фактор, влияющий на количество вырабатываемой энергии. Ветроэнергетические установки. Зависимость использования энергии ветра от быстроходности ветроколеса.

    реферат [708,2 K], добавлен 26.12.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.