Electrical and magnetic properties of magnetic fluid

The study of magnetite particle of the obtained magnetic liquid by X-ray diffraction analysis and transmission electron microscopy. Electrical conductivity and magnetic susceptibility of magnetic liquids. Changes in the electrical conductivity of samples.

Рубрика Физика и энергетика
Вид статья
Язык английский
Дата добавления 19.02.2021
Размер файла 1,3 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Electrical and magnetic properties of magnetic fluid

Kuvandikov O.K.1, Eshburiev R.M.2, Kayumov H.A.3, Temirov Sh.S.4

(RepublicofUzbekistan)

2Kuvandikov OblakulKuvandikovich - Doctor of sciences in physics and mathematics, Professor,

DEPARTMENT OF GENERAL PHYSICS;

2Eshburiev Rashid Majidovich - PhD in physics and mathematics, Associate Professor;

3Kayumov Hafiz Asliddinugli - PhD student;

4Temirov ShohbozbekSalaydinugli - student;

DEPARTMENT OF NUCLEAR PHYSICS SAMARKAND STATE UNIVERSITY, SAMARKAND, REPUBLIC OF UZBEKISTAN

Abstract: the magnetic fluid based on magnetite has been obtained by chemical coprecipitation method. Magnetite particles of the obtained magnetic fluid were examined by using X-ray diffraction analysis (XRD) and transmission electron microscopy (TEM). The electrical conductivity and magnetic susceptibility of magnetic fluids have been studied depending on concentration of disperse phase. The variation of the electrical conductivity of the samples depending on temperature was measured. Also the relative changes of the specific electrical resistance studied depending on magnetic field. The results of the experiments were compared with existing theories.

Keywords: magnetic fluid, chemical co-precipitation, colloidal particles, volume concentration, specific electrical conductivity, specific electrical resistance, magnetic susceptibility, Quince's method.

Электрические и магнитные свойства магнитной жидкости

Кувандиков О.К.1, Эшбуриев Р.М.2, Каюмов Х.А.3, Темиров Ш.С.4

(Республика Узбекистан)

1Кувандиков ОблакулКувандикович - доктор физико-математических наук, профессор,

кафедра общей физики;

2Эшбуриев Рашид Мaджидович - кандидат физико-математических наук, доцент;

3Каюмов ХафизАслиддин угли - аспирант;

4Темиров ШохбозбекСалайдин угли - студент,

кафедра ядерной физики,

Самаркандский государственный университет,

г. Самарканд, Республика Узбекистан

Аннотация: магнитная жидкость на основе магнетита была получена методом химического соосаждения. Частицы магнетита полученной магнитной жидкости были изучены с помощью рентгеноструктурного анализа (РА) и просвечивающей электронной микроскопии (ПЭМ). Электропроводность и магнитная восприимчивость магнитных жидкостей были изучены в зависимости от концентрации дисперсной фазы. Были измерены изменения электропроводности образцов в зависимости от температуры. Также относительные изменения удельного электрического сопротивления изучены в зависимости от магнитного поля. Результаты экспериментов сравнивались с существующими теориями.

Ключевые слова: магнитная жидкость, химическое соосаждение, коллоидные частицы, объемная концентрация, удельная электрическая проводимость, удельное электрическое сопротивление, магнитная восприимчивость, метод Квинке.

INTRODUCTION

Magnetic fluids are colloid disperse system stabled of ferromagnetic or ferrimagnetic nanoparticles in carrier liquid. For stabilization the colloidal particles of magnetic fluid and prevention the formation of aggregates the surfactant is used [1]. Generally surfactant molecules have a polar “head” and a non-polar “tail” (or vice versa) [2]. One of the ends is adsorbed to the particle, and the other is attached to the molecules of the carrier liquid, forming a normal or reverse micelle around the particle respectively [3]. Magnetic fluids due to the uniqueness of their properties are widely used in various fields of science and technology. For example these fluids can be used in ultrasonic flaw detection, in chemical industry as catalyst for chemical reactions in engineering as sealants, for separation of nonmagnetic materials in mining industry, in the field of radio electronics [4]. In medicine, magnetic fluids are used against cancer as medicinal preparations and for testing gastrointestinal diseases as contrast substances [5]. For the above mentioned reasons, in this article it is aimed to study the electrical and magnetic properties of magnetic fluids.

1. Methods and materials of experiment.

In order to prepare the magnetic fluid, firstly colloidal particles of this liquid were synthesized, then these particles apply a layer of surfactant [6]. The magnetite nanoparticles were synthesized by the chemical co-precipitation method [7]. The salts hydrated iron chloride (FeCl3 * 6H2O), iron sulfate (FeSO4 * 7H2O) and sodium hydro-oxide ( NaOH) are the basic materials used for the synthesis. The solutions 100 ml of 0,25M FeSO4 * 7H2O and 100 ml of 0,5M FeCl2 * 6H2Owere dissolved in 200 ml of distilled water and filtered. 100 ml of 0.9M KOHsolution was added to the filtered solution and mixed well with magnetic stirrer. Dark yellow solution instantly turns into a black suspension. The synthesized precipitate of magnetite was separated in the field of the permanent magnet and washed with distilled water until neutral pH. After the last washing, the oleic acid as surfactant and olive oil as carrier liquid were added and mixed 3 hours until heating at 80X in the volume ratio 1:6. Magnetic fluids with ten different volume concentrations of nanoparticle were prepared. The volume concentrations of samples were determined using the following formula:

Here, p pch pm - are density of magnetic fluid, crier liquid and magnetite[7].

2. Results and discussion

By the transmission electron microscope (TEM) was examined the size and shape of the disperse phase (Fe3O4) of the magnetic fluid. Fig.1 shows the TEM image of the nanoparticles. The diameter nanoparticles were in the range from 10 to 25 nm. Fig.2 shows distribution on size nanoparticles. From fig.2 it can be seen that the main part of the particles was 15 nm.

Fig. 1.TEM image of Fe3O4 magnetic fluidFig. 2. Size distribution of magnetite nanoparticles

Magnetite particles were determined using X-ray diffractometer PHYWE - XR 4.0 with a copper tube Cu Ka, 1 =

0. 14596 nm at 35 kV and 1 mA collected in the range of 20 =20 - 70° [8]. Fig.3 shows the XRD patterns for Fe3O4powder. From fig.3 it can be seen that there were 6 different peaks at 20 = 30.5°, 35.7°, 43.5°, 54.1°, 57.4°, 63 °. The average crystallite size D was determined from Scherer`s equation:

Here - K is the dimensionless shape factor of particle, it is 0,89 for magnetite, 1 - is the X-ray wavelength, p - is the half maximum intensity width of the peak the width of the half maximum intensity of the peak, 0 - the diffraction angle. The average crystallite size of the

Fe Owas about 21 nm.

Because samples are liquid their electrical conductivity was measured using by the cuvette which size is 1,5x1x1,5 sm3. Fig.3. The magnetic fluid was putted in the cuvette and source started up. The copper plate (4) on both sides of the cuvette has been used as an electrode. From fig.3 It can be seen that the amperemeter and voltmeter indicate the current and voltage in the fluid. Electrical conductivity of the samples was determined using Ohm's law:

Here - I, U are the current and voltage of the fluid, l - is the distance between electrodes (1,5sm), S - is surface of electrodes (1,5 sm2).

Fig. 3.Schematic image of the measure device for electrical conductivity of the magnetic fluid. 1 - variable current source, 2 - resistor (R=10 kOm), 3 - cuvette, 4 - copper electrodes, 5 - voltmeter, 6 - amperemeter

The dependence of magnetic fluid electrical conductivity on volume concentration of magnetite was measured. The obtained results are showed in Figure 4. What stands out from Fig.4 is that the electrical conductivity of the liquid increases nonlinear, with the increasing of the volume concentration of magnetite.

Fig. 4. Concentration dependences of electrical conductivity of magnetic fluid based on the olive oil

The electrical conductivity of the magnetic fluid is directly related to the nature of the particles, the surfactant layer and the carrier liquid. As the volume concentration of the disperse phase rises, the concentration of charge ions grows, so the electrical conductivity of the liquid monotone increases.

The variation of electrical conductivity of the fluid with the increase in temperature is shown in Fig.5. Our experiments have shown that the electrical conductivity of the samples increases nearly linear in the temperature range 20-80. The increase in electrical conductivity with temperature is due to the rise mobility of ions in the fluid.

Fig. 5. The dependence of magnetic fluid specific electrical conductivity on temperature

Fig. 6. Magnetic field dependence of relative changes specific electrical resistance of magnetic fluid

Experiments show that the electrical conductivity of the magnetic fluid at little values concentration of dispersed phase (0 < 9 <0.32 %) does not depend on the magnetic field [9], however, in the case of high concentrations this law is violated. The variation of specific electrical resistance of in different concentrations fluids with the increase in magnetic field is shown in Fig.6.

As can be seen in Fig.6 the relative changes of specific electrical resistance of samples slightly increases in the high alteration range of magnetic field and also we can see that saturate in the high values of magnetic field.

Magnetic susceptibility of the obtained samples was measured by the help of Quince's method [10]. The Quince method is applied only to liquids. The magnetic fluid is poured into a U - shaped capillary tube and it is placed between the poles of the electromagnet. Depending on the properties of liquids the meniscus rises or falls. By changing the height of the liquid column, determined the magnetic susceptibility of the sample with the help of following formula:

Here - g = 9,81 m/s2 is the acceleration of gravity, Ah - is the meniscus height, - is vacuum permeability, H - is the magnetic field strength.

The measured results are shown in Fig.7. As can be seen in Fig.7 the magnetic susceptibility of the liquid increases with the rising of the volume concentration of magnetite. That's the reason magnetic susceptibility depend magneto - dipole interaction of the particles in the high concentrations of the hard phase of the liquid. magnetic liquid x-ray diffraction microscopy

Fig. 7. The dependence of magnetic fluid magnetic susceptibility on volume concentration of magnetite

Conclusion: Study of crystal structure and morphology showed that the sizes of the colloidal particles of magnetic fluid are distributed log-normal law. The measured results show that the electrical conductivity of the samples depends on the magnetic field at high concentrations.

References in English / Списоклитературынаанглийскомязыке

1. Taketomi S. and Tikadzumi, S., Magnetic Fluids, transl. from Japanese, Moscow: Mir, 1993.P.125-126.

2. K. Mittela.Mitscellobrazovanie, solubilization and microemulsii. Mittel. transl. from English.,Moscow, 1980.P.85-91.

3. Rosensweig, R.E.,Ferrohydrodynamics, Cambridge:Cambridge Univ. Press, 1985.P.58- 60.

4. S.D. Kemkar, MilindVaidya, DipakPinjari, SammitKarekar, SanjanaKemkar, SiddheshNanaware, SanjuktaKemkar. Application of mixed colloidal magnetic fluid of single domain Fe3O4 and NiFe2O4 ferrite nanoparticles in audio speaker // Int. Journal of Engineering Research and Application. 2017. Issue 1, (Part -3) 7. Pp.11-18.

5. Pradip Das, Miriam Colombo, DavideProsperi. Recent advances in magnetic fluid hyperthermia for cancer therapy. Colloids and Surfaces B: Biointerfaces 174 (2019).P.42-55.

6. Fertman.V.E. Magnetic fluids. Minsk: Higher School.P.24-32.

7. Berkovskiy, B.M., V.F. Medvedev, M.S. Krakov, Magnetic fluids. Moscow: Chemistry.1989.8-21 and 43-45.

8. Kuvandikov O.K. Magnetic and kinetic properties of condensed alloys and compounds based on transition and rare-earth metals.P.57-58.

Список литературы /References

1. ТакетомиС.,Тикадзуми С.Магнитныежидкости, пер. с японского. Москва-Мир, 1993 r.C.125-126

2. Миmmeла К.Мицеллообразование, солюбилизация и микроэмульсии, пер. с англ., М., 1980.C.85-91.

3. Розенцвейг, Р.Е.Феррогидродинамика, Кембридж: Кембриджский унив. Пресс, 1985.С.58-60.

4. Кемкар С.Д., МилиндВайдья, ДипакПинджари, СаммитКарекар, СанжанаКемкар, СиддхешНанавар, СаньюктаКемкар. Применение смешанной коллоидной магнитной жидкости из однодоменных ферритовых наночастиц Fe3O4 и №Ре204 в аудиодинамике.// Межд. журнал инженерных исследований и применения. 2017. Выпуск 1, (Часть -3) 7. Стр. 11-18.

5. ПрадипДас, МириамКоломбо, ДавидеПроспери. Последние достижения в гипертермии магнитной жидкости для терапии рака. Коллоиды и поверхности В: биоинтерфейсы 174 (2019).С.42-55.

6. Фертман.В.Е. Магнитные жидкости справочное пособие. Минск: Вышэйшая школа. 1988.С.24-32.

7. Берковский Б.М., Медведев В.Ф., Краков М.С., Магнитный жидкости. Москва: Химия. 1989. С. 8-21 и 43-45.

8. Кувандиков О.К. Магнитные и кинетические свойства конденсированных сплавов и соединений на основе переходных и редкоземельных металлов Ташкент: Фан.2009.С.57-58.

Размещено на Allbest.ru

...

Подобные документы

  • Study of synthetic properties of magnetic nanoparticles. Investigation of X-ray diffraction and transmission electron microscopy of geometrical parameters and super conducting quantum interference device magnetometry of magnetic characterization.

    реферат [857,0 K], добавлен 25.06.2010

  • Completing of the equivalent circuit. The permeance of the air-gaps determination. Determination of the steel magnetic potential drops, initial estimate magnetic flux through the air-gap. Results of the computation of electromagnet subcircuit parameters.

    курсовая работа [467,8 K], добавлен 04.09.2012

  • The properties of conductors of electricity. The electric field is as the forces in the space around a charged body. Diagrams of the electric field and the lines of force in the neighborhoods of charged bodies, the elements of an electrical condenser.

    презентация [2,0 M], добавлен 13.01.2012

  • The photoelectric effect. The maximum kinetic energy. Putting it all together. Can we use this idea in a circuit. The results of the photoelectric effect allowed us to look at light completely different. The electron microscope. Wave-particle duality.

    презентация [2,3 M], добавлен 06.04.2016

  • Determination of wave-length laser during the leadthrough of experiment in laboratory terms by means of diagnostics of laser ray through the unique diffraction of cut. Analysis of results: length of fringe, areas and interrelation between factors.

    лабораторная работа [228,4 K], добавлен 29.12.2010

  • Defining the role of the microscope in studies of the structure of nanomaterials. Familiarization with the technology of micromechanical modeling. The use of titanium for studying the properties of electrons. Consideration of the benefits of TEAM project.

    реферат [659,8 K], добавлен 25.06.2010

  • Definition the certain latent high temperature of evaporation of the liquid using capital equipment and calculations. The accepted value of the latent high temperature of evaporation. The uncertainty for the specific latent heat of vaporization.

    лабораторная работа [247,8 K], добавлен 29.12.2010

  • The Rational Dynamics. The Classification of Shannon Isomorphisms. Problems in Parabolic Dynamics. Fundamental Properties of Hulls. An Application to the Invertibility of Ultra-Continuously Meager Random Variables. Fundamental Properties of Invariant.

    диссертация [1,6 M], добавлен 24.10.2012

  • The properties of the proton clusters in inelastic interactions SS. Relativistic nuclear interaction. Studying the properties of baryon clusters in a wide range of energies. Seeing the high kinetic energy of the protons in the rest of the cluster.

    курсовая работа [108,6 K], добавлен 22.06.2015

  • Background to research and investigation of rural electrification. Method of investigation, plan of development, Rampuru, a typical rural South African village. Permanent magnet generator, properties of permanent magnets and evidence of wind resource.

    курсовая работа [763,2 K], добавлен 02.09.2010

  • Physical meaning of electron paramagnetic resonance and nuclear magnetic resonance. Splitting of energy levels. Zeeman effect. Spin probe. Device and mechanism of spectrometer and introscopy. The usage of EPR specters, NMR in medico-biological researches.

    контрольная работа [153,5 K], добавлен 15.12.2015

  • Biography of the world famous American inventor and businessman Thomas Alva Edison: the origin, childhood, first job. Inventions: aerophone, coal telephone membrane, microphone, incandescent, magnetic separator iron ore, peep show, nickel-iron battery.

    презентация [930,6 K], добавлен 10.12.2014

  • Nikola Tesla - an inventor, mechanical and electrical engineer, which works helped usher in the Second Industrial Revolution. Early years, education. Work as an engineer for the Continental Edison Company. Schumann resonance. Directed-energy weapon.

    презентация [839,1 K], добавлен 29.11.2010

  • Protection of technological equipment from mechanical injury. Organizational and technical measures to protect against explosions high pressure. Means automatic control and alarm, protection of the dangers of robotic manufacturing; electrical safety.

    презентация [7,9 M], добавлен 07.04.2014

  • Technical and economic characteristics of medical institutions. Development of an automation project. Justification of the methods of calculating cost-effectiveness. General information about health and organization safety. Providing electrical safety.

    дипломная работа [3,7 M], добавлен 14.05.2014

  • Development of the calculation procedures. Initial values of liquid density and dynamic viscosity of crude oil-gas mixes components at 200C and 0.1 MPa. Chart of experimental conditions and properties of crude oil saturated with natural gas samples.

    статья [78,1 K], добавлен 21.03.2012

  • Theory, instrumentation, tips, results. Local surface modification. As it can be seen from this paper, STM can be extremely useful in electrochemical studies. It is capable of providing atomic resolution images of samples in water.

    реферат [6,8 K], добавлен 24.10.2002

  • Розробка сайту інтернет-магазину комп’ютерної техніки. Структура об’єктів і зв’язків предметної області: головна, таблиці менеджерів, складу, інформація про товар, сторінки користувачів, покупців. Створення резервної копії бази даних, рhp програма.

    курсовая работа [3,4 M], добавлен 06.08.2013

  • Study credit channel using clustering and test the difference in mean portfolio returns. The calculated debt-to-capital, interest coverage, current ratio, payables turnover ratio. Analysis of stock market behavior. Comparison of portfolios’ performances.

    курсовая работа [1,5 M], добавлен 23.10.2016

  • The process of scientific investigation. Contrastive Analysis. Statistical Methods of Analysis. Immediate Constituents Analysis. Distributional Analysis and Co-occurrence. Transformational Analysis. Method of Semantic Differential. Contextual Analysis.

    реферат [26,5 K], добавлен 31.07.2008

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.