Волоконно-оптические датчики

Применение и общий принцип действия оптоволоконного устройства для детектирования некоторых величин, температуры и механического напряжения. Сенсоры на основе брэгговских решеток. Квази-распределенное зондирование. Измерение позиционно-зависимых величин.

Рубрика Физика и энергетика
Вид статья
Язык русский
Дата добавления 02.03.2021
Размер файла 11,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ВОЛОКОННО-ОПТИЧЕСКИЕ ДАТЧИКИ

Научный руководитель:

Колмаков Виталий Олегович.

Авторы:

Халецкий Владислав Николаевич, Иргит Айбек Валерьевич, Крайнев Никита Сергеевич.

Волоконно-оптические датчики позволяют измерять многие характеристики лабораторных и промышленных объектов, в частности температуру. Не смотря на то, что их использование достаточно трудоемко, оно дает ряд преимуществ, использования подобных датчиков на практике: безиндукционность (т.е. неподверженность влиянию электромагнитной индукции); малые размеры датчиков, эластичность, механическая прочность, высокая коррозийная стойкость и т.д.

Для измерения температуры с помощью световодов, изготовленных из кварцевого стекла, особенно подходит так называемый эффект Рамана. Свет в стеклянном волокне рассеивается на микроскопически малых колебаниях плотности, размер которых меньше длины волны. В обратном рассеивании можно найти, наряду с эластичной долей рассеивания (излучаемое рассеивание) на одинаковой длине волны, как проникший свет, так и дополнительные компоненты на других длинах волны, которые связаны с колебанием молекул и, тем самым с локальной температурой (комбинационное Рамановское рассеяние).

Волоконно-оптические датчики (так же часто именующиеся оптические волоконные датчики) это оптоволоконные устройства для детектирования некоторых величин, обычно температуры или механического напряжения, но иногда так же смещения, вибраций, давления, ускорения, вращения (измеряется с помощью оптических гироскопов на основе эффекте Саньяка), и концентрации химических веществ. Общий принцип таких устройств в том, что свет от лазера (чаще всего одномодового волоконного лазера) или суперлюминесцентного оптического источника передается через оптическое волокно, испытывая слабое изменение своих параметров в волокне или в одной или нескольких брэгговских решетках, и затем достигает схемы детектирования, которая оценивает эти изменения.

В сравнении с другими типами датчиков, волокно-оптические датчики обладают следующими преимуществами: они состоят из электрически непроводящих материалов (не требуют электрических кабелей), что позволяет использовать их, например, в местах с высоким напряжением.

Их можно безопасно использовать во взрывоопасной среде, потому, что нет риска возникновения электрической искры, даже в случае поломки. Они не подвержены электромагнитным помехам (EMI), даже вблизи разряда молнии, и сами по себе не электризуют другие устройства. Их материалы могут быть химически инертны, то есть не загрязняют окружающую среду, и не подвержены коррозии. Они имеют очень широкий диапазон рабочих температур (гораздо больше, чем у электронных устройств). Они имеют возможность мультиплексирования; несколько датчиков в одиночной волоконной линии может быть интегрировано с одним оптическим источником. оптоволоконный устройство напряжение зондирование

Сенсоры на основе брэгговских решеток

Волоконно-оптические датчики зачастую основаны на волоконных брэгговских решетках. Основной принцип многих волоконно-оптических датчиков в том, что брэгговская длина волны (т.е. длина волны максимального отражения) в решетке зависит не только от периода брэгговской решетки, но также от температуры и механических напряжений. Для кварцевых волокон изменение брэгговской длины волны на единицу деформации примерно на 20% меньше, чем растяжение, так как есть влияние деформации на уменьшение показателя преломления. Температурные эффекты близки к ожидаемым только при тепловом расширении. Температурные и деформационные эффекты могут различаться при использовании различных технических средств (например, при использовании эталонной решетки, которая не подвержена деформации, или применении различных типов волоконных решеток) так, что оба значения регистрируются одновременно. Для регистрирования только деформации, разрешающая способность достигает нескольких ЦЕ (т.е. относительное изменение длин порядка) при этом точность имеет тот же порядок малости. Для динамических измерений (например, акустический явлений), достигается чувствительность большая чем 1 ме в 1 Hz полосы пропускания.

Распределенное зондирование. Другие оптоволоконные датчики не используют волоконные брэгговские решетки как сенсоры, используя в качестве сенсоров само волокно. Принцип зондирования в них основан на эффекте Рэлеевского рассеяния, Рамановского рассеяния или рассеяния Бриллюэна. Например, метод оптической рефлектометрии временной области, где положение области со слабым отражением может быть определено с использованием импульсного зондирующего сигнала. Этот метод используется также для определения других величин, например температуры или напряжения в зависимости от сдвига частоты Бриллюэна.

В некоторых случаях, измеряемая величина является средним значением по всей длине волокна. Этот метод характерен для некоторых температурных датчиков, а также для интерферометров, основанных на эффекте Саньяка, применяемых в качестве гироскопов. В других случаях измеряются позиционно-зависимые величины (например, температура или напряжение). Это называется распределенным зондированием.

Квази-распределенное зондирование

Определенные волокна могут содержать серию решеток сенсоров для мониторинга температуры и распределения деформации по всему волокну. Это называется квази-распределенным зондированием. Существуют различные технические решения для адресации только к одной решетке (и таким образом точного определения положения вдоль волокна)

В одном способе, называющимся мультиплексирование с разделением по всей длине волны (WDM), или оптической рефлектометрии в частотной области спектра (OFDR), решетки имеют немного различающуюся брэгговскую длину волны. Длина волны перестраиваемого лазера в блоке интегрирования может быть настроена на длину волны, принадлежащую к определенному типу решетки, а длина волны максимального отражения указывает на влияние деформации или, например температуры. Кроме того широкополосные источники света источники света (например суперлюминесцентные источники) могут быть использованы совместно со сканирующим длину волны фотодетектором (например на основе волоконного резонатора Фабри-Перо) или на основе CCD спектрометра. В любом случае, максимальное количество решеток, как правило, не превышает 10-50, что ограничено диапазоном настройки пропускной способности источника света и необходимой разностью длин волн в решётках волокна.

- Другой метод, называемый временным разделением каналов (TDM), использует идентичные слабоотражающие решетки, в которые посылаются короткие световые импульсы. Отражение от различных решеток регистрируют посредством времени их поступления. Временное разделение каналов (TDM) часто используют вместе с разделением по всей длине волны (WDM) для того, чтобы умножить число различных каналов в сотни или даже тысячи раз.

Другие подходы

Помимо выше описанных подходов, есть много альтернативных методов. Вот некоторые из них:

Волоконные брегговские решетки могут быть использованы в интерференционных оптических волокнах, где они используются только в качестве отражателей, и измеряют фазовый сдвиг, зависящий от расстояния между ними. Существуют лазерные брэгговские сенсоры, где датчик решетки располагается в последнем зеркале волоконно-оптического резонатора лазера, на основе волокна допированного эрбием, которое воспринимает свет накачки на длине волны 980 нм через волокно. Брэгговская длина волны, которая зависит, например, от температуры или механического напряжения, определяет длину волны генерации. Этот подход, который имеет много вариантов дальнейшего развития, обещает принести высокие результаты из-за узкой полосы спектральной области, которая характерная для волоконного лазера, и высокой чувствительности. В некоторых случаях, пары брэгговских решеток используются в качестве волокна для интерферометров Фабри-Перо, которые могут реагировать особо чувствительно на внешние воздействия. Интерферометр Фабри-Перо можно изготовить так же другим способом, например, используя переменный воздушный зазор в волокне. Длиннопериодные решетки особенно интересны для зондирования нескольких параметров одновременно (например, температуры и напряжения) или иначе, для альтернативного определения деформации при очень низкой чувствительности к температурным изменениям.

Области применения

Даже по прошествии нескольких лет развития, волоконно-оптические датчики до сих пор не пользуются большим коммерческим успехом, так как трудно заменить применяемые сейчас технологии, даже если они имеют определенные ограничения. Хотя в некоторых областях применения, волоконно-оптические датчики получают все большее признание, как технология с большим потенциалом интересных возможностей. Это, например, работа в жестких условиях, таких как зондирование в устройствах с высоким напряжением, или в СВЧ печах. Сенсоры на основе брэгговских решеток могут также быть использованы, например, для мониторинга условий, внутри крыльев самолетов, в ветровых турбинах, мостах, больших плотинах, нефтяных скважинах, и трубопроводах. Здания с встроенными волоконно-оптическими датчиками иногда называют «умными конструкциями», датчики в них осуществляют контроль деформации внутри различных частей конструкции, и получают данные об этих изменениях, например износе, вибрации и.т.д. Умные конструкции являются основной движущей силой для развития волоконно-оптических датчиков.

Размещено на Allbest.ru

...

Подобные документы

  • Фотоупругость - следствие зависимости диэлектрической проницаемости вещества от деформации. Волоконно-оптические сенсоры с применением фотоупругости. Фотоупругость и распределение напряжения. Волоконно-оптические датчики на основе эффекта фотоупругости.

    курсовая работа [3,0 M], добавлен 13.12.2010

  • Понятие потенциометрического эффекта и его применение в технике. Эквивалентная схема потенциометрического устройства. Измерение физических величин на основе потенциометрического эффекта. Датчики, построенные на основании потенциометрического эффекта.

    контрольная работа [674,6 K], добавлен 18.12.2010

  • Общая характеристика технологий, конструктивных особенностей, принципов работы и практического применения волоконно-оптических датчиков. Описание многомодовых датчиков поляризации. Классификация датчиков: датчики интенсивности, температуры, вращения.

    курсовая работа [1,2 M], добавлен 20.06.2012

  • Сущность понятия "измерение". Единицы физических величин и их системы. Воспроизведение единиц физических величин. Эталон единицы длины, массы, времени и частоты, силы тока, температуры и силы света. Стандарт ома на основе квантового эффекта Холла.

    реферат [329,6 K], добавлен 06.07.2014

  • Элементы теории погрешностей. Поправка на систематическую погрешность. Среднее арифметическое ряда независимых измерений напряжения. Измерение тока и напряжения. Относительная погрешность размаха импульсов. Применение электронно-лучевого осциллографа.

    контрольная работа [196,1 K], добавлен 17.01.2012

  • Электрические измерения неэлектрических величин. Датчики температуры, давления, скорости. Понятие и типы электроприводов. Устройства включения ультрафиолетовых облучателей. Магнитное поле и ионизация воздуха. Использование электрогидравлического эффекта.

    контрольная работа [271,9 K], добавлен 19.07.2011

  • Общая характеристика и сущность пьезорезонансного эффекта. Пьезорезонансные датчики и сенсоры. Способ регистрации ионизирующих излучений. Определение аммиака в воздухе. Погрешности, ограничивающие точность измерений на основе данного физического эффекта.

    курсовая работа [1,4 M], добавлен 26.03.2012

  • Эталоны и меры электрических величин. Назначение, устройство, режим работы и применение измерительного трансформатора тока. Образцовые катушки индуктивности. Измерение сопротивления изоляции электроустановок, находящихся под рабочим напряжением.

    контрольная работа [2,1 M], добавлен 05.11.2010

  • Системы физических величин и их единиц, роль их размера и значения, специфика классификации. Понятие о единстве измерений. Характеристика эталонов единиц физических величин. Передача размеров единиц величин: особенности системы и используемых методов.

    реферат [96,2 K], добавлен 02.12.2010

  • Средняя квадратическая погрешность результата измерения. Определение доверительного интервала. Систематическая погрешность измерения величины. Среднеквадратическое значение напряжения. Методика косвенных измерений. Применение цифровых частотомеров.

    контрольная работа [193,8 K], добавлен 30.11.2014

  • Понятие о физической величине как одно из общих в физике и метрологии. Единицы измерения физических величин. Нижний и верхний пределы измерений. Возможности и методы измерения физических величин. Реактивный, тензорезистивный и терморезистивный методы.

    контрольная работа [301,1 K], добавлен 18.11.2013

  • Датчики, преобразующие деформацию в электрический сигнал. Виды тензодатчиков. Принцип действия жидкостных манометров. Расчет индуктивного сопротивления. Психрометрический метод. Измерение влажности. Труба Вентури. Структурные составляющие ротаметра.

    реферат [2,1 M], добавлен 26.11.2012

  • Средства обеспечения единства измерений, исторические аспекты метрологии. Измерения механических величин. Определение вязкости, характеристика и внутреннее устройство приборов для ее измерения. Проведение контроля температуры и ее влияние на вязкость.

    курсовая работа [465,3 K], добавлен 12.12.2010

  • Суть физической величины, классификация и характеристики ее измерений. Статические и динамические измерения физических величин. Обработка результатов прямых, косвенных и совместных измерений, нормирование формы их представления и оценка неопределенности.

    курсовая работа [166,9 K], добавлен 12.03.2013

  • Устройство, назначение и принцип действия трансформаторов. Расчет электрических величин трансформатора и автотрансформатора. Определение основных размеров, расчет обмоток НН и ВН, параметров и напряжения короткого замыкания. Расчет системы охлаждения.

    реферат [1,6 M], добавлен 10.09.2012

  • Обработка ряда физических измерений: систематическая погрешность, доверительный интервал, наличие грубой погрешности (промаха). Косвенные измерения величин с математической зависимостью, температурных коэффициентов магнитоэлектрической системы.

    контрольная работа [125,1 K], добавлен 17.06.2012

  • Основы измерения физических величин и степени их символов. Сущность процесса измерения, классификация его методов. Метрическая система мер. Эталоны и единицы физических величин. Структура измерительных приборов. Представительность измеряемой величины.

    курсовая работа [199,1 K], добавлен 17.11.2010

  • Понятие и сущность физических величин, их качественное и количественное выражение. Характеристика основных типов шкал измерений: наименований, порядка, разностей (интервалов) и отношений, их признаки. Особенности логарифмических и биофизических шкал.

    реферат [206,2 K], добавлен 13.11.2013

  • Расчёт выпрямителя, трансформатора и элементов фильтра. Проверка условия размещения обмоток в окне магнитопроводе и реальных величин потерь напряжения во всех обмотках. Выбор типа магнитопровода и проверка его на соответствии величин холостого тока.

    курсовая работа [330,6 K], добавлен 15.12.2014

  • Классификация датчиков по принципу преобразования электрических и неэлектрических величин, виду выходного сигнала. Принцип действия тепловых датчиков, его основание на тепловых процессах. Термопреобразователи сопротивления, манометрические термометры.

    курсовая работа [1,4 M], добавлен 08.10.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.