Электрическое поле и его характеристика. Силовые воздействия на заряженные частицы. Электрические сепараторы, их классификация и принцип работы

Закон взаимодействия неподвижных точечных электрических зарядов. Электрическая сепарация - процесс разделения сухих частичек материалов в электрическом поле по величине и знаку заряда, в зависимости от их свойств, химического состава и размеров.

Рубрика Физика и энергетика
Вид контрольная работа
Язык русский
Дата добавления 27.04.2021
Размер файла 39,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

КОМИТЕТ ОБРАЗОВАНИЯ И НАУКИ КУРСКОЙ ОБЛАСТИ

ОБЛАСТНОЕ БЮДЖЕТНОЕ ПРОФЕССИОНАЛЬНОЕ

ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ «СВОБОДИНСКИЙ АГРАРНО-ТЕХНИЧЕСКИЙ ТЕХНИКУМ ИМ. К.К. РОКОССОВСКОГО»

Контрольная работа

специальность: 35.02.08. Электрификация и автоматизация сельского хозяйства предмет: МДК. 01.01 Монтаж, наладка и эксплуатация электрооборудования с/х организаций

Тема: Электрическое поле и его характеристика. Силовые воздействия на заряженные частицы. Электрические сепараторы, их классификация и принцип работы

Выполнил: студент 1го курса группа 24Эз

Шитиков Н.А.

Принял: преподаватель Николаенко Н.Н.

м. Свобода 2020г.

1. Электрическое поле и его характеристика. Силовые воздействия на заряженные частицы

Электрическим полем называют вид материи, посредством которой происходит взаимодействие электрических зарядов. Поле неподвижных зарядов называется электростатическим.

Свойства электрического поля:

* порождается электрическим зарядом;

* обнаруживается по действию на заряд;

* действует на заряды с некоторой силой.

Точечный заряд - модель заряженного тела, размерами которого можно пренебречь в условиях данной конкретной задачи ввиду малости размеров тела по сравнению с расстоянием от него до точки определения поля.

Пробный заряд - точечный заряд, который вносится в данное электростатическое поле для измерения его характеристик. Этот заряд должен быть достаточно мал, чтобы своим воздействием не нарушить положение зарядов - источников измеряемого поля и тем самым не изменить создаваемое ими поле.

Электрический диполь - система двух разноименных по знаку и одинаковых по величине точечных зарядов, находящихся на небольшом расстоянии один от другого. Вектор l, проведенный от отрицательного заряда к положительному, называется плечом диполя. Вектор p = q*l называется электрическим моментом диполя.

Характеристики электрического поля:

1. силовая характеристика - напряженность (Е) - это векторная физическая величина, численно равная отношению силы, действующей на заряд, помещенный в данную точку поля, к величине этого заряда:

Е = F/q; [E] = [ 1 Н/Кл ] = [1 В/м ]

Графически электрическое поле изображают с помощью силовых линий - это линии, касательные к которым в каждой точке пространства совпадают с направлением вектора напряженности.

Силовые линии электрического поля незамкнуты, они начинаются на положительных зарядах и заканчиваются на отрицательных.

2. энергетическая характеристика - потенциал j - это скалярная физическая величина, равная отношению потенциальной энергии заряда, необходимой для его перемещения из одной точки поля в другую, к величине этого заряда:

j = DЕр/q. [j] = [1 Дж/Кл ] =[1 В ].

Dj = j2 - j1 - изменение потенциала;

U = j1 - j2 - разность потенциалов (напряжение)

Физический смысл напряжения:

U = j1 - j2 = А/q -

- напряжение численно равно отношению работы по перемещению заряда из начальной точки поля в конечную к величине этого заряда.

U = 220 В в сети означает, что при перемещении заряда в 1 Кл из одной точки поля в другую, поле совершает работу в 220 Дж.

3. Индукция электрического поля. Напряженность электрического поля является силовой характеристикой поля и определяется не только зарядами, создающими поле, но зависит и от свойств среды, в которой находятся эти заряды.

Часто бывает удобно исследовать электрическое поле, рассматривая только заряды и их расположение в пространстве, не принимая во внимание свойств окружающей среды. Для этой цели используется векторная величина, которая называется электрической индукцией или электрическим смещением. Вектор электрической индукции D в однородной изотропной среде связан с вектором напряженности Е соотношением

.

Единицей измерения индукции электрического поля служит 1 Кл/ м2. Направление вектора электрического смещения совпадает с вектором Е. Графическое изображение электрического поля можно построить с помощью линий электрической индукции по тем же правилам, что и для линий напряженности

Графическое изображение электрических полей.

Электрические поля можно изображать графически: при помощи силовых линий или эквипотенциальных поверхностей (которые взаимно перпендикулярны между собой в каждой точке поля.

Силовыми линиями (линиями напряженности) называются линии, касательные в каждой точке к которым совпадают с направлением вектора напряженности в данной точке.

Эквипотенциальные поверхности - это поверхности равного потенциала.

Закон взаимодействия неподвижных точечных электрических зарядов установлен в 1785 г. Ш. Кулоном с помощью крутильных весов, подобных тем, которые (см. § 22) использовались Г. Кавендишем для определения гравитационной постоянной (ранее этот закон был открыт Г. Кавендишем, однако его работа оставалась неизвестной более 100 лет). Точечным называется заряд, сосредоточенный на теле, линейные размеры которого пренебрежимо малы по сравнению с расстоянием до других заряженных тел, с которыми он взаимодействует. Понятие точечного заряда, как и материальной точки, является физической абстракцией.

Закон Кулона: сила взаимодействия F между двумя неподвижными точечными зарядами, находящимися в вакууме, пропорциональна зарядам Q1 и Q2 и обратно пропорциональна квадрату расстояния r между ними:

где k -- коэффициент пропорциональности, зависящий от выбора системы единиц.

Сила F направлена по прямой, соединяющей взаимодействующие заряды, т. е. является центральной, и соответствует притяжению (F<0) в случае разноименных зарядов и отталкиванию (F>0) в случае одноименных зарядов. Эта сила называется кулоновской силой. В векторной форме закон Кулона имеет вид

(78.1)

где F12 -- сила, действующая на заряд Q1 со стороны заряда Q2, r12 -- радиус-вектор, соединяющий заряд Q2 с зарядом

Q1, r = |r12| (рис. 117).

На заряд Q2 со стороны заряда Q1 действует сила

F21 = -F12.

В СИ коэффициент пропорциональности равен

Тогда закон Кулона запишется в окончательном виде:

2. Электрические сепараторы, их классификация и принцип работы

электрический поле сепарация заряд

Электрическая сепарация -- процесс разделения сухих частичек полезного ископаемого или материалов в электрическом поле по величине или знаку заряда, созданного на частичках в зависимости от их электрических свойств, химического состава, размеров.

В зависимости от способа создания на частичках заряда и его передачи в процессе электрической сепарации различают:

· электростатическую,

· коронную,

· диэлектрическую,

· трибоадгезионную сепарацию.

При электростатической сепарации разделение проводится в электростатическом поле, частички заряжаются контактным или индукционным способом. Разделение по электропроводности производится при столкновении частичек с электродом (например, с заряженной поверхностью барабана; электропроводящие частички при этом получают одноимённый заряд и отталкиваются от барабана, а неэлектропроводящие не заряжаются). Создание разноимённых зарядов возможно при распылении, ударе или трении частичек о поверхность аппарата (трибоэлектростатическая сепарация). Выборочная поляризация компонентов смеси возможна при контакте нагретых частичек с холодной поверхностью заряженного барабана (пироэлектрическая сепарация).

Коронная сепарация проводится в поле коронного разряда, частички заряжаются ионизацией. Коронный разряд создаётся в воздухе между электродом в виде острия или дрота и заземлённым электродом, например, барабаном; при этом проводящие частички отдают свой заряд заземлённому электроду. Частички также могут заряжаться ионизацией, например, радиационной.

Диэлектрическая сепарация проводится за счёт пондеромоторных сил в электростатическом поле; при этом частички с разной диэлектрической проницаемостью движутся по разным траекториям.

Трибоадгезионная сепарация базируется на различиях в адгезии частичек после их электризации трением. Трение реализуется при транспортировании частичек по специальной подкладке, в кипящем слое при столкновении частичек друг с другом.

Возможны комбинированные процессы электрической сепарации: коронно-электростатический, коронно-магнитный и др. Относительно малая распространённость электрической сепарации объясняется высокой энергоёмкостью, необходимостью эксплуатации сложного высоковольтного оборудования (напряжением 20-60 кВ), а также требованием тщательного предварительного просушивания материала, что трудно обеспечить на обогатительных фабриках.

Размещено на Allbest.ru

...

Подобные документы

  • Изучение сути закона Кулона - закона взаимодействия двух неподвижных точечных заряженных тел или частиц. Электрическое поле и линии его напряженности. Проводники и изоляторы в электрическом поле. Поляризация изоляторов (диэлектриков), помещенных в поле.

    контрольная работа [27,3 K], добавлен 20.12.2012

  • Понятие электрического заряда, единица его измерения. Закон сохранения алгебраической суммы заряда в замкнутой системе. Перераспределение зарядов между телами при их электризации. Особенности взаимодействия зарядов. Основные свойства электрического поля.

    презентация [185,5 K], добавлен 07.02.2015

  • Изучение электромагнитного взаимодействия, свойств электрического заряда, электростатического поля. Расчет напряженности для системы распределенного и точечных зарядов. Анализ потока напряженности электрического поля. Теорема Гаусса в интегральной форме.

    курсовая работа [99,5 K], добавлен 25.04.2010

  • Электрический заряд. Взаимодействие заряженных тел. Закон Кулона. Закон сохранения заряда. Електрическое поле. Напряженность электрического поля. Электрическое поле точечного заряда. Принцип суперпозиции полей. Электромагнитная индукция. Магнитный поток.

    учебное пособие [72,5 K], добавлен 06.02.2009

  • Закон сохранения электрического заряда. Взаимодействие электрических зарядов в вакууме, закон Кулона. Сложение электростатических полей, принцип суперпозиции. Электростатическое поле диполя, взаимодействие диполей. Напряженность электростатического поля.

    презентация [3,2 M], добавлен 13.02.2016

  • Потенциальная энергия заряда в однородном поле и потенциальная энергия взаимодействия точечных зарядов. Понятие разности потенциалов. Связь напряжения и напряженности. Принцип суперпозиции для потенциалов. Понятие эквипотенциальных поверхностей.

    контрольная работа [840,9 K], добавлен 06.10.2013

  • Электромагнитное поле как особая форма материи, посредством которой осуществляется взаимодействие между электрически заряженными частицами. Электрическое поле покоящегося заряда. Преобразование Лоренца. Поле релятивистского и нерелятивистского заряда.

    контрольная работа [380,0 K], добавлен 23.12.2012

  • Элементарный электрический заряд. Закон сохранения электрического заряда. Напряженность электрического поля. Напряженность поля точечного заряда. Линии напряженности силовые линии. Энергия взаимодействия системы зарядов. Циркуляция напряженности поля.

    презентация [1,1 M], добавлен 23.10.2013

  • Определение начальной энергии частицы фосфора, длины стороны квадратной пластины, заряда пластины и энергии электрического поля конденсатора. Построение зависимости координаты частицы от ее положения, энергии частицы от времени полета в конденсаторе.

    задача [224,6 K], добавлен 10.10.2015

  • Вихревое электрическое поле. Интегральная форма уравнений Максвелла. Единая теория электрических и магнитных явлений. Понятие о токе смещения. Постулат Максвелла, выражающий закон создания электрических полей действием зарядов в произвольных средах.

    презентация [361,3 K], добавлен 24.09.2013

  • Статическое электричество, изобретение первого генератора. Взаимодействие заряженных тел. Принцип действия электроскопа. Электрическое поле как одна из составляющих электромагнитного поля. Движение свободных электронов. Элементы электрической цепи.

    презентация [3,1 M], добавлен 22.05.2012

  • Понятие и закономерности существования электрического поля, происходящие в нем изменения и процессы. Потенциальная энергия заряда в однородном поле, взаимодействия точечных зарядов. Принцип суперпозиции для потенциалов. Связь напряжения и напряженности.

    курсовая работа [549,9 K], добавлен 23.09.2013

  • Исследование особенностей движения заряженной частицы в однородном магнитном поле. Установление функциональной зависимости радиуса траектории от свойств частицы и поля. Определение угловой скорости движения заряженной частицы по круговой траектории.

    лабораторная работа [1,5 M], добавлен 26.10.2014

  • Расчет емкости конденсатора, расстояния между его пластинами, разности потенциалов, энергии и начальной скорости заряженной частицы, заряда пластины. График зависимости тангенциального ускорения иона от времени полета между обкладками конденсатора.

    контрольная работа [94,6 K], добавлен 09.11.2013

  • Ток и плотность тока проводимости. Закон Ома в дифференциальной форме. Стороннее электрическое поле. Законы Кирхгофа в дифференциальной форме. Уравнение Лапласа для электрического поля в проводящей среде. Дифференциальная форма закона Джоуля-Ленца.

    презентация [512,3 K], добавлен 13.08.2013

  • Движение материальной точки в поле тяжести земли. Угловое ускорение. Скорость движения тел. Закон Кулона. Полная энергия тела. Сила, действующая на заряд. Поверхностная плотность заряда. Электростатическое поле. Приращение потенциальной энергии заряда.

    контрольная работа [378,0 K], добавлен 10.03.2009

  • Ознакомление с особенностями физического электрического поля. Расчет силы, с которой электрическое поле действует в данной точке на положительный единичный заряд (напряженности в данной точке), а также потенциала, создаваемого системой точечных зарядов.

    курсовая работа [1,6 M], добавлен 04.01.2015

  • Кинематика материальной точки. Законы Ньютона и законы сохранения. Постоянное электрическое поле. Теорема Гаусса. Потенциал - энергетическая характеристика поля. Электроемкость уединенного проводника. Электрическое поле в диэлектрике. Закон Ома.

    курс лекций [1021,2 K], добавлен 09.02.2010

  • Четыре типа взаимодействий: гравитационное, электромагнитное, ядерное (сильное), слабое. Фундаментальные свойства зарядов. Закон Кулона. Напряженность поля. Теорема Гаусса. Дифференциальная формулировка закона Кулона. Объемная плотность заряда шара.

    реферат [87,3 K], добавлен 21.10.2013

  • Электрический заряд и закон его сохранения в физике, определение напряженности электрического поля. Поведение проводников и диэлектриков в электрическом поле. Свойства магнитного поля, движение заряда в нем. Ядерная модель атома и реакции с его участием.

    контрольная работа [5,6 M], добавлен 14.12.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.