Основы электротехники и электронной техники

Ознакомление с понятием релейной защиты. Характеристика измерительных приборов систем автоматики. Изучение особенностей электрических машин переменного тока. Определение силы тока по законам Кирхгофа. Анализ схемы параллельного соединения проводников.

Рубрика Физика и энергетика
Вид шпаргалка
Язык русский
Дата добавления 08.10.2021
Размер файла 574,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Релейная защита

Релейная защита -- комплекс автоматических устройств, предназначенных для быстрого (при повреждениях) выявления и отделения от электроэнергетической системы повреждённых элементов этой электроэнергетической системы в аварийных ситуациях с целью обеспечения нормальной работы всей системы. Действия средств релейной защиты организованы по принципу непрерывной оценки технического состояния отдельных контролируемых элементов электроэнергетических систем. Релейная защита (РЗ) осуществляет непрерывный контроль состояния всех элементов электроэнергетической системы и реагирует на возникновение повреждений и ненормальных режимов. При возникновении повреждений РЗ должна выявить повреждённый участок и отключить его от ЭЭС, воздействуя на специальные силовые выключатели, предназначенные для размыкания токов повреждения (короткого замыкания).

2. Измерительные приборы систем автоматики

Функцией измерительного элемента является измерение регулируемой или какой-либо другой величины, дающей необходимую для управления информацию. Одновременно измерительный элемент осуществляет преобразование измеренной величины в величину другого вида, удобную для передачи сигналов в данной автоматической системе. В большинстве систем автоматического управления для передачи и обработки сигналов, несущих информацию об управляемом процессе, используются электрические величины, т.е. большинство датчиков автоматически преобразуют измеряемые величины любой физической природы (скорость, давление, перемещение и др.) в электрические.

Измеряемая величина является входной величиной датчика.

Выходная электрическая величина может представлять собой один из параметров электрической цепи (/?, L, С) или ЭДС.

Датчики, преобразующие входную величину в ЭДС, называются генераторными, а датчики, преобразующие входную величину в изменение параметра электрической цепи, -- параметрическими.

По характеру представления выходной величины датчики подразделяются на измерительные и релейные. Измерительные датчики имеют линейную статическую характеристику и выдают значение измеряемой величины в непрерывной (аналоговой) форме. Релейные датчики имеют релейную характеристику и выдают дискретный по уровню сигнал, соответствующий некоторому предельному значению измеряемой величины.

3. Передача и распределение электрической энергии

Электроэнергетической системой называется электрическая часть энергосистемы и питающиеся от нее приемники электрической энергии, объединенные общностью процесса производства, передачи и потребления электроэнергии.

Электроэнергетической сетью называется совокупность электроустановок для передачи и распределения электрической энергии, состоящая из подстанций, распределительных устройств, токопроводов, воздушных и кабельных ЛЭП.

Подстанцией называется электроустановка, служащая для преобразования и распределения электроэнергии.

Распределительным устройством называется электроустановка, служащая для приема и распределения электроэнергии и содержащая коммутационные аппараты, измерительные приборы и др.

Воздушная ЛЭП - устройство для передачи электроэнергии по проводам, расположенным на открытом воздухе и прикрепленным с помощью изоляторов и арматуры к опорам или кронштейнам и стойкам на инженерных сооружениях.

Главный путь уменьшения потерь мощности в проводах ЛЭП -- это повышение напряжения в линии передачи. Причем чем длиннее линия электропередачи, тем выгоднее использовать более высокое напряжение.

Так, например, в городах электроэнергию при напряжении 220 В передают на расстояние не более 200 м, а при напряжении 6 кВ -- на расстояние до 5 км. В высоковольтной ЛЭП Волжская ГЭС -- Москва используют напряжение 500 кВ.

Между тем генераторы, устанавливаемые на электростанциях, рассчитаны на напряжение, не превышающее 16-20 кВ. Более высокое напряжение потребовало бы принятия сложных специальных мер для изоляции обмоток и других частей генератора.

Поэтому при передаче энергии от мощных электростанций электрический ток по шинам поступает на трансформаторные повышающие подстанции. Они состоят из силовых трансформаторов, располагаемых обычно на открытом воздухе недалеко от генераторов, распределительного устройства и щита управления. После повышения напряжения на подстанции до 35, 110, 220, 500, 750 кВ энергия направляется в район потребителя на понижающие подстанции, где напряжение понижается до 6-10 кВ.

Высоковольтные линии электропередачи (ЛЭП) -- это в основном "воздушные" линии. Их делают из голых алюминиевых, сталеалюминиевых или медных проводов, укрепленных на гирляндах изоляторов, которые подвешиваются на металлических и железобетонных опорах. Расстояние между проводами выбирается с таким расчетом, чтобы была исключена возможность пробоя воздушного промежутка между проводами при раскачивании их ветром. По вершинам опор прокладываются заземленные стальные оцинкованные тросы. Они предназначены для предохранения линии от атмосферного электричества. Трос, расположенный над проводами, воспринимает на себя атмосферные электрические разряды и отводит электрические заряды в землю.

С понижающих подстанций по сети с напряжением 6-10 кВ энергия частично направляется к высоковольтным потребителям, частично на понижающие подстанции, где напряжение понижается до 220-380 В. Далее по сети с напряжением 220 и 380 В она подводится к потребителям.

На рисунке 1 представлена одна из возможных схем передачи и распределения электроэнергии от двух соединенных между собой электростанций (А и Б). Схема показана однолинейной, т. е. все три фазы линии передачи изображены одной линией. Часто понижение напряжения происходит в несколько этапов. На каждом этапе напряжение становится меньше, а охватываемая электрической сетью территория - шире.

Рис. 1

При очень высоком напряжении между проводами начинается коронный разряд, приводящий к потерям энергии. Потери энергии на разряд могут превысить потери на нагревание. Кроме того, при высоком напряжении резко возрастают требования к изолирующим приспособлениям ЛЭП, что усложняет и удорожает ее. Все это сдерживает строительство ЛЭП.

4. Электрические машины переменного тока

Машины переменного тока бывают двух видов. Это синхронные машины и асинхронные. У синхронных машин скорость вращения ротора строго зависит от частоты переменного тока. Можно сказать скорость вращения "синхронна" с частотой тока. Не трудно догадаться, что у асинхронных машин частота вращения в общем случае зависит от нагрузки на валу, а не от частоты питающего тока. Кроме деления на синхронные и асинхронные электрические машины еще делятся по назначению. Это могут быть генераторы. То есть такая машина, которая преобразует механическую энергию вращения в переменный электрический ток. Машина, которая преобразует электрическую энергию в механическую называется двигателем. Также существует еще один класс электрических машин. Они преобразуют электрическую энергию, тоже в электрическую, но другой частоты или напряжения. Синхронной машиной переменного тока называют такую машину, в которой: основное магнитное поле то есть поле статора создается постоянным током. В частном случае это может быть даже постоянный магнит. А вращение ротора происходит с частотой изменения тока.

Формула 1 -- зависимость частоты вращения ротора синхронной машины от частоты переменного тока. где n это частота, с которой вращается ротор, измеряется в оборотах в минуту. То есть, сколько полных оборотов совершит ротор за одну минуту. f частота питающего переменного тока p количество пар полюсов у магнитной системы машины

В настоящее время асинхронные машины используются в основном в режиме двигателя. Машины мощностью больше 0.5 кВт обычно выполняются трёхфазными, а при меньшей мощности - однофазными.

Впервые конструкция трёхфазного асинхронного двигателя была разработана, создана и опробована нашим русским инженером М. О. Доливо-Добровольским в 1889-91 годах. Демонстрация первых двигателей состоялась на Международной электротехнической выставке во Франкфурте на Майне в сентябре 1891 года. На выставке было представлено три трёхфазных двигателя разной мощности. Самый мощный из них имел мощность 1.5 кВт и использовался для приведения во вращение генератора постоянного тока. Конструкция асинхронного двигателя, предложенная Доливо-Добровольским, оказалась очень удачной и является основным видом конструкции этих двигателей до настоящего времени.

За прошедшие годы асинхронные двигатели нашли очень широкое применение в различных отраслях промышленности и сельского хозяйства. Их используют в электроприводе металлорежущих станков, подъёмно-транспортных машин, транспортёров, насосов, вентиляторов. Маломощные двигатели используются в устройствах автоматики.

Широкое применение асинхронных двигателей объясняется их достоинствами по сравнению с другими двигателями: высокая надёжность, возможность работы непосредственно от сети переменного тока, простота обслуживания. Неподвижная часть машины называется статор, подвижная - ротор. Сердечник статора набирается из листовой электротехнической стали и запрессовывается в станину. На рис. 2. показан сердечник статора в сборе. Станина (1) выполняется литой, из немагнитного материала. Чаще всего станину выполняют из чугуна или алюминия. На внутренней поверхности листов (2), из которых выполняется сердечник статора, имеются пазы, в которые закладывается трёхфазная обмотка (3). Обмотка статора выполняется в основном из изолированного медного провода круглого или прямоугольного сечения, реже - из алюминия.

Обмотка статора состоит из трёх отдельных частей, называемых фазами. Начала фаз обозначаются буквами c1,c2,c3, концы - c4,c5,c6.

Рис. 2

Начала и концы фаз выведены на клеммник, закреплённый на станине. Обмотка статора может быть соединена по схеме звезда или треугольник. Выбор схемы соединения обмотки статора зависит от линейного напряжения сети и паспортных данных двигателя. В паспорте трёхфазного двигателя задаются линейные напряжения сети и схема соединения обмотки статора. Например, 660/380, Y/?. Данный двигатель можно включать в сеть с Uл=660В по схеме звезда или в сеть с Uл=380В - по схеме треугольник.

Основное назначение обмотки статора - создание в машине вращающего магнитного поля.

Рис. 3

Сердечник ротора набирается из листов электротехнической стали, на внешней стороне которых имеются пазы, в которые закладывается обмотка ротора. Обмотка ротора бывает двух видов:короткозамкнутая и фазная. Соответственно этому асинхронные двигатели бывают с короткозамкнутым ротором и фазным ротором (с контактными кольцами).

Рис. 4

Короткозамкнутая обмотка ротора состоит из стержней 3, которые закладываются в пазы сердечника ротора. С торцов эти стержни замыкаются торцевыми кольцами 4. Такая обмотка напоминает “беличье колесо” и называют её типа “беличьей клетки”. Двигатель с короткозамкнутым ротором не имеет подвижных контактов. За счёт этого такие двигатели обладают высокой надёжностью. Обмотка ротора выполняется из меди, алюминия, латуни и других материалов.

Доливо-Добровольский первым создал двигатель с короткозамкнутым ротором и исследовал его свойства. Он выяснил, что у таких двигателей есть очень серьёзный недостаток - ограниченный пусковой момент. Доливо-Добровольский назвал причину этого недостатка - сильно закороченный ротор. Им же была предложена конструкция двигателя с фазным ротором.

Однафазные асинхронные двигатели.

Асинхронный двигатель является простейшей из электрических машин. Как и любая электрическая машина, он имеет две основные части: статор и ротор.

Статор (рис. 5) состоит из чугунной станины 1, в которой закреплен магнитопровод 2 в виде полого цилиндра. Между станиной и сердечником обычно оставляют зазор, через который проходит охлаждающий воздух. Для уменьшения потерь на вихревые токи магнитопровод набирают из тонких (0,5 мм) листов электротехнической стали, изолированных друг от друга лаком.

Рис. 5. Конструкция статора асинхронного двигателя: 1 -- станина; 2 -- сердечник; 3 -- обмотка; 4 -- лапа; 5 -- прокладка

В пазы, вырезанные по внутренней окружности статора, укладывают обмотку 3. У двухполюсной машины обмотка статора состоит из трех катушек, сдвинутых на углы 120°, у четырехполюсной -- из шести катушек, сдвинутых на 60°, у шестиполюсной -- из девяти катушек и т. д. Обмотку в пазах статора закрепляют клиньями.

Ротор также набирают из тонких листов электротехнической стали. В пазах ротора размещают обмотку, которая может быть короткозамкнутой или фазной (рис. 6). Короткозамкнутая обмотка типа

Рис. 6. Общий вид ротора асинхронного двигателя с коротко-замкнутой (а) и фазной (б) обмотками «беличья клетка» изображена на рис. 7

Она состоит из толстых проводящих стержней (медь, алюминий), соединенных по торцам медными или алюминиевыми кольцами. Короткозамкнутая обмотка не изолируется от ротора. Иногда ее изготовляют заливкой расплавленного алюминия в пазы ротора.

Контактные кольца 1, изготовленные из латуни или меди, укрепляют на валу двигателя с помощью изолирующих прокладок. Щеткодержатель с угольными или медно-графитовыми щетками 2 крепят на подшипниковом щите.

Рис. 7. Общий вид коротко-замкнутой обмотки типа «беличья клетка»

Рис. 8. Схема соединения фазной обмотки ротора с регулировочными реостатами: 1 --'контактные кольца, 2-- щетки; 3 -- реостаты

Общий вид асинхронного двигателя показан на рис. 9.

Рис. 9. Общий вид асинхронного двигателя с короткозамкнутой (а) и фазной (б) обмотками ротора

Принцип действия асинхронного двигателя.

Принцип действия асинхронного двигателя основан на использовании вращающегося магнитного поля и основных законов электротехники.

При включении двигателя в сеть трехфазного тока в статоре образуется вращающееся магнитное поле, силовые линии которого пересекают стержни или катушки обмотки роторо. При этом, согласно закону электромагнитной индукции, в обмотке ротора индукциреутся ЭДС, пропорциональная частоте пересечения силовых линий. Под действием индуцированной ЭДС в короткозамкнутом роторе возникают значительные токи.

В соответствии с законом Ампера на проводники с током, находящиеся в магнитном поле, действуют механические силы, которые по принципу Ленца стремятся устранить причину, вызывающую индуцированный ток, т. е. пересечение стержней обмотки ротора силовыми линиями вращающегося поля. Таким образом, возникшие механические силы будут раскручивать ротор в направлении вращения поля, уменьшая скорость пересечения стержней обмотки ротора магнитными силовыми линиями.

Достичь частоты вращения поля в реальных условиях ротор не может, так как тогда стержни его обмотки оказались бы неподвижными относительно магнитных силовых линий и индуцированные токи в обмотке ротора исчезли бы. Поэтому ротор вращается с частотой, меньшей частоты вращения поля, т. е. несинхронно с полем, или асинхронно.

Если силы, тормозящие вращение ротора, невелики, то ротор достигает частоты, близкой к частоте вращения поля. При увеличении механической нагрузки на валу двигателя частота вращения ротора уменьшается, токи в обмотке ротора увеличиваются, что приводит к увеличению вращающего момента двигателя. При некоторой частоте вращения ротора устанавливается равновесие между тормозным и вращающим моментами.

Синхронный двигатель

Устройство статора синхронного двигателя аналогично устройству статора асинхронного двигателя. Ротор синхронного двигателя представляет собой электромагнит или постоянный магнит (рис. 10).

Принцип работы синхронного двигателя поясняется рис. 11. Внутри магнита N1 S1 помещен магнит NS. Если магнит N1 S1 вращать, то он потянет за собой магнит NS. В стационарном режиме частоты вращения обоих магнитов одинаковы.

К валу магнита NS можно приложить механическую нагрузку. Чем больше эта нагрузка, тем больше угол отставания оси магнита NS от оси магнита NiSi. При некоторой нагрузке силы притяжения между магнитами будут преодолены и ротор остановится.

В реальном двигателе поле магнита N1 S1 заменено вращающимся магнитным полем статора; при этом ротор либо вращается синхронно с магнитным полем статора, отставая на угол , либо останавливается (выпадает изсинхронизма) при перегрузке. Таким образом, независимо от нагрузки ротор всегда вращается с постоянной частотой, равной частоте вращения магнитного поля статора:

Рис. 10. Схематическое изображение

Рис. 11. К пояснению принципа синхронного двигателя работы синхронного двигателя

Постоянство частоты вращения -- важное достоинство синхронного двигателя. Строгое постоянство частоты вращения требуется во многих областях техники, например при записи и воспроизведении звука. Недостаток синхронного двигателя -- трудность пуска: для пуска нужно раскрутить ротор в сторону вращения поля статора. Для этого чаще всего применяют специальную короткозамкнутую обмотку, вделанную в ротор. В момент пуска двигатель работает как асинхронный. Когда частота вращения ротора приближается к частоте вращения поля статора, ротор входит в синхронизм и двигатель работает как синхронный. Короткозамкнутая обмотка при этом оказывается обесточенной, так как частота вращения ротора равна частоте вращения поля статора и стержни обмотки ротора не пересекаются магнитными силовыми линиями.

В настоящее время существует тенденция замены на подвижных объектах (корабли, самолеты, автомобили) электрических цепей постоянного тока цепями переменного тока повышенной частоты (200, 400 Гц и выше). Возможность использования бесколлекторных машин переменного тока, трансформаторов и магнитных усилителей позволяет повысить надежность работы цепи, а также уменьшить габариты и массу машин и аппаратов.

При оборудовании объекта сетью переменного тока широкое применение находит электропривод на переменном токе. Разработаны схемы с асинхронными и синхронными двигателями, которые позволяют выполнить все операции, осуществляемые ранее двигателями постоянного тока.

Преимущества асинхронных двигателей особенно заметны тогда, когда по условиям работы привода нет необходимости в плавном регулировании частоты вращения в широких пределах и больших пусковых моментах (привод насосов, вентиляторов и др.).

Синхронные двигатели особенно удобны для привода роторов гироскопов. В тех случаях, когда гироскоп используют для особо точных измерений (например, в баллистических ракетах), приводом ротора гироскопа служит синхронный двигатель. При этом частота вращения ротора зависит только от конструкции двигателя и частоты питающего тока, которую можно стабилизировать с очень высокой степенью точности.

Синхронный генератор

Ротор синхронных машин вращается синхронно с вращающимся магнитным полем (отсюда их название). Поскольку частоты вращения ротора и магнитного поля одинаковы, в обмотке ротора не индуцируются токи. Поэтому обмотка ротора получает питание от источника постоянного тока.

Устройство статора синхронной машины (рис. 12) практически не отличается от устройства статораасинхронной машины.

Рис. 12. Общий вид статора синхронного генератора.

Рис. 13. Общий вид неявнополюсного ротора синхронного генератора.

Роторы синхронных генераторов могут быть явнополюсными (рис. 13) и неявнополюсными (рис. 14). В первом случае синхронные генераторы приводятся в действие тихоходными турбинами гидроэлектростанций, во втором -- паровыми или газовыми турбинами теплоэлектростанций.

Рис. 14. Общий вид неявнополюсного ротора синхронного генератора

Используют различные способы возбуждения синхронных генераторов. Широкое распространение получил синхронный генератор с машинным возбудителем, представляющим собой генератор постоянного тока, расположенный на одном валу с синхронным генератором. Машинный возбудитель приводится в действие от того же первичного двигателя, что и синхронный генератор. Выходные зажимы возбудителя через щетки и кольца подсоединены к обмотке ротора синхронного генератора. Напряжение синхронного генератора можно регулировать реостатом в цепи обмотки возбуждения возбудителя, что удобно и энергетически выгодно, так как в этой обмотке протекают сравнительно небольшие токи.

Находят также применение генераторы с самовозбуждением через полупроводниковые или механические выпрямители.

Из характеристик синхронного генератора наибольший практический интерес представляют внешние характеристики, выражающие зависимость напряжения на зажимах генератора от тока нагрузки при неизменных значениях тока возбуждения, частоты и коэффициента мощности.

5. Определение силы тока по законам Кирхгофа

1 закон Кирхгофа

В цепях, состоящих из последовательно соединенных источника и приемника энергии, соотношения между током, сопротивлением и ЭДС всей цепи или на каком-либо участке цепи определяются законом Ома. Но на практике в цепях токи от какой-либо точки идут по разным путям (Рис. 15). Поэтому становиться актуальным введение новых правил для проведения расчетов электрических цепей.

Рис. 15. Схема параллельного соединения проводников.

Так, при параллельном соединении проводников начала всех проводников соединены в одну точку, а концы проводников - в другую точку. Начало цепи присоединяется к одному полюсу источника напряжения, а конец цепи - к другому полюсу.

Из рисунка видно, что при параллельном соединении проводников для прохождения тока имеется несколько путей. Ток, протекая к точке разветвления А, растекается далее по трем сопротивлениям и равен сумме токов, выходящих из этой точки: I = I1 + I2 + I3.

Согласно первому правилу Кирхгофа алгебраическая сумма токов ветвей, сходящихся в каждом узле любой цепи равна нулю. При этом направленный к узлу ток принято считать положительным, а направленный от узла - отрицательным. релейный электрический ток кирхгоф

Запишем первый закон Кирхгофа в комплексной форме:

Первый закон Кирхгофа гласит, что алгебраическая сумма токов, направленных к узлу, равна сумме направленных от узла. То есть, сколько тока втекает в узел, столько же вытекает (как следствие закона сохранения электрического заряда). Алгебраическая сумма - это сумма, в которую входят слагаемые со знаком плюс и со знаком минус.

Рис. 16. i_1+i_4=i_2+i_3.

Рассмотрим применение 1 закона Кирхгофа на следующем примере:

Рис. 17. I1 - это полный ток, текущий к узлу А, а I2 и I3 -- токи, вытекающие из узла А.

Тогда мы можем записать: I1 = I2 + I3.

Аналогично для узла B: I3 = I4 + I5.

Пусть, что I4 = 5 А и I5 = 1 А, получим: I3 = 5 + 1 = 6 (А).

Пусть I2 = 10 А, получим: I1 = I2 + I3 = 10 + 6 = 16 (А).

Запишем подобное соотношение для узла C: I6 = I4 + I5 = 5 + 1 = 6 А.

А для узла D: I1 = I2 + I6 = 10 + 6 = 16 А

Таким образом мы наглядно видим справедливость первого закона Кирхгофа.

2 закон Кирхгофа

При расчете электрических цепей в большинстве случаев нам встречаются цепи, образующие замкнутые контуры. В состав таких контуров, кроме сопротивлений, могут входить ЭДС (источники напряжений). На рисунке 4 представлен участок такой электрической цепи. Произвольно выбираем положительные направления токов. Обходим контур от точки А в произвольном направлении (выберем по часовой стрелке). Рассмотрим участок АБ: происходит падение потенциала (ток идет от точки с высшим потенциалом к точке с низшим потенциалом).

Рис. 18

На участке

АБ: цА + E1 - I1r1 = цБ.

БВ: цБ - E2 - I2r2 = цВ.

ВГ: цВ - I3r3 + E3 = цГ.

ГА: цГ - I4r4 = цА.

Складывая данные уравнения, получим

цА + E1 - I1r1 + цБ - E2 - I2r2 + цВ - I3r3 + E3 + цГ - I4r4 = цБ + цВ + цГ + цА

или: E1 - I1r1 - E2 - I2r2 - I3r3 + E3 - I4r4 = 0.

Откуда имеем следующее: E1 - E2 + E3 = I1r1 + I2 r2 + I3r3 + I4r4.

Таким образом, получаем формулу второго закона Кирхгофа в комплексной форме:

Уравнение для постоянных напряжений

Уравнение для переменных напряжение -

Теперь можем сформулировать определение 2 (второго) закона Кирхгофа:

Второй закон Кирхгофа гласит, что алгебраическая сумма напряжений на резистивных элементах замкнутого контура, равна алгебраической сумме ЭДС, входящих в этот контур. В случае отсутствия источников ЭДС, суммарное напряжение равно нулю.

Рис. 19

Иначе формулируя второе правило Кирхгофа, можно сказать: при полном обходе контура потенциал, изменяясь, возвращается к начальному значению.

При составлении уравнения напряжений для контура нужно выбрать положительное направление обхода контура, при этом падение напряжения на ветви считается положительным, если направление обхода данной ветви совпадает с ранее выбранным направлением тока ветви, в противном случае - отрицательным.

Определить знак можно по алгоритму:

1. выбираем направление обхода контура (по или против часовой стрелки);

2. произвольно выбираем направления токов через элементы цепи;

3. расставляем знаки для напряжений и ЭДС по правилам (ЭДС, создающие ток в контуре, направление которого совпадает с направление обхода контура со знаком «+», иначе - «-»; напряжения, падающие на элементах цепи, если ток, протекающий через эти элементы совпадает по направлению с обходом контура, со знаком «+», в противном случае - «-»).

Закон Ома является частным случаем второго правила для цепи.

Приведем пример применения второго правила Кирхгофа:

Рис. 20

По данной электрической цепи (Рис. 20) необходимо найти ее ток. Произвольно берем положительное направление тока. Выберем направление обхода по часовой стрелке, запишем уравнение 2 закона Кирхгофа:

Знак минус означает, что выбранное нами направление тока противоположно его действительному направлению.

Размещено на Allbest.ru

...

Подобные документы

  • Расчет сложной электрической цепи постоянного тока. Определение тока в ветвях по законам Кирхгофа. Суть метода расчета напряжения эквивалентного генератора. Проверка выполнения баланса мощностей. Расчет однофазной электрической цепи переменного тока.

    контрольная работа [542,1 K], добавлен 25.04.2012

  • Условия, необходимые для существования электрического тока. Достоинства и недостатки параллельного соединения проводников. Единица силы тока. Работа электрического тока в замкнутой электрической цепи. Закон Ома для участка цепи. Химическое действие тока.

    презентация [398,2 K], добавлен 07.02.2015

  • Схемы линейных электрических цепей постоянного тока. Определение и составление необходимого числа уравнений по законам Кирхгофа для определения токов во всех ветвях. Определение тока в первой ветви методом эквивалентного генератора, результаты расчетов.

    реферат [1,3 M], добавлен 15.12.2009

  • Исследование основных особенностей электромагнитных процессов в цепях переменного тока. Характеристика электрических однофазных цепей синусоидального тока. Расчет сложной электрической цепи постоянного тока. Составление полной системы уравнений Кирхгофа.

    реферат [122,8 K], добавлен 27.07.2013

  • Особенности и отличительные признаки параллельного и последовательного соединения резисторов, их практическая демонстрация, схематическое обоснование. Порядок сборки схемы соединения резисторов, измерение силы тока в цепи и падения напряжения на участке.

    лабораторная работа [29,5 K], добавлен 12.01.2010

  • Техническое описание системы питания потребителей от тяговых подстанций систем электроснабжения постоянного тока 3,3 кВ и переменного тока 25 кВ их преимущества и недостатки. Схемы электроснабжения устройств автоблокировки и электрических железных дорог.

    контрольная работа [1,0 M], добавлен 13.10.2010

  • Анализ состояния цепей постоянного тока. Расчет параметров линейных и нелинейных электрических цепей постоянного тока графическим методом. Разработка схемы и расчет ряда показателей однофазных и трехфазных линейных электрических цепей переменного тока.

    курсовая работа [408,6 K], добавлен 13.02.2015

  • Расчет электрических цепей переменного тока и нелинейных электрических цепей переменного тока. Решение однофазных и трехфазных линейных цепей переменного тока. Исследование переходных процессов в электрических цепях. Способы энерго- и материалосбережения.

    курсовая работа [510,7 K], добавлен 13.01.2016

  • Основные элементы и характеристики электрических цепей постоянного тока. Методы расчета электрических цепей. Схемы замещения источников энергии. Расчет сложных электрических цепей на основании законов Кирхгофа. Определение мощности источника тока.

    презентация [485,2 K], добавлен 17.04.2019

  • Расчет линейной электрической цепи постоянного тока. Уравнения по законам Кирхгофа для определения токов в ветвях. Уравнение баланса мощностей и проверка его подстановкой числовых значений. Расчет электрической цепи однофазного переменного тока.

    контрольная работа [154,6 K], добавлен 31.08.2012

  • Выбор релейной защиты и автоматики для линий 6кВ и 110кв. Газовая защита трансформатора. Расчёт тока срабатывания защиты по стороне 6 кВ. Выбор трансформатора тока. Расчёт тока срабатывания реле и тока отсечки. Параметры коммутационной аппаратуры.

    курсовая работа [634,8 K], добавлен 20.12.2012

  • Выбор электрической аппаратуры, токоведущих частей и изоляторов, измерительных трансформаторов, оперативного тока. Расчет собственных нужд подстанции, токов короткого замыкания, установок релейной защиты. Автоматизированные системы управления процессами.

    дипломная работа [1,4 M], добавлен 11.01.2016

  • Анализ электрического состояния цепей постоянного или переменного тока. Системы уравнений для определения токов во всех ветвях схемы на основании законов Кирхгофа. Исследование переходных процессов в электрических цепях. Расчет реактивных сопротивлений.

    курсовая работа [145,0 K], добавлен 16.04.2009

  • Составление однолинейной расчетной схемы. Проверка на электрическую удаленность. Определение токов короткого замыкания на шинах. Высоковольтные выключатели переменного тока. Выбор измерительных трансформаторов и зарядно-подзарядного устройства.

    курсовая работа [753,4 K], добавлен 17.08.2013

  • Исследование процессов, происходящих в простейших электрических цепях переменного тока, содержащих последовательное соединение активных и индуктивных сопротивлений. Измерение общей силы тока, активной и реактивной мощности; векторная диаграмма напряжений.

    лабораторная работа [79,2 K], добавлен 11.05.2013

  • Характеристика электрического поля как вида материи. Исследование особенностей проводников, полупроводников и диэлектриков. Движение тока в электрической цепи. Изучение законов Ома, Джоуля-Ленца и Кирхгофа. Изоляционные материалы. Электродвижущая сила.

    презентация [4,5 M], добавлен 19.02.2014

  • Разработка схемы главных электрических соединений подстанции. Расчет токов короткого замыкания. Выбор и проверка аккумуляторной батареи, разъедениетелей и приборов измерения тока. Расчет заземляющего устройства и определение напряжения прикосновения.

    курсовая работа [801,3 K], добавлен 23.03.2015

  • Сила тока в резисторе. Действующее значение силы переменного тока в цепи. График зависимости мгновенной мощности тока от времени. Действующее значение силы переменного гармонического тока и напряжения. Сопротивление элементов электрической цепи.

    презентация [718,6 K], добавлен 21.04.2013

  • Определение параметров схемы замещения и расчет функциональных устройств релейной защиты и автоматики системы электроснабжения. Характеристика электроустановки и выбор установок защиты заданных присоединений: электропередач, двигателей, трансформаторов.

    курсовая работа [422,5 K], добавлен 23.06.2011

  • Выбор и расчет устройства релейной защиты и автоматики. Расчёт токов короткого замыкания. Типы защит, схема защиты кабельной линии от замыканий. Защита силовых трансформаторов. Расчетная проверка трансформаторов тока. Оперативный ток в цепях автоматики.

    курсовая работа [1,3 M], добавлен 08.01.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.