Основы МКТ и законы для идеального газа

Термодинамика как раздел физики, в котором изучаются свойства тел и происходящие в них макроскопические процессы, связанные с огромным числом частиц. Специфические особенности применения закона Бойля-Мариотта для описания изотермического процесса.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 05.12.2021
Размер файла 142,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Размещено на http://www.allbest.ru

Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«БАШКИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Физико-технический институт

Кафедра геофизики

Реферат

по дисциплине: Прикладная теплофизика

Тема: Основы МКТ и законы для идеального газа

Р.Р. Биктимиров

Уфа - 2021

Введение

Ещё 200 лет назад все законы природы представлялись как разрозненные правила, которые были выведены из опытов и не были связаны между собой. Многие учёные пытались превратить теории, правила, открытые законы, явления и эффекты в строгую науку. Но удавалось это с большим трудом, не всегда и не легко. Некоторые физики считали, что все явления следует объяснять, исходя из законов механики, что всё в природе состоит из мельчайших частиц. Другие учёные настаивали на том, что первичными в природе являются жидкости и что вселенная заполнена эфиром. Тепло также считалось одной из жидкостей.

1. Статистические и термодинамические методы исследования

Основные положения молекулярно-кинетической теории. Молекулярно-кинетическая теория (МКТ) занимается изучением свойств веществ, основываясь при этом на представлениях о частицах вещества. МКТ базируется на трех основных положениях:

1. Все вещества состоят из частиц - молекул, атомов и ионов.

2. Частицы вещества беспрерывно и беспорядочно движутся.

3. Частицы вещества взаимодействуют друг с другом.

Беспорядочное (хаотичное) движение атомов и молекул в веществе называют тепловым движением, потому что скорость движения частиц увеличивается с ростом температуры. Экспериментальным подтверждением непрерывного движения атомов и молекул в веществе является броуновское движение и диффузия.

Молекулярная физика и термодинамика -- разделы физики, в которых изучаются свойства тел и происходящие в них макроскопические процессы, связанные с огромным числом частиц, содержащихся в телах.

Для исследования этих процессов пользуются двумя методами: молекулярно-кинетическим (статистическим) и термодинамическим.

В основе молекулярной физики лежит молекулярно-кинетическая теория (MKT), которая объясняет строение и свойства тел движением и взаимодействием частиц (молекул, атомов, ионов), из которых состоят тела. Свойства тел, которые непосредственно наблюдаются на опыте (давление, температура и др.), она истолковывает как суммарный результат действия частиц. При этом она пользуется статистическим методом, интересуясь не индивидуальными характеристиками отдельных частиц, а лишь средними значениями физических величин, которые характеризуют движение частиц, составляющих систему.

Термодинамика изучает общие свойства тел и различные процессы в них, сопровождающиеся превращениями энергии, на основе двух начал -- фундаментальных законов, установленных в результате обобщения огромного числа опытных фактов, не используя какую-либо определенную модель строения вещества и не высказывая предположения о законах взаимодействия атомов и молекул.

В термодинамике изучаются тепловые процессы -- процессы, связанные с изменением температуры тела, а также с изменением его агрегатного состояния.

Термодинамический и молекулярно кинетический методы, применяемые к одним и тем же объектам, дополняют друг друга.

Термодинамическая система -- это некая физическая система, состоящая из большого количества частиц, способная обмениваться с окружающей средой энергией и веществом. Также обычно полагается, что такая система подчиняется статистическим закономерностям. Для термодинамических систем справедливы законы термодинамики. Для описания термодинамической системы вводят так называемые термодинамические величины -- набор физических величин, значения которых определяют термодинамическое состояние системы. Примерами термодинамических величин являются:

- температура,

- давление,

- объем,

- внутренняя энергия,

- энтропия,

- энтальпия,

- свободная энергия Гельмгольца,

- энергия Гиббса.

Если термодинамическое состояние системы не меняется со временем, то говорят, что система находится в состоянии равновесия. Строго говоря, термодинамические величины, приведённые выше, могут быть определены только в состоянии термодинамического равновесия. Термодинамические системы подразделяются на однородные по составу (например, газ в сосуде) и неоднородные (вода и пар или смесь газов в сосуде). Выделяют также изолированные системы, то есть системы, которые не обмениваются с окружающей средой ни энергией, ни веществом, и закрытые системы, которые обмениваются со средой только энергией, но не обмениваются веществом. Если же в системе происходят обменные процессы с окружающей средой, то её называют открытой.

2. Опытные законы идеального газа

Опытным путем, задолго до появления молекулярно-кинетической теории, был открыт целый ряд законов, описывающих равновесные изопроцессы в идеальном газе. Изопроцесс - это равновесный процесс, при котором один из параметров состояния не изменяется (постоянен). Различают изотермический (T = const), изобарический (p = const), изохорический (V = const) изопроцессы.

Изотермический процесс описывается законом Бойля-Мариотта: "если в ходе процесса масса и температура идеального газа не изменяются, то произведение давления газа на его объем есть величина постоянная PV = const. Графическое изображение уравнения состояния называют диаграммой состояния. В случае изопроцессов диаграммы состояния изображаются двумерными (плоскими) кривыми и называются соответственно изотермами, изобарами и изохорами.

Изобарический процесс описывается законом Гей-Люссака: "если в ходе процесса давление и масса идеального газа не изменяются, то отношение объема газа к его абсолютной температуре есть величина постоянная.

Уравнение изобарического процесса можно записать иначе:

,

где V0 - объем газа при 0С; Vt - объем газа при tC; t - температура газа в градусах Цельсия; a - коэффициент объемного расширения. Из формулы следует, что

.

Опыты французского физика Гей-Люссака (1802 г) показали, что коэффициенты объемного расширения всех видов газов одинаковы и

,

т.е. при нагревании на 1С газ увеличивает свой объем на часть того объема, который он занимал при 0С.

Изохорический процесс описывается законом Шарля: "если в ходе процесса объем и масса идеального газа не изменяются, то отношение давления газа к его абсолютной температуре есть величина постоянная:

Уравнение изохорического процесса можно записать иначе:

,

где Р0 - давление газа при 0С; - давление газа при t; t - температура газа в градусах Цельсия; - температурный коэффициент давления. Из формулы следует, что

.

Для всех газов

и.

Если газ нагреть на 1С (при V=const), то давление газа возрастет на часть того давления, которое он имел при 0С.

Закон Дальтона гласит: Давление смеси равно сумме парциальных давлений газов, образующих смесь. Давления называется парциальными. Парциальное давление -- это давление которое создавал бы данный газ, если бы он один занимал тот сосуд, в котором находится смесь (в том же количестве, в котором он содержится в смеси).

3. Уравнение состояния идеального газа

Уравнение состояния идеального (иногда уравнение Клапейрона или Менделеева - Клапейрона) - формула устанавливающая зависимость между давлением, молярным объемом и абсолютной температурой идеального газа.

Уравнение имеет вид:

где

-- давление,

-- молярный объём,

-- универсальная газовая постоянная

-- абсолютная температура,К.

Так как

,

Где --количество вещества, а

,

Где -- масса,--молярная масса, уравнение состояния можно записать:

Эта форма записи носит имя уравнения (закона) Менделеева -- Клапейрона.

В случае постоянной массы газа уравнение можно записать в виде:

Последнее уравнение называют объединённым газовым законом. Из него получаются законы Бойля -- Мариотта, Шарля и Гей-Люссака:

-- закон Бойля -- Мариотта.

-- Закон Гей-Люссака.

-- закон Шарля (второй закон Гей-Люссака, 1808 г.).

А в форме пропорции

этот закон удобен для расчёта перевода газа из одного состояния в другое.

4. Основное уравнение молекулярно-кинетической теории идеальных газов

Известно, что частицы в газах, в отличие от жидкостей и твердых тел, располагаются друг относительно друга на расстояниях, существенно превышающих их собственные размеры. В этом случае взаимодействие между молекулами пренебрежимо мало и кинетическая энергия молекул много больше энергии межмолекулярного взаимодействия. Для выяснения наиболее общих свойств, присущих всем газам, используют упрощенную модель реальных газов - идеальный газ. Основные отличия идеального газа от реального газа:

1. Частицы идеального газа - сферические тела очень малых размеров, практически материальные точки.

2. Между частицами отсутствуют силы межмолекулярного взаимодействия.

3. Соударения частиц являются абсолютно упругими.

Реальные разреженные газы действительно ведут себя подобно идеальному газу. Воспользуемся моделью идеального газа для объяснения происхождения давления газа. Вследствие теплового движения, частицы газа время от времени ударяются о стенки сосуда. При каждом ударе молекулы действуют на стенку сосуда с некоторой силой. Складываясь друг с другом, силы ударов отдельных частиц образуют некоторую силу давления, постоянно действующую на стенку. Понятно, что чем больше частиц содержится в сосуде, тем чаще они будут ударяться о стенку сосуда, и тем большей будет сила давления, а значит и давление. Чем быстрее движутся частицы, тем сильнее они ударяют в стенку сосуда. Мысленно представим себе простейший опыт: катящийся мяч ударяется о стенку. Если мяч катится медленно, то он при ударе подействует на стенку с меньшей силой, чем если бы он двигался быстро. Чем больше масса частицы, тем больше сила удара. Чем быстрее движутся частицы, тем чаще они ударяются о стенки сосуда. Итак, сила, с которой молекулы действуют на стенку сосуда, прямо пропорциональна числу молекул, содержащихся в единице объема (это число называется концентрацией молекул и обозначается n), массе молекулы mo, среднему квадрату их скоростей и площади стенки сосуда. В результате получаем: давление газа прямо пропорционально концентрации частиц, массе частицы и квадрату скорости частицы (или их кинетической энергии). Зависимость давления идеального газа от концентрации и от средней кинетической энергии частиц выражается основным уравнением молекулярно-кинетической теории идеального газа. Мы получили основное уравнение МКТ идеального газа из общих соображений, но его можно строго вывести, опираясь на законы классической механики. Приведем одну из форм записи основного уравнения МКТ:

P=(1/3)· n· mo· V2

5. Законы Максвелла для распределения молекул идеального газа по скоростям и энергиям теплового движения

При выводе основного уравнения молекулярно-кинетической теории молекулам задавали различные скорости. В результате многократных соударений скорость каждой молекулы изменяется по модулю и направлению. Однако из-за хаотического движения молекул все направления движения являются равновероятными, т. е. в любом направлении в среднем движется одинаковое число молекул.

По молекулярно-кинетической теории, как бы ни изменялись скорости молекул при столкновениях, средняя квадратичная скорость молекул массой m0 в газе, находящемся в состоянии равновесия при Т = const, остается постоянной и равной <vкв> =Ц3kT/m0. Это объясняется тем, что в газе, находящемся в состоянии равновесия, устанавливается некоторое стационарное, не меняющееся со временем распределение молекул по скоростям, которое подчиняется вполне определенному статистическому закону. Этот закон теоретически выведен Дж. Максвеллом.

При выводе закона распределения молекул по скоростям Максвелл предполагал, что газ состоит из очень большого числа N тождественных молекул, находящихся в состоянии беспорядочного теплового движения при одинаковой температуре. Предполагалось также, что силовые поля на газ не действуют.

Закон Максвелла описывается некоторой функцией f(v) называемой функцией распределения молекул по скоростям. Если разбить диапазон скоростей молекул на малые интервалы, равные dv, то на каждый интервал скорости будет приходиться некоторое число молекул dN(v),имеющих скорость, заключенную в этом интервале. Функция f(v) определяет относительное число молекул

dN (v)/N, (5.1)

скорости которых лежат в интервале от v до v+dv, т. е. откуда

f(v)=dN(v)/Ndv (5.2)

Применяя методы теории вероятностей, Максвелл нашел функцию f(v) -- закон для распределения молекул идеального газа по скоростям:

Из (5.1) видно, что конкретный вид функции зависит от рода газа (от массы молекулы) и от параметра состояния (от температуры Т).

Скорость, при которой функция распределения молекул идеального газа по скоростям максимальна, называется наиболее вероятной скоростью. Значение наиболее вероятной скорости можно найти продифференцировав выражение (5.1) (постоянные множители опускаем) по аргументу v, приравняв результат нулю и используя условие для максимума выражения f(v):

Значения v=0 и v=Ґ соответствуют минимумам выражения (5.1), а значение v, при котором выражение в скобках становится равным нулю, и есть искомая наиболее вероятная скорость vв:

Из формулы (5.2) следует, что при повышении температуры максимум функции распределения молекул по скоростям сместится вправо (значение наиболее вероятной скорости становится больше). Однако площадь, ограниченная кривой, остается неизменной, поэтому при повышении температуры кривая распределения молекул по скоростям будет растягиваться и понижаться. Средняя скорость молекулы <v> (средняя арифметическая скорость).

6. Среднее число столкновений и средняя длина свободного пробега

Молекулы газа, находясь в хаотическом движения, непрерывно сталкиваются друг с другом. Между двумя последовательными столкновениями молекулы проходят некоторый путь l, называемым длиной свободного пробега. В общем случае длина пути между последовательными столкновениями различна, но так как мы имеем дело с очень большим числом молекул и они находятся в беспорядочном движении, то можно говорить о средней длине свободного пробега молекул <l>. Минимальное расстояние, на которое сближаются при столкновении центры двух молекул, называется эффективным диаметром молекулы d (рис. 1). Он зависит от скорости сталкивающихся молекул, т. е. от температуры газа (несколько уменьшается с ростом температуры).

Рисунок 1

Так как за 1 с молекула в среднем проходит путь, который равен средней арифметической скорости <v>, и если < z > -- среднее число столкновений, которые одна молекула газа делает за 1 с, то средняя длина свободного пробега будет . Для определения < z > представим себе молекулу в виде шарика диаметром d, которая движется среди других как бы застывших молекул. Эта молекула столкнется только с теми молекулами, центры которых находятся на расстояниях, равных или меньших d, т. е. лежат внутри так называемого ломаного цилиндра радиусом d (рис. 1). Среднее число столкновений за 1 с равно числу молекул в объеме, так называемого ломаного цилиндра:,где n -- концентрация молекул, V = рd2<v> ,где <v> -- средняя скорость молекулы или путь, пройденным ею за 1 с). Таким образом, среднее число столкновений .Расчеты показывают, что при учете движения других молекул.Тогда средняя длина свободного пробега, т. е. <l> обратно пропорциональна концентрации n молекул. С другой стороны, p=nkt. Значит,

7. Опытное обоснование молекулярно-кинетической теории

Рассмотрим некоторые явления, экспериментально подтверждающие основные положения и выводы молекулярно-кинетической теории.

1. Броуновское движение. Шотландский ботаник Р. Броун (1773--1858), наблюдая под микроскопом взвесь цветочной пыльцы в воде, обнаружил, что частицы пыльцы оживленно и беспорядочно двигались, то вращаясь, то перемещаясь с места на место, подобно пылинкам в солнечном луче. Впоследствии оказалось, что подобное сложное зигзагообразное движение характерно для любых частиц малых размеров (1 мкм), взвешенных в газе или жидкости.

Интенсивность этого движения, называемого броуновским, повышается с ростом температуры среды, с уменьшением вязкости и размеров частиц (независимо от их химической природы). Причина броуновского движения долго оставалась неясной. Лишь через 80 лет после обнаружения этого эффекта ему было дано объяснение: броуновское движение взвешенных частиц вызывается ударами молекул среды, в которой частицы взвешены. Так как молекулы движутся хаотически, то броуновские частицы получают толчки с разных сторон, поэтому и совершают движение столь причудливой формы. Таким образом, броуновское движение является подтверждением выводов молекулярно-кинетической теории о хаотическом (тепловом) движении атомов и молекул.

2. Опыт Штерна. Первое экспериментальное определение скоростей молекул выполнено немецким физиком О. Штерном (1888--1970). Его опыты позволили также оценить распределение молекул по скоростям.Схема установки представлена на рис.70. Вдоль оси внутреннего цилиндра с щелью натянута платиновая проволока, покрытая слоем серебра, которая нагревается током при откачанном воздухе. При нагревании серебро испаряется. Атомы серебра, вылетая через щель, попадают на внутреннюю поверхность второго цилиндра, давая изображение щели О. Если прибор привести во вращение вокруг общей оси цилиндров, то атомы серебра осядут не против щели, а сместятся от точки О на некоторое расстояние s. Изображение щели получается размытым. Исследуя толщину осажденного слоя, можно оценить распределение молекул по скоростям, которое соответствует максвелловскому распределению. Зная радиусы цилиндров, их угловую скорость вращения, а также измеряя s, можно вычислить скорость движения атомов серебра при данной температуре проволоки. Результаты опыта показали, что средняя скорость атомов серебра близка к той, которая следует из максвелловского распределения молекул по скоростям.

3. Опыт Ламмерт. Этот опыт позволяет более точно определить закон распределения молекул по скоростям. Молекулярный пучок, сформированный источником, проходя через щель, попадает в приемник. Между источником и приемником помещают два диска с прорезями, закрепленных на общей оси. При неподвижных дисках молекулы достигают приемника, проходя через прорези в обоих дисках. Если ось привести во вращение, то приемника достигнут только те прошедшие прорезь в первом диске молекулы, которые затрачивают для пробега между дисками время, равное или кратное времени оборота диска. Другие же молекулы задерживаются вторым диском. Меняя угловую скорость вращения дисков и измеряя число молекул, попадающих в приемник, можно выявить закон распределения молекул по скоростям. Этот опыт также подтвердил справедливость максвелловского распределения молекул по скоростям.

4. Опытное определение постоянной Авогадро. Воспользовавшись идеей распределения молекул по высоте, французский ученый Ж. Перрен (1870--1942) экспериментально определил значение постоянной Авогадро.

Рисунок 2

Исследуя под микроскопом броуновское движение, он убедился, что броуновские частицы распределяются по высоте подобно молекулам газа в поле тяготения.Значение NA, получаемое из работ Ж. Перрена, соответствовало значениям, полученным в других опытах, что подтверждает применимость к броуновским частицам распределения

8. Явления переноса

В термодинамически неравновесных системах происходят особые необратимые процессы, называемые явлениями переноса, в результате которых осуществляется пространственный перенос массы, импульса, энергии. К явлениям переноса относятся теплопроводность (перенос энергии), диффузия (перенос массы) и внутреннее трение (перенос импульса). Ограничимся одномерными явлениями переноса. Систему отсчета будем выбирать так, чтобы ось х была направлена в сторону в направления переноса.

1. Теплопроводность. Если в первой области газа средняя кинетическая энергия молекул больше, чем во второй, то вследствие постоянных столкновений молекул с течением времени происходит процесс выравнивания средних кинетических энергий молекул, т. е., выравнивание температур

2. Диффузия. При ней происходит самопроизвольное проникновение и перемешивание частиц двух соприкасающихся газов, жидкостей и даже твердых тел; диффузия есть обмен масс частиц этих тел, при этом явление возникает и продолжается, пока существует градиент плотности. Во времена становления молекулярно-кинетической теории по вопросу явления диффузии возникли противоречия. Поскольку молекулы перемещаются в пространстве с огромными скоростями, то диффузия должна происходить очень быстро. Если же открыть в комнате крышку сосуда с пахучим веществом, то запах распространяется довольно медленно. Но здесь нет противоречия. При атмосферном давлении молекулы обладают малой длиной свободного пробега и, при столкновениях с другими молекулами, преимущественно «стоят» на месте.

3. Внутреннее трение (вязкость). Суть механизма возникновения внутреннего трения между параллельными слоями газа (жидкости), которые движутся с различными скоростями, есть в том, что из-за хаотического теплового движения осуществляется обмен молекулами между слоями, в результате чего импульс слоя, который движется быстрее, уменьшается, который движется медленнее -- увеличивается, что приводит к торможению слоя, который движется быстрее, и ускорению слоя, который движется медленнее.

Заключение

Идеальный газ - математическая модель газа, в которой предполагается, что потенциальной энергией взаимодействия молекул можно пренебречь по сравнению с их кинетической энергией.

Реальный газ - газ, который не описывается уравнением состояния идеального газа Клапейрона-Менделеева.

Реальный газ отличается от идеального наличием взаимодействия молекул. При малых плотностях в нем преобладают силы притяжения, что приводит к появлению дополнительного давления: газ как бы сжимает сам себя. При больших плотностях действуют силы отталкивания, в следствие чего молекула не допускает проникновения других молекул в занимаемый ею объем. Пренебрегать собственным объемом молекул реального газа нельзя.

При не слишком высоком давлении и не слишком низкой температуре реальный газ с достаточной степенью точности подчиняется законам идеального газа.

Условия, необходимые для того, чтобы реальный газ обрел свойства идеального, осуществляются при соответствующем разрежении реального газа. Некоторые газы даже при комнатной температуре и атмосферном давлении слабо отличаются от идеальных. Основными параметрами идеального газа являются давление, объем и температура.

С помощью уравнения состояния идеального газа можно исследовать процессы, в которых масса газа и один из трех параметров - давление, объем или температура - остаются неизменными. Количественные зависимости между двумя параметрами газа при фиксированном значении третьего называют газовыми законами.

Газовые законы - частный случай уравнения состояния идеального газа, один из параметров которого остается постоянным.

Литература

1. Молекулярная физика. Тематическая тетрадь: Н. А. Парфентьева, В. А. Львовский -- Москва, Классикс Стиль, 2005 г.- 96 с.

2. Физика. В 5 книгах. Книга 2. Молекулярная физика и термодинамика: А. Н. Леденев Санкт-Петербург, ФИЗМАТЛИТ, 2005 г.- 208 с.

3. Сивухин Д.В. Общий курс физики, т. 2. Термодинамика и молекулярная физика. М., Физматлит, 1989

4. Кирьянов А.П. и Коршунов С.М. К43 Термодинамика и молекулярная физика. Пособие для учащихся. Под ред. проф. А.Д. Гладуна. М «Просвещение», 1977

5. Пособие по физике: С.П. Мясников, Т. Н. Осанова - Москва, Высшая школа, 1988 г.- 400с.

Размещено на Allbest.ru

...

Подобные документы

  • Определение и модель идеального газа. Микроскопические и макроскопические параметры газа и формулы для их расчета. Уравнение состояния идеального газа (уравнение Менделеева-Клайперона). Законы Бойля Мариотта, Гей-Люссака и Шарля для постоянных величин.

    презентация [1008,0 K], добавлен 19.12.2013

  • Закон сохранения энергии и первое начало термодинамики. Внешняя работа систем, в которых существенную роль играют тепловые процессы. Внутренняя энергия и теплоемкость идеального газа. Законы Бойля-Мариотта, Шарля и Гей-Люссака, уравнение Пуассона.

    презентация [0 b], добавлен 25.07.2015

  • Уравнение состояния идеального газа, закон Бойля-Мариотта. Изотерма - график уравнения изотермического процесса. Изохорный процесс и его графики. Отношение объема газа к его температуре при постоянном давлении. Уравнение и графики изобарного процесса.

    презентация [227,0 K], добавлен 18.05.2011

  • Равномерное и равноускоренное прямолинейное движение. Законы динамики, проявление закона сохранения импульса в природе и использование его в технике. Закон всемирного тяготения. Превращение энергии при механических колебаниях. Закон Бойля–Мариотта.

    шпаргалка [243,2 K], добавлен 14.05.2011

  • Термодинамика - раздел физики об общих свойствах макроскопических систем с позиций термодинамических законов. Три закона (начала) термодинамики в ее основе. Теплоемкость газа, круговые циклы, энтропия, цикл Карно. Основные формулы термодинамики.

    реферат [1,7 M], добавлен 01.11.2013

  • Характеристика законов Бойля-Мариотта, Бойля-Мариотта, Авогадро. Парциальное давление как давление, которое оказывал бы каждый газ смеси, если бы он один занимал объем, равный объему смеси. Знакомство с положениями молекулярно-кинетической теории газа.

    презентация [625,5 K], добавлен 06.12.2016

  • Изучение корпускулярной концепции описания природы, сущность которой в том, что все вещества состоят из молекул - минимальных частиц вещества, сохраняющих его химические свойства. Анализ молекулярно-кинетической теории газа. Законы для идеальных газов.

    контрольная работа [112,2 K], добавлен 19.10.2010

  • Первый закон термодинамики. Обратимые и необратимые процессы. Термодинамический метод их исследования. Изменение внутренней энергии и энтальпии газа. Графическое изображение изотермического процесса. Связь между параметрами газа, его теплоемкость.

    лекция [438,5 K], добавлен 14.12.2013

  • Термодинамика как область физики, исследующая процессы преобразования теплоты в работу и другие виды энергии. Характеристика ключевых особенностей схемы газового термометра. Рассмотрение основных свойств идеального газа. Сущность понятия "теплоемкость".

    презентация [73,1 K], добавлен 15.04.2014

  • Направления, сериалы в релятивистской кинетической теории. Макроскопические величины, вектор потока частиц. Релятивистское кинетическое уравнение. Случай без столкновения. Дифференциальное сечение, скорость перехода. Макроскопические законы термодинамики.

    контрольная работа [978,9 K], добавлен 05.08.2015

  • Изложение физических основ классической механики, элементы теории относительности. Основы молекулярной физики и термодинамики. Электростатика и электромагнетизм, теория колебаний и волн, основы квантовой физики, физики атомного ядра, элементарных частиц.

    учебное пособие [7,9 M], добавлен 03.04.2010

  • Фундаментальные взаимодействия в природе, их сравнительная характеристика: гравитационное, электромагнитное. Электростатика как раздел учения об электричестве, в котором изучаются взаимодействия и свойства систем зарядов. Формулировка закона Кулона.

    презентация [1,1 M], добавлен 22.08.2015

  • Молекулярная физика как раздел физики, в котором изучаются свойства вещества на основе молекулярно-кинетических представлений. Знакомство с основными особенностями равновесной термодинамики. Общая характеристика молекулярно-кинетической теории газов.

    курсовая работа [971,8 K], добавлен 01.11.2013

  • Вывод первого начала термодинамики через энергию. Уравнение состояния идеального газа, уравнение Менделеева-Клапейрона. Определение термодинамического потенциала. Свободная энергия Гельмгольца. Термодинамика сплошных сред. Тепловые свойства среды.

    практическая работа [248,7 K], добавлен 30.05.2013

  • Понятие вещества и его состояния (твердое, жидкое, газообразное, плазменное), влияние изменения температуры. Физическое состояние газа, характеризующееся величинами: температура, давление, объем. Формулировка газовых законов: Бойля-Мариотта, Гей-Люссака.

    презентация [1,1 M], добавлен 09.04.2014

  • Характеристика основных типов идеального газа. Описание изохорического, изобарического и изотермического процессов. Изучение первого и второго законов термодинамики. Принцип действия тепловых машин. Описание цикла Карно. Расчет сил Ван-дер-Ваальса.

    реферат [255,0 K], добавлен 25.10.2015

  • Работа идеального газа. Определение внутренней энергии системы тел. Работа газа при изопроцессах. Первое начало термодинамики. Зависимость внутренней энергии газа от температуры и объема. Основные способы ее изменения. Сущность адиабатического процесса.

    презентация [1,2 M], добавлен 23.10.2013

  • Сущность и обоснование второго закона термодинамики, его действие на примере работы теплового двигателя, разница математической записи для обратимого и необратимого процессов. Определение основных параметров адиабатного процесса, идеального цикла Отто.

    контрольная работа [220,4 K], добавлен 04.12.2013

  • Основные понятия и определения молекулярной физики и термодинамики. Основное уравнение молекулярно-кинетической теории. Температура и средняя кинетическая энергия теплового движения молекул. Состояние идеального газа (уравнение Менделеева-Клапейрона).

    презентация [1,1 M], добавлен 13.02.2016

  • Дифракция света как явление отклонения света от прямолинейного направления распространения при прохождении вблизи препятствий. Сущность и закономерности корпускулярно-волнового дуализма. Боровская модель атома. Понятие и свойства идеального газа.

    контрольная работа [400,8 K], добавлен 24.05.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.