Магнитогидродинамическое преобразование энергии

Анализ истории изобретения устройства для преобразования кинетической энергии жидкой или электропроводящей среды, движущейся в магнитном поле, в электрическую энергию. Проведение исследования электростанций с магнитогидродинамическими генераторами.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 12.12.2021
Размер файла 993,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

УЧЕРЕЖДЕНИЕ ОБРАЗОВАНИЯ «ВИТЕБСКИЙ ГОСУДАРСТВЕННЫЙ ОРДЕНА ДРУЖБЫ НАРОДОВ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ»

Кафедра медицинской и биологической физики

Реферат

По дисциплине «Основы энергосбережения»

Магнитогидродинамическое преобразование энергии

Студентки 1 курса 5 группы

Педиатрического факультета

Нашиванкиной Яны Сергеевны

Витебск 2021

Оглавление

Введение

1. История изобретения

2. По способу отвода электроэнергии

3. По системам соединений электродов

4. Индукция магнитного поля

5. Преимущества МГД-генераторов

6. Недостатки МГД-генераторов

Заключение

Использованная литература

Введение

Человеческое общество не может жить без энергии. Пока основной источник энергии для человека -- природное топливо: уголь, нефть, газ. Но запасы этого топлива не вечны. Правда, мы знаем другие источники энергии -- Солнце и атом. В будущем основными источниками станут именно они, но их освоение требует времени, а запасы природного топлива тем временем убывают. Как эффективнее использовать эти запасы? Естественное предложение -- повышать коэффициент полезного действия устройств, преобразующих энергию природного топлива в электрическую энергию. Как известно, КПД тепловой машины увеличивается при увеличении максимальной и уменьшении минимальной температур рабочего тела. Но минимальная температура ограничена снизу -- это температура окружающей среды. Чем ограничена сверху максимальная температура? Прочностью лопастей турбин -- ибо прочность всех металлов падает с ростом температуры, а на движущиеся детали приходятся наибольшие нагрузки. Лопасти турбин ТЭС работают «на пределе», и одна из основных забот турбостроителей -- получение материалов, обладающих высокой прочностью при высоких температурах. В лучших ТЭС достигнут КПД 35--40%.Если мы хотим увеличить КПД за счет повышения температуры рабочего тела, надо искать способ преобразования энергии горячего газа в электрическую энергию, не требующий от материалов высокой прочности.

1. История изобретения

В один из дней 1832 г. лондонцы, оказавшиеся на мосту Ватерлоо, были заинтересованы необычным зрелищем. Группа людей, среди которых можно было увидеть знаменитого физика Фарадея, занималась тем, что погружала в воду Темзы два медных листа, подключенных проводами к гальванометру.

Прибор стоял на столике посреди моста, а возле него находился сам ученый, отдававший распоряжения своим помощникам. Фарадей считал, что если воды реки, текущей с запада на восток, пересекают, хотя бы частично, магнитное поле Земли, то они подобны проводникам, пересекающим магнитное поле магнита. А в этом случае, как доказал сам Фарадей, в проводнике возникает электрический ток. Медные листы, между которыми, как между металлическими берегами, текла вода Темзы, должны были соединить эти водяные проводники с гальванометром, и передать на него возникающий ток. Однако, увы, опыт не удался. Тем не менее, в 1832 г., когда Фарадей задумал и обосновал этот опыт, с полным основанием можно считать годом рождения магнитогидродинамического генератора. Название этого генератора состоит из трех слов - магнит, гидро (вода) и динамика (движение) - и означает получение электричества при движении воды в магнитном поле.

Так почему же не удался опыт Фарадея? Прежде всего потому, что вода Темзы оказалась не таким уж хорошим проводником электричества, были использованы приборы с низкой чувствительностью. А разность потенциалов существовала, и она была измерена спустя 19 лет физиком Волластоном. И тогда же Уильям Томсон (лорд Кельвин) предложил использовать этот эффект для преобразования энергии движения морской воды во время приливов в электрическую энергию. Так были заложены идейные основы нового метода преобразования энергии, который дает возможность использовать природное топливо с большим КПД, чем в традиционных ТЭС.Этот метод называют магнитогидродинамическим.

УСТРОЙСТВО

Магнитогидродинамический генератор - устройство для преобразования кинетической энергии жидкой или электропроводящей среды, движущейся в магнитном поле, в электрическую энергию. Оно основано на явлении электромагнитной индукции, т. е. возникновении тока в проводнике, пересекающем магнитные силовые линии; в качестве движущегося в магнитном поле проводника используется плазма или проводящая жидкость (электролиты и жидкие металлы).

Представим себе трубу, сделанную из электроизолирующего материала и имеющую на двух противоположных стенках изнутри проводящие электроды. Труба помещена в магнитное поле. Внутри трубы движется струя горячего газа. Такова принципиальная схема магнитогидродинамического генератора -- МГД-генератора. (Движение горячей струи газа во многих отношениях похоже на движение жидкости. Отсюда -- название и самого метода, и генератора.) В МГД-генераторе механическая энергия движущегося горячего газа преобразовывается в электрическую энергию. Посмотрим, как это делается. Пусть для определенности газ в МГД-канале (так называют трубу с электродами на внутренних стенках) движется слева направо со скоростью , а индукция магнитного поля направлена так, как показано на рисунке. Если в газе, движущемся по МГД-каналу, есть свободные электроны, то под действием силы Лоренца они будут дрейфовать в газе по направлению к ближайшему к нам (на рисунке) электроду и скапливаться на нем. В результате между электродами на стенках МГД-канала будет создаваться разность потенциалов. Если мы подключим к электродам какую-нибудь электрическую нагрузку, то по цепи нагрузки будет протекать ток .Итак, задача решена -- поместив поток горячего газа в трубу с двумя электродами и магнитное поле, мы сделали генератор электрической энергии. Механизм возникновения тока в МГД-генераторе такой же, как и в любом электрическом генераторе -- ток возникает в проводнике, движущемся в магнитном поле. Но только в электрических генераторах эти проводники металлические, твердые, а в МГД-генераторе это -- горячий газ.

С первого взгляда эти генераторы устроены достаточно просто. В камере сгорания сжигается топливо, и в сопле, похожем на ракетное, продукты сгорания (газы), расширяясь, увеличивают свою скорость до сверхзвуковой. Это сопло находится между полюсами сильного электромагнита, а внутри сопла, на пути раскаленных газов, установлены электроды. Магнитное поле «сортирует» отрицательно заряженные электроны и положительно заряженные ионы газа, направляя их по разным траекториям. Эти потоки заряженных частиц вызывают появление электрических зарядов на соответствующих электродах, а если их соединить, то и электрический ток.

Действительно, в МГД генераторе нет движущихся частей, если, конечно, сам газ не считать частью машины. Но узких мест тоже немало.

Для создания электропроводности газа, его необходимо нагреть до температуры термической ионизации (около 10000 К). При меньших температурах газ обогащают парами щелочных металлов, что позволяет снизить температуру смеси до 2200--2700 К.

В отличие от МГД-генератора с жидким рабочим телом, где генерирование электроэнергии идёт только за счёт преобразования части кинетической или потенциальной энергии потока при постоянной температуре, в МГД-генераторах с газовым рабочим телом принципиально возможны три режима:

С сохранением температуры и уменьшением кинетической энергии;

С сохранением кинетической энергии и уменьшением температуры;

Со снижением и температуры и кинетической энергии.1

КЛАССИФИКАЦИЯ

По источнику тепла:

По источнику тепла

Реактивные двигатели;

Ядерные реакторы;

Теплообменные устройства;

По рабочему телу:

Продукты сгорания ископаемых топлив

Инертные газы с присадками щелочных металлов (или их солей);

Пары щелочных металлов;

Двухфазные смеси паров и жидких щелочных металлов;

Жидкие металлы и электролиты.

По типу рабочего цикла:

МГД-генераторы с открытым циклом. В данном случае продукты сгорания являются рабочим телом, а использованные газы после удаления из них присадки щелочных металлов выбрасываются в атмосферу.

МГД-генераторы с замкнутым циклом. Здесь тепловая энергия, полученная при сжигании топлива, передаётся в теплообменнике рабочему телу, которое затем, пройдя МГД-генератор, возвращается через компрессор, замыкая цикл. кинетический энергия магнитогидродинамический генератор

2. По способу отвода электроэнергии

Кондукционные. В рабочем теле, протекающем через поперечное магнитное поле, возникает электрический ток, который через съёмные электроды, вмонтированные в боковые стенки канала, замыкается на внешнюю цепь. В зависимости от изменения магнитного поля или скорости движения рабочего тела такой МГД-генератор может генерировать постоянный или пульсирующий ток.

Двигатели кондукционного типа также могут быть выполнены двух типов: со свободный полем и каналового типа.

Принципиальная схема кондукционного движителя постоянного тока со свободным полем приведена на рис.

Поверхность внешнего корпуса состоит из чередующихся полюсов магнитной системы и электродов, к которым подводится напряжение постоянного тока. Биполярное поле затухает во внешнем пространстве (морской воде) по экспоненте и имеет глубину проникновения, равную . Тяга двигателя будет определяться интенсивностью магнитного поля и силой кондукционных токов. Как и в случае рассмотренных выше индукционных схем лучшей эффективности можно достичь в движителях кондукционного типа каналового типа. Схема такого двигателя представлена на рис.

Внешний и внутренние корпусы являются электродами (изолированными), к которым подводится разность потенциалов, обусловливающая протекание токов через морскую воду в каналах. Электромагниты создают азимутальное магнитное поле. Тяга двигателя создается электромагнитными силами при взаимодействии токов с магнитным полем. Низкая проводимость морской воды и малые значения индукции магнитного поля не могут обеспечить приемлемых КПД и удовлетворительных скоростей хода.

Индукционные. В индукционных МГД-генераторах электроды отсутствуют. Такие установки генерируют только переменный ток и требуют создания бегущего вдоль канала магнитного поля.

Примером такого двигателя может служить схема, разработанная применительно к большой подводной лодке и представленная на рис. Индукторы, создающие бегущее магнитное поле от носа к корме подводной лодки, расположены между внешним и внутренним корпусами лодки.

По форме канала

Линейные -- для кондукционных и индукционных генераторов;

Дисковые и коаксиальные холловские -- в кондукционных;

Радиальные -- в индукционных генераторах.

3. По системам соединений электродов

Фарадеевский генератор со сплошными или секционированными электродами. Секционирование электродов в фарадеевском МГД-генераторе делается для того, чтобы уменьшить циркуляцию тока вдоль канала и через электроды (эффект Холла) и тем самым направить носители зарядов перпендикулярно оси канала на электроды и в нагрузку; чем значительнее эффект Холла, тем на большее число секций необходимо разделить электроды, причём каждая пара электродов должна иметь свою нагрузку, что весьма усложняет конструкцию установки.

Холловский генератор, в котором расположенные друг против друга электроды коротко замкнуты, а напряжение снимается вдоль канала за счёт наличия поля Холла. Применение наиболее выгодно при больших магнитных полях. За счёт наличия продольного электрического поля, можно получить значительное напряжение на выходе генератора.

Сериесный генератор с диагональным соединением электродов.

Наибольшее распространение с 1970-х годов получили кондукционные линейные МГД-генераторы на продуктах сгорания ископаемых топлив с присадками щелочных металлов, работающие по открытому циклу.

ХАРАКТЕРИСТИКА

Мощность

Мощность МГД-генератора пропорциональна проводимости рабочего тела, квадрату его скорости и квадрату напряжённости магнитного поля. Для газообразного рабочего тела в диапазоне температур 2000--3000 К проводимость пропорциональна температуре в 11--13-й степени и обратно пропорциональна корню квадратному из давления.

Скорость потока

Скорости потока в МГД-генераторе могут быть в широком диапазоне -- от дозвуковых до сверхзвуковых.

4. Индукция магнитного поля

Индукция магнитного поля определяется конструкцией магнитов и ограничивается значениями около 2 Тл для магнитов со сталью и до 6--8 Тл для сверхпроводящих магнитных систем.

КПД

Теоретически КПД могут достигать50-60 %!

ЭЛЕКТРОСТАНЦИИ С МАГНИТОГИДРОДИНАМИЧЕСКИМИ ГЕНЕРАОРАМИ

Принцип работы электростанции с МГД генераторами

Топливо и легкоионизируемую присадку, в качестве которой используют К2СО3, вводят в камеру сгорания, куда одновременно подается воздух посредством компрессора. Для подогрева воздуха используют специальный воздухонагреватель. Продукты сгорания, представляющие собой ионизированный газ, попадают в МГД-канал. Магнитная система создает поле значительной напряженности, линии которого пронизывают МГД-канал. Ионы осаждаются на токосъемниках, которые создают напряжение постоянного тока. Для его преобразования в переменное напряжение используют инвертор. Выхлоп МГД-канала, температурой 2000?С попадает в котел, где происходит нагревание воды. Вращение генератора осуществляется посредством пароводяного контура, состоящего из турбин и конденсатного насоса. По сравнению с тепловой станцией, КПД которой равен 40%, коэффициент полезного действия вышеуказанного цикла может составлять 50-60%, что достигается за счет более полного использования и срабатывания тепловой энергии продуктов сгорания.

5. Преимущества МГД-генераторов

Очень высокая мощность, до нескольких мегаватт на не очень большую установку

В нём не используются вращающиеся детали, следовательно, отсутствуют потери на трение.

Рассматриваемые генераторы являются объемными машинами - в них протекают объемные процессы. С увеличением объема уменьшается роль нежелательных поверхностных процессов (загрязнения, токов утечки). В то же время увеличение объема, а с ним и мощности генератора практически ничем не ограничено (и 2 ГВт, и более), что соответствует тенденции роста мощности единичных агрегатов.

При более высоком к.п.д. МГД-генераторов существенно уменьшается выброс вредных веществ, которые обычно содержатся в отработанных газах.

Большой успех в технической отработке использования МГД - генераторов для производства электрической энергии был достигнут благодаря комбинации магнитогидродинамической ступени с котельным агрегатом. В этом случае горячие газы, пройдя через генератор, не выбрасываются в трубу, а обогревают парогенераторы ТЭС, перед которыми помещена МГД - ступень. Общий КПД таких электростанций достигают небывалой величины - 65% Высокая маневренность.

6. Недостатки МГД-генераторов

Необходимость применения сверх жаропрочных материалов. Угроза расплавления. Температура 2000 - 3000 К. Химически активный и горячий ветер имеет скорость 1000 - 2000 м/с

Генератор вырабатывает только постоянный ток. Создание эффективного электрического инвертора для преобразования постоянного тока в переменный.

Среда в МГД-генераторе с открытым циклом - химически активные продукты сгорания топлива. В МГД-генераторе с замкнутым циклом - хотя и химически неактивные инертные газы, но зато очень химически активная примесь (цезий)

Рабочее тело попадает в так называемый МГД-канал, где и происходит возникновение электродвижущей силы. Канал может быть трех видов. Надежность и продолжительность работы электродов - общая проблема всех каналов. При температуре среды в несколько тысяч градусов электроды весьма недолговечны.

Несмотря на то, что генерируемая мощность пропорциональна квадрату индукции магнитного поля, для промышленных установок требуются очень мощные магнитные системы, гораздо более мощные, чем опытные.

При температуре газа ниже 2000° С в нем остается так мало свободных электронов, что для использования в генераторе она уже не годится. Чтобы не расходовать зря тепло, поток газа пропускают через теплообменники. В них тепло передается воде, а образовавшийся пар подается в паровую турбину.

На данный момент наиболее широко изучены и разработаны плазменные МГД-генераторы. Информации о МГД-генераторах, использующих в качестве рабочего тела морскую воду, не найдено.

Из этого списка видно, что имеется целый ряд проблем, который еще необходимо преодолеть. Эти трудности решаются многими остроумными способами.

Заключение

В целом этап концептуальных поисков в области МГД-генераторов в основном пройден. Еще в шестидесятых годах прошлого века были проведены основные теоретические и экспериментальные исследования, созданы лабораторные установки. Результаты исследований и накопленный инженерный опыт позволили российским ученым в 1965 г. ввести в действие комплексную модельную энергетическую установку "У-02", работавшую на природном топливе. Несколько позднее было начато проектирование опытно-промышленной МГД-установки "У-25", которое проводилось одновременно с исследовательскими работами на "У-02". Успешный пуск этой первой опытно-промышленной энергетической установки, имевшей расчетную мощность 25 МВт, состоялся в 1971 г.

В настоящее время на Рязанской ГРЭС используется головной МГД-энергоблок 500 МВт, включающий МГД-генератор мощностью около 300 МВт и паротурбинную часть мощностью 315 МВт с турбиной К-300-240. При установленной мощности свыше 610 МВт выдача мощности МГД-энергоблока в систему составляет 500 МВт за счет значительного расхода энергии на собственные нужды в МГД-части. Коэффициент полезного действия МГД-500 превышает 45 %, удельный расход условного топлива составит примерно 270 г/(кВт-ч). Головной МГД-энергоблок запроектирован на использование природного газа, в дальнейшем предполагается переход на твердое топливо. Исследования и разработки МГД-генераторов широко развёрнуты в США, Японии, Нидерландах, Индии и др. странах. В США эксплуатируется опытная МГД-установка на угле тепловой мощностью 50 МВт. Все перечисленные МГД-генераторы используют плазму в качестве рабочего тела. Хотя, на наш взгляд, можно использовать в качестве электролита и морскую воду. Для того, чтобы продемонстрировать энергетические возможности МГД-генератора изготовлена лодка на МГД приводе.

Использованная литература

1. Ашкинази Л. МГД-генератор //Квант, 1980, № 11, С. 2-8

2. Рыжкин В.Электростанции газотурбинные, парогазовые, атомные и с МГД-генераторами//Тепловые электрические станции,1975,гл 25

3. Тамоян Г.С Учебное пособие по курсу "Специальные электрические машины" - МГД-машины и устройства.

4. Каулинг Т. Магнитная гидродинамика. М.: Изд-во МИР, 1964. 80 с.

Размещено на Allbest.ru

...

Подобные документы

  • Гидравлические машины как устройства, служащие для преобразования механической энергии двигателя в энергию перемещаемой жидкости или для преобразования гидравлической энергии потока жидкости в механическую энергию, методика расчета ее параметров.

    курсовая работа [846,7 K], добавлен 09.05.2014

  • Генератор - машина, преобразующая механическую энергию в электрическую. Принцип действия генератора. Индуктирование ЭДС в пелеобразном проводнике, вращающемся в магнитном поле. График изменения индуктированного тока. Устройство простейшего генератора.

    конспект урока [385,8 K], добавлен 23.01.2014

  • Энергия морских приливов, ее преобразование в электрическую энергию. Преимущества использования приливных электростанций, использующих перепад уровней "полной" и "малой" воды во время прилива и отлива. Модель эффективного использования приливной энергии.

    презентация [1,6 M], добавлен 25.11.2011

  • Солнечные электростанции как один из источников преобразования электроэнергии, принципы и закономерности их функционирования, внутреннее устройство и элементы. Порядок преобразования солнечной энергии в электрическую. Оценка энергетической эффективности.

    презентация [540,5 K], добавлен 22.10.2014

  • Ветроэлектростанции, их характеристики. Разновидности геотермальных электростанций, их применения в децентрализованных системах электроснабжения. Основные способы преобразования энергии биотопливa в электроэнергию. Классификация солнечных электростанций.

    реферат [202,6 K], добавлен 10.06.2014

  • Характеристика устройств преобразования различных видов энергии в электрическую и для длительного хранения энергии. Использование мускульной силы человека для обеспечения автономного функционирования систем электрического питания при помощи велотренажера.

    научная работа [270,6 K], добавлен 23.02.2013

  • Математическое описание процесса преобразования энергии газообразных веществ (ГОВ) в механическую энергию. Определение мощности энергии топлива с анализом энергии ГОВ, а также скорости движения турбины с максимальным использованием энергии ГОВ.

    реферат [46,7 K], добавлен 24.08.2011

  • Описания ветроэнергетики, специализирующейся на преобразовании кинетической энергии воздушных масс в атмосфере в любую форму энергии, удобную для использования в народном хозяйстве. Изучение современных методов генерации электроэнергии из энергии ветра.

    презентация [2,0 M], добавлен 18.12.2011

  • Ознакомление с основами движения электрона в однородном электрическом поле, ускоряющем, тормозящем, однородном поперечном, а также в магнитном поле. Анализ энергии электронов методом тормозящего поля. Рассмотрение основных опытов Дж. Франка и Г. Герца.

    лекция [894,8 K], добавлен 19.10.2014

  • Сущность и краткая характеристика видов энергии. Особенности использования солнечной и водородной энергии. Основные достоинства геотермальной энергии. История изобретения "ошейника" А. Стреляемым, принцип его работы и потребления энергии роста растений.

    презентация [911,5 K], добавлен 20.12.2009

  • Применение ветровых генераторов для производства электроэнергии, их виды, преимущества как альтернативных электростанций, недостатки. Оборудование для преобразования кинетической энергии ветра в механическую; инфраструктура и ресурсы ветроэнергетики.

    презентация [338,4 K], добавлен 30.11.2011

  • Применение энергии термоядерного синтеза. Радиоактивный распад. Получение ядерной энергии. Расщепление атома. Деление ядер тяжелых элементов, получение новых нейронов. Преобразование кинетической энергии в тепло. Открытие новых элементарных частиц.

    презентация [877,4 K], добавлен 08.04.2015

  • Энергетическое значение и безопасность ПЭС как технологии преобразования энергии морских приливов в электрическую. Рассмотрение экологического и экономического эффекта эксплуатации приливных электростанций в рамках проекта "Малая Мезенская ПЭС".

    презентация [1,0 M], добавлен 25.11.2011

  • Определение работы равнодействующей силы. Исследование свойств кинетической энергии. Доказательство теоремы о кинетической энергии. Импульс тела. Изучение понятия силового физического поля. Консервативные силы. Закон сохранения механической энергии.

    презентация [1,6 M], добавлен 23.10.2013

  • Анализ механической работы силы над точкой, телом или системой. Характеристика кинетической и потенциальной энергии. Изучение явлений превращения одного вида энергии в другой. Исследование закона сохранения и превращения энергии в механических процессах.

    презентация [136,8 K], добавлен 25.11.2015

  • Использование энергии естественного движения: течения, водных масс в русловых водотоках и приливных движениях. Отрасль энергетики, использующая ядерную энергию в целях электрификации и теплофикации. Производство энергии с помощью солнечных электростанций.

    презентация [2,7 M], добавлен 20.04.2016

  • Характеристики форм движения материи. Механическая и электростатическая энергия. Теорема о кинетической энергии. Физический смысл кинетической энергии. Потенциальная энергия поднятого над Землей тела. Потенциальная энергия гравитационного взаимодействия.

    презентация [3,7 M], добавлен 19.12.2016

  • Преобразование энергии бета распада в электрическую энергию с использованием твердотельных полупроводников. Определение областей применения радиоизотопных источников питания. Обоснование и выбор оптимального по радиоактивности и геометрии радиоизотопа.

    дипломная работа [3,6 M], добавлен 20.05.2015

  • История развития геотермальной энергетики и преобразование геотермальной энергии в электрическую и тепловую. Стоимость электроэнергии, вырабатываемой геотермальными элетростанциями. Перспективность использования альтернативной энергии и КПД установок.

    реферат [37,7 K], добавлен 09.07.2008

  • Исследование механизма упругих и неупругих столкновений, изучение законов сохранения импульса и энергии. Расчет кинетической энергии при абсолютно неупругом ударе и описание механизма её превращения во внутреннюю энергию, параметры сохранения импульса.

    лабораторная работа [129,6 K], добавлен 20.05.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.