Диэлектрики и полупроводниковые диоды

Виды пробоя диэлектриков, механизмы их протекания. Основные характеристики диэлектрических жидкостей. Область контакта двух полупроводников с различным типом проводимости, а также полупроводника и металла. Точечные и планарные полупроводниковые диоды.

Рубрика Физика и энергетика
Вид контрольная работа
Язык русский
Дата добавления 31.01.2022
Размер файла 75,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Контрольная работа № 1. Диэлектрики

1. Виды пробоя диэлектриков. Механизмы их протекания

диэлектрик полупроводник пробой

В твердых диэлектриках различают три основных видов пробоя: электрический, электротепловой и электрохимический. Возникновение того или иного вида пробоя в диэлектрике зависит от его свойств, формы электродов, условий.

Электрический пробой - это пробой, обусловленный ударной ионизацией или разрывом связей между частицами диэлектрика непосредственно под действием электрического поля.

Электрическая прочность Епр твердых диэлектриков при электрическом пробое лежит в сравнительно узких пределах - 100 ч 1000 МВ/м, что близко к Епр сильно сжатых газов и очень чистых жидкостей. Величина Епр обусловлена главным образом внутренним строением диэлектрика (плотностью упаковки атомов, прочностью их связей) и слабо зависит от таких внешних факторов, как температура, частота приложенного напряжения, форма и размеры образца (за исключением очень малых толщин). Характерно очень малое время электрического пробоя - менее микросекунды.

Электротепловой пробой обусловлен нарушением теплового равновесия диэлектрика вследствие диэлектрических потерь.

Мощность, выделяющаяся в образце диэлектрика емкостью С, при подаче на него напряжения U (действующее значение) с угловой частотой щ

Условие теплового равновесия определяется равенством мощностей, поглощаемой и рассеиваемой: P~ =Pp. Так как tg д обычно растет с повышением температуры, то, начиная с некоторой критической температуры Ткр, значение P~ >Pp (рис. 2.11); другая точка равенства P~ и Pp(T1) соответствует устойчивому равновесию. В результате превышения тепловыделения над теплоотдачей диэлектрик лавинообразно разогревается, что приводит к его разрушению (плавлению, сгоранию).

Следовательно, из данного материала при заданной рабочей частоте изоляция может быть изготовлена в расчете на пробивное напряжение не выше указанного значения. Это напряжение зависит от коэффициента диэлектрических потерь и других параметров.

Следовательно, Uпр снижается на высоких частотах. Аналогично Uпр при тепловом пробое зависит от температуры, снижаясь с ее повышением за счет роста tg д. Критическая частота fкр или температура Ткр, при которых происходит переход от электрического к тепловому пробою, зависят от свойств диэлектрика, условий теплоотвода изоляции, времени приложения напряжения, скважности импульсов.

Пробивное напряжение с увеличением длительности действия приложенного напряжения уменьшается из-за дополнительного разогрева диэлектрика, а также химического старения и других явлений. При кратковременном приложении напряжения (например, импульсного) вероятность теплового пробоя мала даже при сравнительно большой проводимости, так как образец не успевает прогреться.

Электрическая прочность при тепловом пробое уменьшается с ростом толщины диэлектрика вследствие увеличения его неоднородности и ухудшения теплоотдачи.

В диэлектриках, длительно находящихся в электрическом поле, может происходить электрохимический пробой вследствие электролиза, ионизации газовых включений и т.д. Эти процессы приводят к химическому старению диэлектрика. Конечной стадией электрохимического пробоя чаще всего является тепловой пробой.

Наибольшей электрической прочностью обладают твердые диэлектрики, однородные по структуре, имеющие низкую электрическую проводимость, повышенные теплопроводность и нагревостойкость (пленочные фторопласт-4, полиэтилен, лавсан, слюда и т.д.). Епр таких материалов достигает 100-300 МВ/м.

Механизм пробоя и значение электрической прочности диэлектрических жидкостей зависят прежде всего от их чистоты.

Электрический пробой тщательно очищенных жидкостей при кратковременном воздействии электрического поля происходит за счет сочетания двух процессов: ударной ионизации электронами и холодной эмиссии с катода. В соответствии с этим электрическая прочность тщательно очищенных жидкостей на два порядка выше, чем газов, и составляет примерно 100 МВ/м. Это объясняется тем, что требуется большая напряженность поля для того, чтобы электрон, двигаясь в более плотной среде, с меньшей длиной свободного пробега л накопил энергию, достаточную для ионизации.

Природу пробоя загрязненных и технически чистых жидкостей определяют процессы, связанные с движением и перераспределением частиц примеси. Под действием высокого напряжения эти процессы приводят к возникновению таких вторичных явлений, как образование мостиков из твердых частиц или пузырьков газа, т. е. проводящих каналов. В частности, при работе жидкостей в сильных полях, особенно высокой частоты , происходит ее нагрев и образование пара. Поэтому характер пробоя жидких диэлектриков зависит от множества факторов, определяемых в значительной мере видом, размером, количеством и распределением примесей. Наличие мостиков и цепочек из твердых частиц сильно искажает поле между электродами. В результате пробой жидкости происходит в неоднородном поле, а это приводит к снижению ее электрической прочности.

Резкое снижение Епр имеет место и при загрязнении жидкости влажными органическими волокнами (бумагой, текстилем), поскольку такие волокна способны образовывать мостики, обладающие повышенной проводимостью. Если мостик соприкасается с одним из электродов, то он служит игловидным продолжением этого электрода, в результате чего уменьшается межэлектродное расстояние и возрастает неоднородность поля. В случае сухих волокон мостики имеют высокое сопротивление и в меньшей мере влияют на Епр жидкости.

Наиболее часто встречающейся примесью в жидких диэлектриках является вода, которая может находиться в растворенном или эмульсионном состояниях.

Большое внимание уделяется очистке гигроскопичных жидких диэлектриков от воды, снижающей Епр. Неочищенное трансформаторное масло, например, имеет Епр = 4 МВ/м, после тщательной очистки электрическая прочность масла повышается до 20-25 МВ/м.

Газообразные диэлектрики широко применяются в газонаполненных и вакуумных конденсаторах. Воздух является хорошим изолятором, но только в слабых полях. Электрическая прочность газообразных диэлектриков не превышает 2-3 МВ/м. Процесс пробоя обусловлен лавинным умножением электронов под действием ударной ионизации и фотоионизации.

Число электронов, образующихся в течение 1 с в 1см3 воздуха под действием радиоактивности Земли или космических лучей, составляет от 10 до 20. Эти электроны являются начальными зарядами, приводящими к пробою в достаточно сильном поле.

При увеличении напряженности электрического поля Е электроны на длине свободного пробега л приобретают энергию W=e л E, достаточную для ионизации молекул газа: W? Wu (Wu - энергия ионизации, е - заряд электрона). Энергия ионизации - это наименьшая энергия, которую нужно затратить для отрыва одного электрона от нейтральной молекулы (атома). В результате при столкновении с молекулами и атомами «первичные» электроны порождают новые электроны. «Вторичные» электроны под действием поля, в свою очередь, вызывают ионизацию молекул газа. В результате этого процесса число электронов в газовом промежутке, лавинообразно нарастая, очень быстро увеличивается. Электроны распределяются в межэлектродном пространстве в виде компактного облачка, называемого электронной лавиной.

Известны два механизма пробоя газов: лавинный и лавинно-стримерный.

При лавинном механизме ударная ионизация электронами сопровождается вторичными процессами на катоде, в результате которых заряды в газовом промежутке восполняются. Пробой газа сопровождается образованием серии лавин, причем каждая вновь образующаяся лавина по сравнению с предыдущей содержит большее число электронов - происходит «раскачивание» электронных лавин. Лавинный пробой, как правило, развивается в течение относительно длительного времени (более 1 мкс) и не характерен для импульсных напряжений.

При лавинно-стримерном механизме на развитие пробоя существенно влияет совместное действие поля пространственного заряда лавины и фотоионизации в объеме газа.

В некоторых случаях электрон, ускоренный электрическим полем, может не ионизировать молекулу, а привести ее в возбужденное состояние: электрон, находящийся внутри молекулы, переходит из равновесного состояния с меньшей энергией в состояние с более высокой энергией (на более удаленную от ядра орбиту). Такая возбужденная молекула в следующий момент (за 10-7 с) отдает свою избыточную энергию в форме излучения - испускает фотон. Фотон поглощается какой-либо другой молекулой, которая при этом может ионизироваться. Такая внутренняя фотонная ионизация газа благодаря большой скорости распространения излучения приводит к быстрому развитию в разрядном промежутке каналов с повышенной концентрацией носителей заряда, которая достаточна для преобразования лавины в стример.

Волнистые линии исходят из атомов, которые были возбуждены ударами электронов и вслед за тем испустили фотоны. Двигаясь со скоростью 3·108 м/с, фотоны обгоняют лавину и в каком-то месте, соответствующем концу волнистой линии, ионизируют частицу газа. Отщепленный здесь электрон, устремляясь к аноду, порождает новую лавину далеко впереди первой лавины.

В следующей стадии отдельные лавины в отрицательном стримере, нагоняя друг другу, сливаются, образуя сплошной канал ионизированного газа.

Одновременно с ростом стримера, направленного от катода к аноду, начинается образование встречного лавинного потока положительно заряженных частиц, направленного к катоду. Положительный стример представляет собой канал газоразрядной плазмы. Поясним это подробнее. Электронные лавины оставляют на своем пути большое число вновь образованных положительных ионов, концентрация которых особенно велика там, где лавины получили свое наибольшее развитие, т. е. около анода. Если концентрация положительных ионов здесь достигает определенного значения (близкого к ионам в 1 см3), то, во-первых, обнаруживается интенсивная фотонная ионизация, во-вторых, электроны, освобождаемые частицами газа, поглотившими фотоны, притягиваются положительным пространственным зарядом в головную часть положительного стримера и, в-третьих, вследствие ионизации концентрация положительных ионов на пути стримера увеличивается, насыщение электронами пространства, заполненного положительными зарядами, превращает эту область в проводящую газоразрядную плазму. Под влиянием ударов положительных ионов на катоде образуется катодное пятно, излучающее электроны. В результате указанных процессов и возникает пробой газа. Обычно пробой газа совершается практически мгновенно: длительность подготовки пробоя газа при длине промежутка 1 см составляет 10-7-10-8 с. Чем больше напряжение, приложенное к газовому промежутку, тем быстрее может развиться пробой. Если длительность воздействия напряжения очень мала, то пробивное напряжение повышается.

Электрическая прочность газов уменьшается с ростом расстояния между электродами, имеет немонотонную зависимость от давления с минимумом, соответствующим давлению, близкому к атмосферному.

2. Жидкие диэлектрики

Жимдкие диэлемктрики - жидкости с низкой электропроводностью (). Используются в электротехнике как изоляционные материалы, наибольшее применение имеют минеральные масла (в трансформаторах, конденсаторах и т. д.).

Как и твердые диэлектрики, жидкие диэлектрики поляризуются в электрических полях: для них характерна электронная и ориентационная поляризация. Диэлектрическая проницаемость (статическая) жидких диэлектриков может достигать значений 102 (для частоты 104Гц). В сильных электрических полях происходит электрический пробой жидких диэлектриков, механизм которого (тепловой или электронный) зависит от природы жидкости, ее чистоты, температуры, и др.

Жидкими диэлектриками являются насыщенные ароматические, хлорированные и фторированные углеводороды, ненасыщенные парафиновые и вазелиновые масла, кремнийорганические соединения (полиорганосилоксаны), сжиженные газы, дистиллированная вода, расплавы некоторых халькогенидов и др. Для жидких диэлектриков характерна ковалентная связь электронов в молекулах, а между молекулами действуют ван-дер-ваальсовые силы.

Жидкие диэлектрики применяются в электроизоляционной технике в качестве пропитывающих и заливочных составов при производстве электро- и радиотехнической аппаратуры: в электрических аппаратах высокого напряжения, а также в блоках электронной аппаратуры. По применению они делятся на жидкости для конденсаторов, кабелей, циркулярных систем охлаждения выпрямительных установок и турбогенераторов, масляных выключателей. Электрическая прочность, диэлектрическая проницаемость и теплопроводность жидких диэлектриков имеет более высокие значения по сравнению с воздухом и другими газами при атмосферном давлении. Поэтому электроизоляционные жидкие диэлектрики должны обеспечивать повышение электрической прочности твердой пористой изоляции, отвод тепла от обмоток трансформатора, гашение электрической дуги в масляных выключателях. В импульсном электрическом поле их электрическая прочность возрастает.

Основными характеристиками диэлектрических жидкостей являются диэлектрическая проницаемость, электропроводность и электрическая прочность.

Диэлектрическая проницаемость является истинной характеристикой жидкостей и характеризуется дипольным моментом и поляризуемостью молекул. Собственная проводимость жидких диэлектриков имеет электронную и ионную составляющие. Она обусловлена автоэлектронной эмиссией с катода, электролитической диссоциацией молекул, ионизацией молекул. Электрические свойства жидких диэлектриков в значительной мере зависят от степени их очистки. Загрязнения, как правило, снижают электрическую прочность жидких диэлектриков и увеличивают проводимость за счет возрастания количества ионов и заряженных коллоидных частиц.

Проводимость жидкостей определяется ионизацией молекул и наличием в жидкости примесей. Основными примесями, уменьшающими электрическую прочность, являются микрочастицы, микропузырьки и вода. Очистка диэлектрических жидкостей (дистилляцией, частичной кристаллизацией, адсорбцией, ионным обменом) приводит к уменьшению электропроводности и диэлектрических потерь и возрастанию электрической прочности. Электрическая прочность в значительной степени является технологической характеристикой жидкого диэлектрика и электродов, способов приготовления и эксплуатации изоляционного промежутка. На нее влияют не только те примеси, которые определяют электропроводность, но и форма и материал электродов, длительность импульса, наличие пузырьков.

Наиболее распространенными жидкими диэлектриками, применяемыми в качестве электроизоляционных материалов, являются:

нефтяные масла - трансформаторное, конденсаторное и кабельное;

синтетические жидкие диэлектрики - полихлордифенил (совол, совтол), кремнийорганические и фторорганические;

растительные технические масла (касторовое, льняное, конопляное и тунговое) в электроизоляционной технике применяются ограниченно.

Контрольная работа № 2

1. Что такое ток дрейфа и ток диффузии в p-n переходе?

Дырочно-электронный переход - область контакта двух полупроводников с различным типом проводимости, а также полупроводника и металла.

Вблизи контакта происходит взаимная диффузия носителей зарядов, которая приводит к образованию запирающего электрического слоя. Электрическое поле этого слоя препятствует дальнейшей диффузии носителей зарядов.

Если полупроводник n-типа соединен с положительным полюсом источником тока, а полупроводник p-типа - с отрицательным полюсом, то ширина запирающего слоя увеличивается и сопротивление p-n перехода возрастает.

При обратном подключении источника тока ширина запирающего слоя и сопротивление p-n перехода уменьшается.

Кроме направленного движения заряда, вызванного действием электрического поля, возможно направленное движение из области где концентрация носителей заряда больше в область где их концентрация ниже (диффузия). Данное явление выравнивания концентрации зарядов называется диффузионным током. Движение зарядов под действием электрического поля называется дрейфом заряда.

Диффузионный ток - наличие тока заряженных частиц связанного с разностью концентраций зарядов в разных частях тела.

Дрейфовый ток - это когда носители внешнее поле тянет в каком-то направлении. Полный ток в среде вычисляется как сумма дрейфовой и диффузионной компоненты.

Смещенный p-n переход:

Если p-область p-n-перехода соединить с положительным выводом какого-либо источника напряжения (например, батареи), а n-область - с отрицательным выводом, то электроны и дырки смогут диффундировать через переход. В результате из p-области в направлении n-области потечет существенный ток. В таком случае говорят, что переход смещен в прямом направлении. При обратном смещении, когда описанные выше подсоединения имеют противоположную полярность, от области n-типа к области p-типа потечет лишь предельно малый обратный ток.

ВАХ p-n перехода:

U приложенное напряжение I ток через переход Is ток насыщения Unp напряжение пробоя

Пробой p-n перехода:

При некотором обратном напряжении наблюдается резкое возрастание обратного тока. Это явление называют пробоем p-n перехода. Существуют три вида пробоя: туннельный, лавинный и тепловой. Туннельный и лавинный пробои представляют собой разновидности электрического пробоя и связаны с увеличением напряженности электрического поля в переходе. Тепловой пробой определяется перегревом перехода.

2. Влияние дефектов структуры и примесей на удельное сопротивления металлов

Примеси вносят наиболее существенный вклад в величину остаточного сопротивления. Атомы любого примесного элемента повышают с , даже если сама примесь обладает большей электропроводностью.

Рассеяние электронов проводимости на атомах примеси тем сильнее, чем больше разница в валентности примесного элемента и металла -- растворителя ?Z. Так что металлоидные примеси на снижение проводимости оказывают более сильное влияние, чем металлические элементы.

Дефекты структуры -- вакансии, атомы в междоузлии, дислокации, границы зерен и субзерен, прочие несовершенства кристаллического строения вносят определенный вклад в рост. Например, увеличение точечных дефектов в меди на 1 ат.% увеличивает рост в среднем на 0,01 мкОм·м. Чем выше плотность дефектов, тем больше удельное сопротивление.

На удельное сопротивление металлических материалов влияет термообработка. Так, при закалке стали образуется неравновесная структура с большими искажениями кристаллической решетки и внутренними напряжениями. Плотность дефектов по всему объему кристалла резко возрастает, что приводит к значительному росту удельного сопротивления. При отжиге металлов и сплавов создается термодинамически устойчивая равновесная структура, внутренние напряжения исчезают, плотность дефектов уменьшается до минимума (в 2 раза и более), поэтому рост резко снижается.

Пластическая деформация вызывает увеличение плотности дефектов и снижение проводимости. Для чистых металлов это снижение составляет несколько процентов, для них пластическую деформацию можно использовать как способ упрочнения без существенных потерь в электропроводности. Для металлических сплавов снижение электропроводности в результате наклепа может составлять до 25%. Для восстановления электропроводности после пластической деформации проводят рекристаллизационный отжиг

Контрольная работа № 3

1. Флюсы

Флюсы - химические вещества для удаления окислов (пленка окислов мешает смачиванию поверхности припоем) и загрязнений с поверхности спаиваемого металла, защиты его от окисления и лучшего смачивания припоем (припой лучше растекается, затекая во все промежутки). При паянии флюсы играют роль химических растворителей и поглотителей окислов. Температура плавления флюса должна быть несколько ниже температуры плавления применяемого припоя. От качества флюса во многом зависит хорошее смачивание припоем мест спайки и образование прочных швов. При температуре паяния флюс должен плавиться и растекаться равномерным слоем, в момент же пайки он должен всплывать на внешнюю поверхность припоя.

Различают две группы флюсов:

Химически активные, растворяющие пленки окиси, а часто и сам металл (соляная кислота, бура, хлористый аммоний, хлористый цинк).

Химически пассивные, защищающие лишь спаиваемые поверхности от окисления (канифоль, воск, стеарин и т. п.).

Флюсы бывают твердыми, жидкими, в виде геля или пасты.

Химически активные флюсы (кислотные) -- это флюсы, имеющие в большинстве случаев в своем составе свободную соляную кислоту. Существенным недостатком кислотных флюсов является интенсивное образование коррозии паяных швов.

К химически активным флюсам, прежде всего, относится соляная кислота, которая употребляется для пайки стальных деталей мягкими припоями. Кислота, оставшаяся после пайки на поверхности металла, растворяет его и вызывает, появление коррозии. После пайки изделия необходимо промыть горячей проточной водой. Применение соляной кислоты при пайке радиоаппаратуры запрещается, так как во время эксплуатации возможно нарушение электрических контактов в местах пайки. Следует учитывать, что соляная кислота при попадании на тело вызывает ожоги.

Хлористый цинк (травленая кислота) в зависимости от условий пайки применяется в виде порошка или раствора. Используется для пайки латуни, меди и стали. Для приготовления флюса необходимо в свинцовой или стеклянной посуде растворить одну весовую часть цинка в пяти весовых частях 50-процентной соляной кислоты. Признаком образования хлористого цинка служит прекращение выделения пузырьков водорода. Из-за того, что в растворе всегда имеется небольшое количество свободной кислоты, в местах пайки возникает коррозия, поэтому после пайки место спая должно тщательно промываться в проточной горячей воде. Пайку с хлористым цинком в помещении, где находится радиоаппаратура, производить нельзя. Применять хлористый цинк для пайки электро и радиоаппаратуры также нельзя. Хранить хлористый цинк необходимо в стеклянной посуде с плотно закрытой стеклянной пробкой

Бура (водная натриевая соль пироборной кислоты) применяется как флюс при пайке латунными и серебряными припоями. Легко растворяется в воде. При нагревании превращается в стекловидную массу. Температура плавления 741°С. Соли, образующиеся при пайке бурой, необходимо удалять механической зачисткой. Порошок буры следует хранить в герметически закрытых стеклянных банках.

Нашатырь (хлористый аммоний) применяется в виде порошка для очистки рабочей поверхности паяльника перед лужением.

К бескислотным флюсам относятся различные органические вещества: канифоль, жиры, масла и глицерин.

Наиболее широко в электро- и радиомонтажных работах применяется канифоль (в сухом виде или раствор ее в спирте). Канифоль -- продукт переработки смолы хвойных деревьев. Более светлые сорта канифоли (более тщательно очищенные) считаются лучшими. Температура размягчения канифоли от 55 до 83°С. Применяется как флюс для пайки мягкими припоями. На английском языке канифоль называется «rosin».

Самое ценное свойство канифоли, как флюса, заключается в том, что ее остатки после пайки не вызывают коррозии металлов. Канифоль не обладает ни восстанавливающими, ни растворяющими свойствами. Она служит исключительно для предохранения места пайки от окисления. Для приготовления спиртово-канифольного флюса берется одна весовая часть толченой канифоли, которая растворяется в шести весовых частях спирта. После полного растворения канифоли флюс считается готовым. При применении канифоли места пайки должны быть тщательно очищены от окислов. Часто для пайки с канифолью детали следует предварительно облуживать.

Стеарин не вызывает коррозии. Используется для пайки с особо мягкими припоями свинцовых оболочек кабелей, муфт и др. Температура плавления около 50°С.

В последнее время широкое применение получила группа флюсов ЛТИ, применяемых для пайки металлов мягкими припоями. По своим антикоррозийным свойствам флюсы ЛТИ не уступают бескислотным, но в то же время с ними можно паять металлы, которые раньше не поддавались пайке, например детали с гальваническими покрытиями. Флюсы ЛТИ могут применяться также для пайки железа и его сплавов (включая нержавеющую сталь), меди и ее сплавов и металлов с высоким удельным сопротивлением.

При пайке с флюсом ЛТИ достаточно произвести очистку мест пайки только от масел, ржавчины и других загрязнений. При пайке оцинкованных деталей удалять цинк с места пайки не следует. Перед пайкой деталей с окалиной последняя должна быть удалена травлением в кислотах. Предварительное травление латуни не требуется. Флюс наносится на место спая с помощью кисточки, что можно сделать заблаговременно. Хранить флюс следует в стеклянной или керамической посуде. При пайке деталей сложного профиля можно применять паяльную пасту с добавлением флюса ЛТИ-120. Она состоит из 70--80 г вазелина, 20--25 г канифоли и 50--70 млг флюса ЛТИ-120.

Но флюсы ЛТИ-1 и ЛТИ-115 имеют один большой недостаток: после пайки остаются темные пятна, а также при работе с ними необходима интенсивная вентиляция. Флюс ЛТИ-120 не оставляет темных пятен после пайки и не требует интенсивной вентиляции, поэтому применение его значительно шире. Обычно остатки флюса после пайки можно не удалять. Но если изделие будет эксплуатироваться в тяжелых коррозийных условиях, то после пайки остатки флюса удаляются при помощи концов, смоченных спиртом или ацетоном. Изготовление флюса технологически несложно: в чистую деревянную или стеклянную посуду заливается спирт, насыпается измельченная канифоль до получения однородного раствора, затем вводится триэтаноламин, а затем активные добавки. После загрузки всех компонентов смесь перемешивается в течение 20--25 минут. Изготовленный флюс необходимо проверить на нейтральную реакцию с лакмусом или метилоранжем. Срок хранения флюса не более 6 месяцев.

Один из самых распространенных и доступных флюсов для пайки плат - флюс марки КЭ.

Флюс спиртоканифольный СКФ (ФКСп) его разновидности: КЭ, ФКЭт, ФКСп. Применяется для пайки на платах элементов радиомонтажа при температурах 250-280°C.

Флюс ЛТИ-120 предназначен не только для пайки плат, но и углеродистых сталей, цинка припоями при температуре 200…300°C. ПН-9, ПН-56 - флюсы, в состав которых входят канифоль или полиэфирные смолы. Перечисленные флюсы подходят для пайки меди, латуни, серебра, золота их остатки не снижают электрического сопротивления оснований плат и не вызывают коррозии. Флюсы ФКСп, ФКЭт и ФПЭт также применяются для консервации плат при длительных сроках складского хранения в качестве покрытий.

Паяльная паста - это смесь флюса и маленьких гранул припоя. Паяльная паста наносится через маску на плату. Сверху устанавливаются компоненты, и плата отправляется в печь, где паяльная паста расплавляется и припой из ее состава припаивает компонент к контактной площадке.

Флюс для паяния алюминия состоит из тунгового масла, канифоли и кальцинированного хлористого цинка, взятых в соотношении 3:2:1 (по массе). Для удаления окислов на алюминии при паянии применяют мелкие стальные опилки, которые в процессе паяния сдирают образующийся окисел.

2. Можно ли применять резисторы большей мощности, чем расчетная? Почему этого не делают?

В точных измерительных приборах не стоит отклоняться от заданных в схеме номиналов. Что касается мощностей, чем мощнее резистор тем он толще, ставить вместо мощного 5 ваттного резистора 0,125 ватт никак нельзя, в лучшем случае он будет очень сильно греться, в худшем -- просто сгорит.

Контрольная работа № 4 «Проводники»

1. Точечные и планарные полупроводниковые диоды

Полупроводниковый диод -- это полупроводниковый прибор с одним электрическим переходом и двумя омическими контактами (омическим называют контакт металла с полупроводником, не обладающий выпрямляющим свойством), к которым присоединяются два вывода.

Электрический переход чаще всего образуется между двумя полупроводниками с разным типом примесной электропроводности (р- или n-типа), одна из областей (низкоомная) является эмиттером, другая (высокоомная) -- базой.

Иногда электрический переход образуется между полупроводником р- или n-типа и металлом, такой переход называют контактом металл -- полупроводник.

Классифицируют диоды по различным признакам: по основному полупроводниковому материалу -- кремниевые, германиевые, из арсенида галлия; по физической природе процессов, обусловливающих их работу,-- туннельные, фотодиоды, светодиоды и др.; по назначению -- выпрямительные, импульсные, стабилитроны, варикапы и др.; по технологии изготовления электрического перехода -- сплавные, диффузионные и др.; по типу электрического перехода -- точечные и плоскостные. Основными являются классификации по типу электрического перехода и назначению диода.

Точечные диоды имеют очень малую площадь электрического перехода. Линейные размеры, определяющие ее, меньше ширины р-n-перехода. Точечный электрический переход можно создать в месте контакта небольшой пластинки полупроводника и острия металлической проволочки-пружины даже при простом их соприкосновении. Более надежный точечный электрический переход образуется формовкой контакта, для чего через собранный диод пропускают короткие импульсы тока (порядка нескольких ампер). В результате формовки острие пружинки надежно приваривается к пластинке полупроводника. При этом из-за сильного местного нагрева материал острия пружинки расплавляется и диффундирует в пластинку полупроводника, образуя слой иного типа, чем полупроводник. Между этим слоем и пластинкой образуется р-n-переход полусферической формы. Площадь p-n-перехода составляет примерно 102 --103 мкм2. Точечные диоды в основном изготовляют из германия n-типа, металлическую пружинку -- из тонкой проволочки (диаметром 0,05--0,1 мм), материал которой для германия n-типа должен быть акцептором (например, бериллий). Острие пружинки затачивается до площади в несколько квадратных микрометров. Иногда острие пружинки для получения высококачественного р-n-перехода покрывают индием (или другим акцептором).

Корпус точечных диодов герметичный. Он представляет собой керамический или стеклянный баллон, покрытый черной светонепроницаемой краской (во избежание проникновения света, так как кванты света могут вызвать генерацию носителей заряда вблизи р-д-перехода, а следовательно, увеличить обратный ток диода). Благодаря малой площади р-n-перехода емкость точечных диодов очень незначительна и составляет десятые доли пикофарады. Поэтому точечные диоды используют на высоких (порядка сотен мегагерц) и сверхвысоких частотах. Их применяют в основном для выпрямления переменного тока высокой частоты (выпрямительные диоды высокочастотные) и в импульсных схемах (импульсные диоды).

Так как площадь p-n-перехода точечного диода мала, то прямой ток через переход должен быть небольшим (10--20 мА) из-за малой мощности (~10 мВт), рассеиваемой переходом. Поэтому точечные диоды можно использовать для выпрямления только малых переменных токов.

Плоскостные диоды. Плоскостные диоды имеют плоский электрический переход, линейные размеры которого, определяющие его площадь, значительно больше ширины p-n-перехода. Площадь может составлять сотые доли квадратных миллиметров (микроплоскостные диоды) до нескольких десятков квадратных сантиметров (силовые диоды). Переход выполняют в основном методами вплавления или диффузии. Пластинку кристалла полупроводника припаивают к кристаллодержателю так, чтобы образовался контакт. От этого контакта и электрода сделаны выводы, причем верхний проходит через стеклянный проходной изолятор в корпусе и коваровую трубку. Стеклянный изолятор покрыт светонепроницаемым лаком. Корпус служит для защиты диода от внешних воздействий.

Плоскостные диоды используются для работы на частотах до 10 кГц. Ограничение по частоте связано с большой барьерной емкостью р-n-перехода (до десятков пикофарад).

Плоскостные диоды, как и точечные, могут быть выполнены с контактом металл -- полупроводник. Емкость электрического перехода таких диодов небольшая, время перезарядки емкости, следовательно, мало, поэтому их используют для работы в импульсных режимах (сверхскоростные импульсные диоды). Плоскостные диоды бывают малой мощности (до 1 Вт), средней мощности (на токи до 1 А, напряжение до 600 В) и мощные (на токи до 2000 А).

Размещено на Allbest.ru

...

Подобные документы

  • Классификация диодов в зависимости от технологии изготовления: плоскостные, точечные, микросплавные, мезадиффузионные, эпитаксально-планарные. Виды диодов по функциональному назначению. Основные параметры, схемы включения и вольт-амперные характеристики.

    курсовая работа [909,2 K], добавлен 22.01.2015

  • Зонная модель электронно-дырочной проводимости полупроводников. Расчет концентрации ионизованной примеси. Контакт двух полупроводников с различными типами проводимости. Электронно-дырочные переходы. Полупроводниковые выпрямители. Суть сверхпроводимости.

    презентация [122,7 K], добавлен 09.04.2015

  • Общие сведения о проводниковых материалах. Электрическое сопротивление проводников. Параметры и использование стабилитронов. Полупроводниковые приборы. Основные определения и классификация диэлектриков. Характеристики электроизоляционных материалов.

    реферат [207,6 K], добавлен 27.02.2009

  • Понятие о полупроводниках, их свойства, область применения. Активные диэлектрики. Рождение полупроводникового диода. Открытие сегнетоэлектриков и пьезоэлектриков. Исследования проводимости различных материалов. Физика полупроводников и нанотехнологии.

    курсовая работа [94,4 K], добавлен 14.11.2010

  • Напряжение тока и сопротивление диода. Исследование вольтамперной характеристики для полупроводникового диода. Анализ сопротивления диода. Измерение напряжения и вычисление тока через диод. Нагрузочная характеристика параметрического стабилизатора.

    практическая работа [2,0 M], добавлен 31.10.2011

  • Полупроводниковые диоды, транзисторы, тиристоры: устройство и применение в агрономической практике. Трехфазный короткозамкнутый электродвигатель. Электропривод по уборке навоза из помещений. Высокочастотные нагревательные установки в сельском хозяйстве.

    контрольная работа [700,0 K], добавлен 19.07.2011

  • Классификация и типы полупроводников, их характеристики и свойства. Контактные явления на границе раздела полупроводников различных типов. Изучение работы соответствующих устройств, резонанс токов и напряжений. Изучение вольтмперной характеристики диода.

    дипломная работа [608,0 K], добавлен 03.07.2015

  • Классификация электротехнических материалов. Энергетические уровни. Проводники. Диэлектрические материалы. Энергетическое отличие металлических проводников от полупроводников и диэлектриков. Полупроводниковые материалы. Магнитные материалы и магнетизм.

    реферат [1022,4 K], добавлен 15.04.2008

  • Вольтамперная характеристика р-n перехода - границы двух слоев полупроводника с разным типом проводимости. Процессы, происходящие при его прямом и обратном смещении. Пояснение временных диаграмм мультивибратора и сути гибридного силового модуля.

    контрольная работа [294,7 K], добавлен 21.12.2011

  • Строение полупроводников - материалов, которые по своей удельной проводимости занимает промежуточное место между проводниками и диэлектриками. Электронная проводимость, обусловливаемая наличием у полупроводника свободных электронов. Донорные примеси.

    дипломная работа [676,6 K], добавлен 24.09.2015

  • Понятие диэлектрических потерь. Нагревание диэлектриков в электрическом поле, рассеивание части энергии поля в виде тепла как его следствие. Ухудшение свойств и ускорение процессов старения диэлектриков. Количественная оценка диэлектрических потерь.

    презентация [794,0 K], добавлен 28.07.2013

  • Строение, электрические свойства полупроводников и их отличия от металлов. Собственная и примесная проводимость. Полупроводниковые приборы: диод, фотодиод, транзистор, термистор. Коэффициент тепловой связи. Статические вольт-амперные характеристики.

    курсовая работа [2,1 M], добавлен 15.02.2014

  • Диэлектрики – вещества, обладающие малой электропроводностью, их виды: газообразные, жидкие, твердые. Электропроводность диэлектриков; ее зависимость от строения, температуры, напряженности поля. Факторы, влияющие на рост диэлектрической проницаемости.

    презентация [1,4 M], добавлен 28.07.2013

  • С ростом температуры кристалла за счет теплового расширения постоянная решетки увеличивается. Поэтому при повышении температуры у полупроводников, как правило, запрещенная зона уменьшается.

    реферат [10,8 K], добавлен 22.04.2006

  • Полупроводники n- и p-типа, методы получения и их зонные диаграммы. Основные и неосновные носители зарядов. Прохождение тока через полупроводники с разным типом проводимости. Виды транзисторных технологий, методика изготовления и область применения.

    реферат [756,9 K], добавлен 28.07.2010

  • Механизмы поглощения энергии излучения в полупроводниках. Принцип действия полупроводниковых фотоприемников. Характеристики и параметры фотоприемников. Темновое сопротивление, чувствительность, спектральная характеристика, охлаждаемые фотодатчики.

    контрольная работа [836,3 K], добавлен 29.08.2013

  • Особенности газообразных и жидких, органических полимерных, слоистых диэлектриков, композиционных порошковых пластмасс, электроизоляционных лаков и компаундов, неорганических стекол и ситаллов, керамики. Их электрические свойства, область применения.

    контрольная работа [24,5 K], добавлен 29.08.2010

  • Движение электромагнитных волн в веществе. Отражение и преломление плоской однородной волны на плоской поверхности раздела двух сред и двух идеальных диэлектриков. Формулы Френеля, связь между амплитудами падающей, отраженной и преломленной волн.

    курсовая работа [770,0 K], добавлен 05.01.2017

  • Датчики температуры с терморезисторами (термометры сопротивления). Металлические и полупроводниковые терморезисторы, их чувствительные элементы. Номинальные функции преобразования (статические характеристики) медных и платиновых терморезисторов.

    курсовая работа [334,6 K], добавлен 27.08.2010

  • Изучение фотоэлектрических свойств полупроводников для выявления физических закономерностей в различных структурах. Полупроводниковые свойства хлопковых волокон. Рассмотерние особенностей сорта электрических свойств хлопковых волокон "Гульбахор".

    реферат [13,0 K], добавлен 22.06.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.